

Ford Site Appendices

January 2017

Appendices

Appendix A-1

Calibrated Trip Generation Model

Saint Paul Minnesota

ITE Trip Generation

Proposed Program				assuming office use
$\begin{gathered} \text { ITE } \\ \text { CODE } \end{gathered}$	Land Use	Sqf	Unit	
	Civic	300,000		
	Industry	200,000		
	Retail	250,000		
	Office	250,000		
	Residential	5,000,000	4,000	
220	Apartment			
221	Low Rise Apartment			
222	High Rise Apartment			
223	Mid Rise Apartment			
230	Residential Condominium/Townhouse			
231	Low-Rise Residential Condominium/Townhouse			
232	High-Rise Residential Condominium/Townhouse			
233	Luxury Condominium/Townhouse			
820	Shopping Center			
826	Specialty Retail Center			
710	General Office Building			
76	Research and Development Center			
110	General Light Industrial			
120	General Heavy Industrial			
130	Industrial Park			
140	Manufacturing			
150	Warehousing			

TRIP GENERATION - RETAIL							
ITE Class Shopping Center (820)							
rate per 1000 sf GLA							
"...an integrated group of commercial establishments that is planned, developed, owned and managed as a unit."							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	42.7	63.95	50\%	50\%	10675	5338	5338
Saturday	49.97	72.59	50\%	50\%	12493	6246	6246
AM Peak Hour*	0.96	2.27	62\%	38\%	240	149	91
PM Peak Hour*	3.71	6.45	48\%	52\%	928	445	482
*peak hour of adjacent street traffic							
ITE Class Specialty Retail Center (826)							
rate per 1000 sf GLA							
"...an integrated group of commercial establishments that is planned, developed, owned and managed as a unit."							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	44.32	59.84	50\%	50\%	11080	5540	5540
Saturday	42.04	56.01	50\%	50\%	10510	5255	5255
AM Peak Hour	6.84	10.39	48\%	52\%	1710	821	889
PM Peak Hour*	2.71	4.54	44\%	56\%	678	298	379
*peak hour of adjacent street traffic							
TRIP GENERATION - OFFICE							
ITE Class General Office Building (710)							
rate per 1000 sf GLA "...may contain a mixture of tenants...a restaurant/cafeteria..."							
Time	ITE Rate		Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	11.03	17.18	50\%	50\%	2758	1379	1379
Saturday	2.46	4.67	50\%	50\%	615	308	308
AM Peak Hour*	1.56	2.96	88\%	12\%	390	343	47
PM Peak Hour*	1.49	2.86	17\%	83\%	373	63	309
*peak hour of adjacent street traffic							
ITE Class Research and Development Center (76)							
rate per 1000 sf GLA "...facilities devoted almost exclusively to research and development activities..."							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	8.11	13.95	50\%	50\%	2028	1014	1014
Saturday	1.9	3.71	50\%	50\%	475	238	238
AM Peak Hour	1.22	2.53	83\%	17\%	305	253	52
PM Peak Hour*	1.07	2.25	15\%	85\%	268	40	227
*peak hour of adjacent street traffic							

TRIP GENERATION - RESIDENTIAL							
ITE Class	Apartment (220)						
rate per	Dwelling Units						
"Studies included in this LU did not identify whether the apartments were low-rise, mid-rise, or high-rise"							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	6.65	9.72	50\%	50\%	26,600	13300	13300
Saturday	6.39	9.38	50\%	50\%	25,560	12780	12780
AM Peak Hour*	0.51	1.24	20\%	80\%	2,040	408	1632
PM Peak Hour*	0.62	1.44	65\%	35\%	2,480	1612	868
*peak hour of adjacent street traffic							
ITE Class Low Rise Apartment (221) rate per Occupied Dwelling Units							
"Low rise apartments (rental dwelling units) are units located in rental buildings that have one or two levels such as garden apartments."							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	6.59	9.43	50\%	50\%	26,360	13180	13180
Saturday	7.16	10.09	50\%	50\%	28,640	14320	14320
AM Peak Hour*	0.46	1.16	21\%	79\%	1,840	386	1454
PM Peak Hour*	0.58	1.35	65\%	35\%	2,320	1508	812
*peak hour of adjacent street traffic							
ITE Class rate per more elevators"	High Rise Apartment (222)						
	Dwelling Units						
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	4.2	6.52	50\%	50\%	16,800	8400	8400
Saturday	4.98	7.34	50\%	50\%	19,920	9960	9960
AM Peak Hour*	0.3	0.85	25\%	75\%	1,200	300	900
PM Peak Hour*	0.35	0.94	61\%	39\%	1,400	854	546
*peak hour of adjacent street traffic							
ITE Class	Mid Rise Apartment (223)						
rate per	Dwelling Units						
"Mid rise apartments (rental dwelling units) are uapartments (rental dwelling units) in rental buildings that have between three and 10 levels."							
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	none givennone given						
AM Peak Hour*	0.3	0.86	31\%	69\%	1,200	372	828
PM Peak Hour**peak hour of adjacent street traffic		1.02	58\%	42\%	1,560	905	655

