

Ford Site
Appendices

January 2017

Appendices

Appendix A-1

Calibrated Trip Generation Model

ITE Trip Generation

Proposed Program

ITE				
CODE	Land Use	Sqf	Unit	
	Civic	300,000		assuming office use
	Industry	200,000		
	Retail	250,000		
	Office	250,000		
	Residential	5,000,000	4,000	

- 220 Apartment
- 221 Low Rise Apartment
- 222 High Rise Apartment
- 223 Mid Rise Apartment
- 230 Residential Condominium/Townhouse
- 231 Low-Rise Residential Condominium/Townhouse
- 232 High-Rise Residential Condominium/Townhouse
- 233 Luxury Condominium/Townhouse
- 820 Shopping Center
- 826 Specialty Retail Center
- 710 General Office Building
- 76 Research and Development Center
- 110 General Light Industrial
- 120 General Heavy Industrial
- 130 Industrial Park
- 140 Manufacturing
- 150 Warehousing

TRIP GENERATION	RETAIL						
ITE Class	Shopping Ce	nter (820)					
rate per	1000 sf GLA						
"an integrated aro	up of commercial e	stablishments that i	s planned, o	leveloped	l, owned and man	aaed as a unit."	
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	42.7	63.95	50%	50%	10675	5338	5338
Saturday	49.97	72.59	50%	50%	12493	6246	6246
AM Peak Hour*	0.96	2.27	62%	38%	240	149	91
PM Peak Hour*	3.71	6.45	48%	52%	928	445	482
*peak hour of adjace	ent street traffic						
ITE Class	Specialty Ret	ail Center (826)					
rate per	1000 sf GLA						
"an integrated gro	up of commercial e	stablishments that i	s planned, o	leveloped	l, owned and man	aged as a unit."	
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	44.32	59.84	50%	50%	11080	5540	5540
Saturday	42.04	56.01	50%	50%	10510	5255	5255
AM Peak Hour	6.84	10.39	48%	52%	1710	821	889
PM Peak Hour*	2.71	4.54	44%	56%	678	298	379
*peak hour of adiace	ent street traffic						

TRIP GENERATION -	OFFICE						
ITE Class	General Offi	ce Building (710)					
rate per	1000 sf GLA						
"may contain a mix	ture of tenantsa	restaurant/cafeter	ia"				
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	11.03	17.18	50%	50%	2758	1379	1379
Saturday	2.46	4.67	50%	50%	615	308	308
AM Peak Hour*	1.56	2.96	88%	12%	390	343	47
PM Peak Hour*	1.49	2.86	17%	83%	373	63	309
*peak hour of adjace	ent street traffic						
ITE Class	Research and	d Development Ce	nter (76)				
rate per	1000 sf GLA						
"facilities devoted of	almost exclusively i	to research and dev	elopment a	ctivities	"		
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	8.11	13.95	50%	50%	2028	1014	1014
Saturday	1.9	3.71	50%	50%	475	238	238
AM Peak Hour	1.22	2.53	83%	17%	305	253	52
PM Peak Hour*	1.07	2.25	15%	85%	268	40	227
*peak hour of adjace	ent street traffic						

TRIP GENERATIO	N - RESIDENTIAL						
ITE Class	Apartment (220))					
rate per	Dwelling Units						
"Studies included in	this III did not ide	ntify whether the ar	artments were	low-rise mid-rise	or high-rise"		
Time	ITE Rate	Plus 1 Std. Dev.	Enterina	Exiting	ITE Est. Trips	Entering	Exitina
Weekday	6.65	9.72	50%	50%	26 600	13300	13300
Saturday	6.39	9.38	50%	50%	25,560	12780	12780
AM Peak Hour*	0.51	1.24	20%	80%	2,040	408	1632
PM Peak Hour*	0.62	1.44	65%	35%	2,480	1612	868
*peak hour of adj	acent street traffic			•			
ITE Class	Low Rise Apart	ment (221)					
rate per	Occupied Dwell	ng Units					
"Low rise apartmen	nts (rental dwellina i	units) are units locat	ed in rental bu	ildings that have	one or two levels s	uch as garde	en
apartments."				0		0	
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	6.59	9.43	50%	50%	26,360	13180	13180
Saturday	7.16	10.09	50%	50%	28,640	14320	14320
AM Peak Hour*	0.46	1.16	21%	79%	1,840	386	1454
PM Peak Hour*	0.58	1.35	65%	35%	2,320	1508	812
*peak hour of adj	acent street traffic						
TE Class	High Rise Apartn	nent (222)					
ate per	Dwelling Units		-				
more elevators"				Г			
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	4.2	6.52	50%	50%	16,800	8400	8400
Saturday	4.98	7.34	50%	50%	19,920	9960	9960
AM Peak Hour*	0.3	0.85	25%	75%	1,200	300	900
PM Peak Hour*	0.35	0.94	61%	39%	1,400	854	546
°peak hour of adjac	ent street traffic						
ITE Class	Mid Rise Apartm	ent (223)					
rate per	Dwelling Units						
"Mid rico constance to	(rontal dualling		ntal ducilina	its) in control build	as that have bet	n throo and I) lovels "
Time	ITE Rate	Plus 1 Std. Dev	Entering	Exiting	ITF Est. Trins	Entering	Exiting
Weekday		103 1 510. Dev.	Linering	LAINING	The Lat. Trips	Linering	LAning
Saturday	none given						
AM Peak Hour*	0.3	0.86	31%	69%	1,200	372	875
PM Peak Hour*	0.39	1.02	58%	42%	1,560	905	654
		1101			.,500	- 00	555