TRIP GENERATION - INDUSTRIAL

TE Class
General Light Industrial (110)
rate per
1000 sf GLA

Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	6.97	50\%	50\%	1394	697	697
Saturday	1.32	50\%	50\%	264	132	132
AM Peak Hour*	0.92	88\%	12\%	184	162	22
PM Peak Hour*	0.97	12\%	88\%	194	23	171
*peak hour of adjacent street traffic						
ITE Class General Heavy Industrial (120)						
rate per 1000 sf GLA						
"...limited to the manufacturing of large items..."						
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	1.5	50\%	50\%	300	150	150
Saturday none given						
AM Peak Hour	0.51 none given			102		
PM Peak Hour*	0.68 none given			136		
*peak hour of adjacent street traffic						
ITE Class Industrial Park (130)						
rate per 1000 sf GLA						
"...a mix of manufacturing, service and warehouse facilities ..."						
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	6.83	50\%	50\%	1366	683	683
Saturday	2.49	50\%	50\%	498	249	249
AM Peak Hour*	0.82	82\%	18\%	164	134	30
PM Peak Hour*	0.85	21\%	79\%	170	36	134

ITE Class Manufacturing (140)

Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	3.82	50\%	50\%	764	382	382
Saturday	1.49	50\%	50\%	298	149	149
AM Peak Hour*	0.73	78\%	22\%	146	114	32
PM Peak Hour*	0.73	36\%	64\%	146	53	93

ITE Class Warehousing (150)						
rate per 1000 sf GLA						
"...devoted to the storage of materials, but may include office and maintenance areas..."						
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	3.56	50\%	50\%	712	356	356
Saturday	1.23	50\%	50\%	246	123	123
AM Peak Hour*	0.3	79\%	21\%	60	47	13
PM Peak Hour*	0.32	25\%	75\%	64	16	48

TRIP GENERATION - CIVIC (OFFICE)											
ITE Class General Office Building (710) rate per 1000 sf GLA ... may contain a mixture of tenants...a restaurant/cafeteria..."				Exiting	ITE Est. Trips	Entering	Exiting				
Time	ITE Rate	Plus 1 Std. Dev.	Entering								
Weekday	11.03	17.18	50\%	50\%	3309	1655	1655				
Saturday	2.46	4.67	50\%	50\%	738	369	369				
AM Peak Hour*	1.56	2.96	88\%	12\%	468	412	56				
PM Peak Hour*	1.49	2.86	17\%	83\%	447	76	371				
*peak hour of adjacent street traffic											
ITE Class Research and Development Center (76) rate per 1000 sf GLA "...facilities devoted almost exclusively to research and development activities..."											
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	8.11	13.95	50\%	50\%	2433	1217	1217				
Saturday	1.9	3.71	50\%	50\%	570	285	285				
AM Peak Hour	1.22	2.53	83\%	17\%	366	304	62				
PM Peak Hour*	1.07	2.25	15\%	85\%	321	48	273				
*peak hour of adjacent street traffic											

TRIP GENERATION - RESIDENTIAL						
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	16,720	26,600	8,360	13300	8,360	13300
Saturday	17,240	28,640	8,620	14320	8,620	14320
AM Peak Hour*	1,200	2,680	258	670	828	2010
PM Peak Hour*	1,400	3,120	854	1810	546	1310

TRIP GENERATION RETAIL						
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	10,675	11,080	5,338	5540	5,338	5540
Saturday	10,510	12,493	5,255	6246	5,255	6246
AM Peak Hour*	240	1,710	149	821	91	889
PM Peak Hour*	678	928	298	445	379	482

TRIP GENERATION - INDUSTRIAL							
				Min	Max	Min	Max
	Min	Max	Entering	Entering	Exiting	Exiting	
Weekday	300	1,394	150	697	150	697	
Saturday	246	498	123	249	123	249	
AM Peak Hour*	60	184	47	162	13	32	
PM Peak Hour*	64	194	16	53	48	171	

TRIP GENERATION - CIVIC (OFFICE)						
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	2,433	3,309	1,217	1655	1,217	1655
Saturday	570	738	285	369	285	369
AM Peak Hour*	366	468	304	412	56	62
PM Peak Hour*	321	447	48	76	273	371

TRIP GENERATION -
 OFFICE

	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	2,028	2,758	1,014	1379	1,014	1379
Saturday	475	615	238	308	238	308
AM Peak Hour*	305	390	253	343	47	52
PM Peak Hour*	268	373	40	63	227	309

JOBS \& HOUSING BALANCE	Low	High
Included in analysis	Yes	Yes
Housing Units within a half mile	4,590	4,590
Housing Units in project	4,000	4,000
Employees within a half mile	2,117	2,117
Employees in project	1,800	1,800
Job/Household Ratio	0.46	0.46
IDEALJ ob/Household Ratio	1.50	1.50
Reduction Credit	2.60\%	2.60\%
Calculation		
Tip Reduction Credit $=\frac{1-\left(\frac{A B S(1.5 \times(h-e))}{1.5 \times(h+e)}\right)-0.25}{0.25} \times 0.03$Where:		
$h=$ study area households (or housing units)		
$e=$ study area employment Source: Ewing, R. \& Cervero, R., 2010. Travel and the Built Environment: A Meta-Analysis. Journal of the American Planning Association, 76(3), pp. 265-294. Criterion Planner/Engineers and Fehr \& Peers Associates, 2001. Index 4D Method. A Quick-Response Method of Estimating Travel Impacts from Land-Use Changes, s.I.: US EPA.		

LOCAL SERVING RETAIL	Low	High
Included in analysis	Yes	Yes
Local Serving Retail Presence	Yes	Yes
Reduction Credit	2\%	2\%
Calculation		
Trip Reduction Credit =		
2\%		
Source: Parsons Brinckerhoff Quade \& Douglas, I., Cervero, R., Howard Stein-Hudson Associates \& Zupan, J., 1996. Influence of Land Use Mix and Neighborhood Design on Transit Demand, Washington, DC: TRB National Transit Institute, 2000. Coordinating Transportation and Land Use Course Manual, New Brunswick, NJ: Rutgers University.		

BELOW MARKET RATE HOUSING	Low	High
Included in analysis	Yes	Yes
Percent of housing units below market rate	12\%	12\%
Reduction Credit	0.6\%	0.6\%
Calculation		
Residential Tip Reduction Credit = iWhere:	IWhere:	
\% units that are $B M R \times 0.05 \quad \mathrm{BMR}=$ Below	BMR $=$ Below Market Rate	
Source: Holtzclaw, J. et al., 2002. Location Efficiency: Neighborhood and Socio-Economic Characteristics Determine Auto Ownership and Use - Studies in Chicago, Los Angeles and San Francisco. Transportation Planning and Technology, 25(1), pp. 1-27.		

Reduction C redit	
depends on the \% of affordable housing in the proposed project	
MIN	0.0% no below makket-rate housing
Low	Percent of housing units below market 0.6% rate $=0.12$
High	Percent of housing units below market 0.6% rate $=0.12$
MAX	5.0% calculated based on the source

Reduction Credit	Context
depends on the proposed transitsystem frequency	
MIN	0.0% no transit service within $1 / 2$ mile
Low	7.5\% existing senvice
High	7.5\% project proposed to add transit service
MAX	Ideal Transit Service "Trips" (buses $+2 x$ 7.5% rapid transit trips) $=900$

Reduction Credit	Context
depends on the proposed street network and sidewalk infrastucture plan	
MIN	0.0% single use within $1 / 2$ mile walk
Low	mile $=590.47619047619$, Sidewalk completeness $=1$ \& block size reduced 6.6% by 0.731707317073171
High	mile $=885.714285714286$, Sidew alk completeness $=1 \&$ block size reduced 7.5% by 0.804878048780488
MAX	Ideal intersection density of 1,300 legs per smile, 100% sidewalk and extreme 9.0\% block size

Reduction Credit		Context
depends on proposed bicycle infrastucture		
MIN	0.0\%	no bicycle infrastructure
Low	2.9\%	some bicycle infrastructure improvement
High	7.4\%	signific ant bicycle infrastructure improvement
MAX	9.0\%	maximum bicycle infrastructure improvement

PARKING SUPPLY	Low	High
Included in analysis	Yes	Yes
Parking supply allocation	Fully dedicated	Mixed
ITE Parking Generation "required"supply	6,916	6,916
Project parking supply	7,500	4,000
Shared parking supply	0	2,000
Parking supply reduction	-8\%	42\%
All non-parking supply reduction combined		
Residential	22\%	28\%
Non-residential	22\%	28\%
Reduction Credit		
Residential	0.00\%	7.31\%
Non-residential	0.00\%	7.31\%
if "fully dedicated", credit only applied to the uses with a supply below ITE if "fully shared", credit applied to all land uses; if "mixed", credit only applied to land uses that share parking supply		
Calculation		
Tip Rate Reduction $=\frac{p-(m+t+b)}{2}$	Where: $p=$ parking supply m+t+b=all non-parking su	uction combined

Reduction Credit	Context
depends on parking supply and it associated land use	
MIN	parking supply fully dedic ated and all above ITE 0.0% requirements
Low	parking supply fully dedic ated, applied only to uses 0.0% with a supply below ITE
High	7.3\% parking supply fully shared, applied to all uses
MAX	no patking is provided and there are measures in place to manage overspill such as residential parking 50.0% pemits, parking time-limits, parking pricing, etc.