RIP GENERATION - RESIDENTIAL

Class Residential Condominium/Townhouse (230)

ate per Dwelling Units

"Rental condominium/townhouses are defined as ownership units that have at least one other owned unit within the same building...low rise or high rise."

	Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
We	eekday	5.81	8.92	50%	50%	23,240	11620	11620
Sat	urday	5.67	8.77	50%	50%	22,680	11340	11340
AM	Peak Hour*	0.44	1.13	17%	83%	1,760	299	1461
PM	Peak Hour*	0.52	1.27	67%	33%	2,080	1394	686

eak hour of adjacent street traffic

lass	Low-Rise Residential Condominium/Townhouse (231)
per	Dwelling Units

"Units located in buildings that have one or two levels"

Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	none given						
Saturday	none given						
AM Peak Hour*	0.67	1.5	25%	75%	2,680	670	2010
PM Peak Hour*	0.78	1.71	58%	42%	3,120	1810	1310

beak hour of adjacent street traffic

Class	High-Rise Residential Condominium/Townhouse (232)
te per	Dwelling Units

Jnits located in buildings that have three or more levels"

Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	4.18	6.26	50%	50%	16,720	8360	8360
Saturday	4.31	6.42	50%	50%	17,240	8620	8620
AM Peak Hour*	0.34	0.93	19%	81%	1,360	258	1102
PM Peak Hour*	0.38	1	62%	38%	1,520	942	578
*peak hour of adjacen	t street traffic						

TE Class	Luxury Condominium/Townhouse (233)
ate per	Occupied Dwelling Units

Units located in buildings that have three or more levels"

Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting
Weekday	none given						
Saturday	none given						
AM Peak Hour*	0.56	1.31	23%	77%	2,240	515	1725
PM Peak Hour*	0.55	1.29	63%	37%	2,200	1386	814
*peak hour of adjac	ent street traffic						

TRIP GENERATIC	TRIP GENERATION - INDUSTRIAL									
ITE Class General Light Industrial (110)										
ate per 1000 sf GLA										
"empahsis on activities other than manufacturing and typically have minimal office space"										
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	6.97	50%	50%	1394	697	697				
Saturday	1.32	50%	50%	264	132	132				
AM Peak Hour*	0.92	88%	12%	184	162	22				
PM Peak Hour*	0.97	12%	88%	194	23	171				
*peak hour of ad	jacent street traff	ic								
ITE Class	General Heavy	Industrial (120))							
rate per	1000 sf GLA									
"limited to the r	nanufacturing of lo	arge items"								
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	1.5	50%	50%	300	150	150				
Saturday	none given									
AM Peak Hour	0.51 nor	ne aiven		102						
PM Peak Hour*	0.68 nor	ne aiven		136						
*peak hour of ad	iacent street traff	ic								
,										
ITE Class	Industrial Park	(130)								
rate per	1000 sf GLA									
"a mix of manu	facturing, service of	and warehouse fo	acilities'	,						
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	6.83	50%	50%	1366	683	683				
Saturday	2.49	50%	50%	498	249	249				
AM Peak Hour*	0.82	82%	18%	164	134	30				
PM Peak Hour*	0.85	21%	79%	170	36	134				
				•						
ITE Class	Manufacturing	(140)								
rate per	1000 sf GLA									
"conversion of I	aw materials or p	arts into finished	products .	"						
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	3.82	50%	50%	764	382	382				
Saturday	1.49	50%	50%	298	149	149				
AM Peak Hour*	0.73	78%	22%	146	114	32				
PM Peak Hour*	0.73	36%	64%	146	53	93				
			ļ		1					
ITE Class	Warehousina (1	50)								
rate per	1000 sf GLA									
"devoted to the	storage of materi	als but may inclu	ide office d	and maintenance a	reas"					
Time	ITE Rate	Entering	Exiting	ITE Est. Trips	Entering	