To avoid double counting with other trip reduction measures, the impacts of parking supply are proposed to be assessed in conijuction with all other non-residential t tip reduction measures as follows:
 and pedestrianlbicycle trip reductions amount to 20%, the 20% figure would be used.
In effect, the parking supply reduction is only used ifif is greater than the impact from other trip reduction measures, and the
difference is discounted by 50%. For example, if parking supply is reduced 20% from ITE levels, and transit, mixed use and bicycle/pedestrian tip reductions amount to 10%, the parking supply reduction impact of $5 \%=(20 \%-10 \% / 2)$ is used. The Parking Generation handbook covers most common land uses, however, for some land uses no parking generation rates
are avaiable. In these cases, the ITE parking supply would be lower than if TTE had rates, making it harder for the project supoly to be lower than the ITE supply (making it harder for this measure to be applied).
SOURCE: NELSONNYGAARD TRIP GEN STUDY

Reduction Credit	Context
depends on proposed parking price \& cashout programs	
MIN	no priced parking, no unbundled 0.0% parking, and no cash-out program
Low	Residents pay $\$ 0$, Employees pay $\$ 0$, Customers pay $\$ 0$ \& no unbundled 0.0% parking \& no cash-out
High	Residents pay $\$$, Employees pay $\$ 2.5$, Customers pay $\$ 5$ \& Parking unbundling 9.7\% \& Parking cash-out
MAX	pay more than $\$ 7.5 /$ day on parking. Unbundling resident parking and 24.6% employee cash-out program exist

A maximum trip reduction of 25% should be applied to projects that commit to introducing parking pricing. This is based on the approximate midpoint of observed reductions, which range from 15% to 33% (see SOURCE below). Note that most of these studies apply to before-after or with-without comparisons, with no increase in transit senice or other measures to reduce vehicle trips.

This maximum reduction should apply to prices of 57.50 per day or greater (in 2012 dollars). If the parking charge is more tha $\$ 7.50$, the 25% reduction is taken. II parking charges do not apply to all trips to a site (e.g. customers are exempt), the reduction is pro-rated by the eercentage of tips that the charges apply to. If ifitle or no on-site parking is provided, the parking SOURCE: Shoup \& Willson, Federal Tax Policy and Employer-paid Parking: The Influence of Parking Prices on Trae
Demand, 1990; Comsis Corporation, 1993; Valk \& Wasch, 1998; Pratt, 2000; Kumzyak, Evans, IV, \& Pratt, 2010

FREE TRANSIT PASSES	Low	High
Included in analysis	Yes	Yes
Resident Free Transit Pass Program	No	No
Employee Free Transit Pass Program Free Transit Pass Reduction Credit Residential Non-residential	0.00%	No
	0.00%	1.88%

Calculation
Resident and / or Employee Trip Reduction $=(t) \times 25 \%$
$t=$ Transit reduction impact

Reduction Credit	Context	
depends on proposed TDM programs		
MIN	0.0%	
Low	no TDM programs	

TRIP GENERATION ANALYSIS												
Standard ITE Vehicular Trip Generation												
TOTAL Vehicle Trips		Min Total	Max Total	Min Entering	Max Entering	Min Exiting	Max Exiting	Average Total	Average Entering	Average Exiting	Factored Entering	Factored Exiting
Weekday	Residential	16,720	26,600	8,360	13,300	8,360	13,300	21,660	10,830	10,830	10,830	10,830
	Non-Residential	15,436	18,541	7,718	9,270	7,718	9,270	16,988	8,494	8,494	8,494	8,494
	Total	32,156	45,141	16,078	22,570	16,078	22,570	38,648	19,324	19,324	19,324	19,324
AM Peak Hour*	Residential	1,200	2,680	258	670	828	2,010	1,940	464	1,419	478	1,462
	Non-Residential	971	2,752	753	1,738	207	1,035	1,862	1,245	621	1,242	619
	Total	2,171	5,432	1,012	2,408	1,035	3,045	3,802	1,710	2,040	1,720	2,081
PM Peak Hour*	Residential	1,400	3,120	854	1,810	546	1,310	2,260	1,332	928	1,332	928
	Non-Residential	1,330	1,941	402	637	928	1,333	1,636	520	1,130	515	1,120
	Total	2,730	5,061	1,256	2,447	1,474	2,644	3,896	1,852	2,059	1,847	2,049

Context Input
Average vehicle occupancy for Saint Paul (4 Census block groups, 2000 data) 1.08 Source: ACS 2014 Note: For Highland neighborhood 80.5%, Saint Paul 80.6%. Source: ACS 2013. Vehicular Mode Split 80.5% http://www.mncompass.org/profiles/neighborhoods/st-paul/highland Transit Mode Split 9.0% Note: ACS data only includes work trips Nonmotorized (Walk/Bike) Mode Split 10.5%

Trips	Low	High	Mode split	Low	High
External Vehicle Trips	24,463	17,539	Auto	71\%	50\%
External Transit Trips	6,167	10,675	Transit	18\%	30\%
External NMT Trips	4,063	7,033	NMT	12\%	20\%

Appendices

Appendix A-2

Pedestrian and Bicycle Level of Service

PLANNERS
PLANNERS
DESIGNERS

Pedestrian and Bicycle Level of Service

The level of service provided to pedestrians and bicycles can affects the likelihood that these alternate modes of travel may be used. Higher non-motorized mode shares can be achieved by providing infrastructure that increases the level of service experienced.

Several methods have been used to estimate multi-modal level of service (MMLOS). Quantitative measures such as the Highway Capacity Manual (HCM) typically estimate the delay experienced by users. For this project, an alternative set of measures were used to incorporate an element of quality-based level of service as well. This level of service methodology was adopted by the City of Charlotte, North Carolina in its Uniform Street Development Guidelines ${ }^{1}$.

Each factor is scored and weighted in a point-based system. The factoring is based on signal-controlled intersections, but for the purpose of this study stop-controlled intersections were included where necessary, with scoring based on interpolation of the values and characteristics. Factors were developed for the existing configuration of the intersections, and for a build condition assuming necessary intersection improvements necessary to increase the pedestrian/bicycle levels of service within the current public right-of-way.

[^0]Level of Service Factors: Pedestrian

Table 1	Crossing Distance
Table 2	Signal Phasing and Timing Features
Table 2A	Left Turn Conflicts (LT into pedestrian crossing path)
Table 2B	Right Turn Conflicts (LT into pedestrian crossing path)
Table 2C	Pedestrian Phase Signal Display
Table 3	Corner Radius
Table 4	Right Turns on Red
Table 5	Crosswalk Treatment

Level of Service Factors: Bicycle

Table 8	Bicycle Travel Way and Speed of Adjacent Traffic
Table 9	Signal Features Left Turn Signal Phasing and Timing Features and Stop Bar Location
Table 10	Right Turn Conflict
Table 11	Right Turns on Red
Table 12	Intersection Crossing Distance

Recommended External Roadway System and Pedestrian and Bicycle Improvements

Intersection	Recommended Improvements (Ped/Bike, Auto)
Ford Parkway/ Mississippi River Boulevard Access Ramps (N. and S. ramps at Ford Pkwy)	- Ladder-type or textured/colored crosswalk treatment - Promote through movements on Mississippi River Blvd. - Add Enhanced shared bicycle/auto lane on Ford Parkway
Ford Pkwy/ Mount Curve Blvd	- Signalize intersection - Provide NB/SB Left-turn lanes - Extend WB left-turn lane - Ladder-type or textured/colored crosswalk treatment - Enhanced pedestrian signal features - Bike boxes at intersection approaches - Add enhanced shared bicycle/auto lane on Ford Parkway - In-street bicycle lanes within site, shared bike lanes on north approach
Ford Pkwy/ Cretin Ave.	- Add NB left- and right-turn lanes, * - Extend WB left-turn lane, Remove part of median, EB right-turn lane* - Ladder-type or textured/colored crosswalk treatment - Enhanced pedestrian signal features - Bike boxes at intersection approaches - Enhanced shared bicycle/auto lane on Ford Parkway *May impact pedestrian/ bigycle environment and will require additional review
Ford Pkwy/ Finn Street	- Ladder-type or textured/colored crosswalk treatment - Enhanced pedestrian signal features - Bike boxes at intersection approaches - Enhanced shared bicycle/auto lane on Ford Parkway - In-street bicycle lanes within site
Ford Pkwy/ Cleveland Avenue	- Ladder-type or textured/colored crosswalk treatment - Bike boxes at intersections - Enhanced shared bicycle/auto lane on Ford Parkway - In-street bicycle lanes south of Ford Parkway
Cleveland Ave./ St. Paul Ave.	- Reconfigure intersection and traffic control - pedestrian signal features - Ladder-type or textured/colored crosswalk treatment - Bike boxes at intersection - Add in-street bicycle lanes on St. Paul Ave. - Enhanced shared bicycle/auto lane on Ford Parkway

Pedestrian and Bicycle Level of Service Summary ${ }^{2}$

	Bicycle Level of Service		Pedestrian Level of Service	
Intersection	Existing Configuration	With Recommended Improvements	Existing Configuration	With Recommended Improvements
Ford Parkway/ Mississippi River Boulevard Access Ramps (North and South ramps at Ford Pkwy)	C (55)	C (68	B (88)	A (98)
Ford Parkway/ Woodlawn Avenue	D (52)	C (58)	C (69)	B (76)
Ford Parkway/Mount Curve Blvd	D (52)	B (75)	C (69)	B (78)
Ford Parkway/Cretin Avenue	D (48)	B (74)	C (68)	B (75)
Ford Parkway/ Finn Avenue	E (30)	C (60)	C (68)	B (81)
Ford Parkway/ Cleveland Avenue	D (49)	C (71)	C (73)	B (83)
Cleveland Avenue/ Saint Paul Avenue	D (50)	C (67)	C (68)	B (79)
Cleveland Avenue/Montreal Avenue	C (55)	B (75)	B (90)	A (94)
Saint Paul Avenue/Montreal Avenue	D (49)	B (79)	C (70)	B (87)
E. 46th Street/46th Avenue S. (Minneapolis)	D (40)	C (60)	C (72)	B (75)
Davern Street/Montreal Avenue	D (53)	B (75)	B (80)	B (89)

[^1]
Appendices

Appendix A-3

Vehicle Traffic Operations/Level of Service

Engineers
Planners
Designers Vehicle Traffic Operations/Level of Service

Traffic levels of service and additional analysis was conducted using Synchro/Simtraffic and VISSIM software packages. This appendix documents the data collected, assumptions, and analysis.

Data Collection

Figure A-1 shows the AM and PM traffic counts for the project, collected September 11 through September 14, 2015. Counts were supplemented in the analysis by information for other locations provided by the City of St. Paul and the Minnesota Department of Transportation. Traffic signal timing and roadway geometrics included information form the City of St. Paul and other traffic studies in the area. And reviewed for quality control. No seasonal adjustments were used because September is a near-average month for traffic volumes.

Table A-1 provides a summary of existing signal timing used in the initial analysis.

Existing Conditions Analysis

Also shown in Figure A-1 (and summarized below in Table A-2) are the roadway levels of service for the intersections under review for the Ford site area. Figure A-2 shows examples of the various levels of service corresponding to typical conditions. Table A-3 shows the standards for intersection delay used to assign letter grade levels of service.

Table A-2: Existing Levels of Service

	AM (PM) Peak Hour Delay (average sec.)*	AM (PM) Peak Hour Level of Service*
46th Ave/46th St	12 (15)	B (B)
Ford Pkwy/Mississippi River Blvd	1/7 (2/8)	A/A (A/A)
Ford Pkwy/Woodlawn Ave	1/1 (1/1)	A/A (A/A)
Ford Pkwy/Mt Curve Blvd	1/11 (1/12)	A/B (A/B)
Ford Pkwy/Cretin Ave	11 (16)	B (B)
Ford Pkwy/Finn St	8 (16)	A (B)
Ford Pkwy/Cleveland Ave	22 (44)	C (D)
St Paul Ave/Cleveland Ave/Bohland Ave/Inner Dr	6/46 (5/59)	A/E (A/F)
Montreal Ave/Cleveland Ave	4/9 (4/10)	A/A (A/A)
Montreal Ave/St Paul Ave	12 (14)	B (B)
Mississippi River Blvd/N Ford Ramp	1/7 (2/16)	A/A (A/C)
Mississippi River Blvd/S Ford Ramp	3/9 (3/11)	A/A (A/B)

*For unsignalized intersections, delay and LOS are shown as overall/worst approach.

Level of Service A:

Majority of through traffic doesn't stop

Level of Service D:
Majority of vehicles have to stop and may have to wait through more than one green light

Level of Service B:
Minimal waiting at traffic signal

Level of Service E:

Majority of vehicles have to stop and wait through more than one green light. Significant queueing occurs.

Level of Service C:
Increased number of stops and queueing

Level of Service F (Side-Street):

Vehicles typically queued waiting for a safe opening in traffic

Table A-3: Delay Standards for Level of Service

LOS Designation	Signalized Intersection Average Delay/Vehicle (seconds)	Unsignalized Intersection Average Delay/Vehicle (seconds)
A	≤ 10	≤ 10
B	$>10-20$	$>10-15$
C	$>20-35$	$>15-25$
D	$>35-55$	$>25-35$
E	$>55-80$	$>35-50$
F	>80	>50

Background Traffic Growth

Daily traffic volumes on key roadway segments in the region have remained relatively stable over time (Figure A-3). For this reason, this analysis assumes that, absent development of the Ford site and other sites currently under construction, no background traffic growth would occur.

Figure A-3: Historical Counts

Vehicle Traffic Operations/Levels of Service

Cretin Avenue/Montreal Avenue Diversion Analysis

Traffic modeling for the project estimates that a through-connection of extended north/south routes (such as Cretin Avenue, Finn Avenue, or Mount Curve Blvd.) and extended Montreal Avenue would reduce the amount of background traffic through the Ford Parkway/Cleveland Avenue intersection. The diversion would range from 29 to 38 percent, or 178 to 315 vehicles, depending on the direction and time of day as conceptually shown in Figure A-4. The diversion of traffic has minimal impacts on these three intersections in the a.m. peak, but the overall intersection delay decreases by five seconds at the Ford Parkway/Cleveland Avenue intersection with the diversion of traffic in the p.m. peak (Table A-4).

Figure A-4: Potential Diversion of traffic from Ford Pkwy. / Cleveland Ave. Intersection

Vebicle Traffic Operations/Levels of Service

Table A-4 Ford Parkway/Cleveland Avenue Diversion Effects ${ }^{(1)}$

	AM		PM	
	Without Diversion	With Diversion	Without Diversion	With Diversion
Ford Pkwy/Cretin Ave	11 (B)	14 (B)	16 (B)	19 (B)
Ford Pkwy/Cleveland Ave	22 (C)	22 (C)	44 (D)	39 (D)
Montreal Ave/Cleveland Ave ${ }^{(2)}$	4 (A)/9 (A)	9 (A)/13 (B)	$4(\mathrm{~A}) / 10$ (B)	9 (A)/15 (C)

Notes:
(1) Average delay, in seconds, and level of service
(2) Intersection is side-street stop control. The LOS is shown for the intersection followed by the LOS of the worst approach. Delay shown was calculated using the HCM 2010.

Direction of Approach Analysis

The Ford site redevelopment presents a significant change in the levels and mix of land uses and activities in the Highland Park area. Standard traffic analysis techniques are not sufficient to reflect the changes in travel patterns (origins, destinations, modes and routes) that may occur. A high-level run of the Metropolitan Council's travel demand model was used to estimate the likely origin and destination patterns of the Ford site activities; the model considers the magnitude of activities, typical willingness to travel, and competing opportunities. As shown in Figure A-5, the Ford site is centrally located in the region, and can be expected to have a dispersed pattern of travel. For example, downtown Minneapolis, downtown St. Paul, and the I-494 area are the three major job concentrations in the region, and are the Ford site is centrally located among them. An estimated 35 percent of the trips are expected to be generated within 2.5 miles of the Ford site (including those that stay on the site.

Figure A-5: Distribution of travel to/from Ford Site

[^2]Figure A-6 translates the travel distribution, in combination with the mode shares, to estimate the general flow of vehicular traffic. Specific roadways used may depend on the locations of land uses and parking within the site.

Figure A-6: Vehicle Trip Directions of Approach

[^3]
Build Alternative Analysis

Figure A-7 and A-8 show the schematic traffic volumes estimated for the base condition, which forms the worst-case for the traffic analysis. These are the input volumes for the traffic analysis.

Table A-5 shows the resulting traffic simulation/level of service results for the area intersections with the development of the Ford site. Included in the analysis are assessments of both the overall intersection and the worst approach of the intersection.

Based on the results of the simulation, as series of potential modifications to the intersections have been identified that could provide improvements to the level of service (Table A-6). It should be noted that detailed implementation of any of these should be considered in concert with modifications to better serve pedestrian and bicycle levels and quality of service.

Figure A-7
Base Scenario AM Peak Hour Traffic Volumes

H:IProjects10900019041|TSISynchrolAM Build High.syn

Table A-5: Build (site) Levels of Service with and Without Mitigation Changes to Roadway System

Intersection ${ }^{(1)}$	Existing		No Changes		With Mitigation ${ }^{(2)}$	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay ($\mathrm{sec} / \mathrm{veh}$)	LOS
46th Ave/46th St	12 (15)	B (B)	14 (15)	B (B)	12 (14)	B (B)
Ford Pkwy/Mississippi River Blvd	1/7 (2/8)	A/A (A/A)	1/7 (2/9)	A/A (A/A)	1/8 (2/9)	A/A (A/A)
Ford Pkwy/Woodlawn Ave	1/1 (1/1)	A/A (A/A)	1/1 (2/1)	A/A (A/A)	1/1 (2/2)	A/A (A/A)
Ford Pkwy/Mt Curve Blvd	$\begin{aligned} & \hline 1 / 11 \\ & (1 / 12) \\ & \hline \end{aligned}$	A/B (A/B)	$\begin{aligned} & \hline 39 / 830 \\ & (19 / 1063) \\ & \hline \end{aligned}$	$\mathrm{E} / \mathrm{F}(\mathrm{F} / \mathrm{F})$	12 (13)	B (B)
Ford Pkwy/Cretin Ave	11 (16)	B (B)	30 (72)	C (E)	17 (27)	B (C)
Ford Pkwy/Finn St	8 (16)	A (B)	6 (18)	A (B)	10 (19)	A (B)
Ford Pkwy/Cleveland Ave	22 (44)	C (D)	23 (32)	C (C)	21 (38)	C (D)
St Paul Ave/Cleveland Ave/Bohland Ave/Inner Dr	$\begin{aligned} & \hline 6 / 46 \\ & (5 / 59) \\ & \hline \end{aligned}$	A/E (A/F)	5/28 (5/33)	A/D (A/D)	6/30 (6/45)	A/D (A/E)
Montreal Ave/Cleveland Ave	4/9 (4/10)	A/A (A/A)	$\begin{array}{\|l\|} \hline 127 / 247 \\ (128 / 246) \\ \hline \end{array}$	$\mathrm{F} / \mathrm{F}(\mathrm{F} / \mathrm{F})$	14 (16)	B (B)
Montreal Ave/St Paul Ave	12 (14)	B (B)	$\begin{aligned} & \hline 105 / 175 \\ & (172 / 351) \\ & \hline \end{aligned}$	F/F (F/F)	14 (17)	B (B)
Mississippi River Blvd/N Ford Ramp	1/7 (2/16)	A/A (A/C)	1/8 (2/15)	A/A (A/C)	1/7 (3/16)	A/A (A/C)
Mississippi River Blvd/S Ford Ramp	3/9 (3/11)	A/A (A/B)	3/10 (3/12)	A/B (A/B)	3/10 (3/12)	A/B (A/B)
Segment	Travel Time (sec)		Travel Time (sec)		Travel Time (sec)	
Travel Time: EB Ford Pkwy	192 (237)		198 (216)		203 (247)	
Travel Time: WB Ford Pkwy	186 (204)		183 (219)		201 (222)	
Travel Time: SB Cleveland Ave/St Paul Ave	97 (115)		113 (188)		104 (141)	
Travel Time: NB Cleveland Ave/St Paul Ave	98 (110)		147 (198)		107 (132)	

Notes: (1) Accounts for diverted traffic through site;
(2)vehicle traffic mitigations -- does not include changes needed to maximize pedestrian/bicycle quality of service

Table A-6: Potential Mitigations to Improve Roadway Geometrics

Intersection	Recommended Improvements
Ford Pkwy/ Mount Curve Blvd	- Signalize intersection - Provide NB/SB Left-turn lanes - Extend WB left-turn lane
Ford Pkwy/ Cretin Ave.	- Add NB left- and right-turn lanes, - Extend WB left-turn lane, Remove part of median, EB right-turn lane
Cleveland Ave/ Montreal Ave	- Add west approach, - Add traffic signal (or possible roundabout) - If traffic signal, $\mathrm{EB}, \mathrm{WB}, \mathrm{NB}$, and SB left-turn lanes should be considered Likely requires removal of on-street parking on approaches near intersection
Montreal Ave/ St Paul Ave	- Traffic signal or roundabout - If traffic signal, NB left-turn lane should be considered - Requires removal of part of the median - Likely requires removal of on-street parking on eastbound approach near intersection - If traffic signal, EB/WB left-turn lanes - Optional: EB/WB right-turn lanes
Cleveland Ave./ St. Paul Ave.	- Consider reconfiguration and traffic control change (see Figure A-9)

Figure A-9: Potential Mitigations to Improve Roadway Geometrics: St. Paul Avenue at Cleveland Avenue

[^0]: Pedestrian \& Bicycle Level of Service Methodology for Crossings at Signalized Intersections
 (http://charlottenc.gov/Transportation/PlansProjects/Documents/USDG\%20Full\%2 0Document.pdf, last accessed December 15, 2016)

 Pedestrian and Bigycle Level of Service

[^1]: ${ }^{2}$ Level of Service A-F and points as estimated from Pedestrian \& Bicycle Level of Service Methodology for Crossings at Signalized Intersections, (http://charlottenc.gov/Transportation/PlansProjects/Documents/USDG\%20Full\%20Document.pdf, last accessed December 15, 2016)

[^2]: Vehicle Traffic Operations/Levels of Service

[^3]: Vehicle Traffic Operations/Levels of Service

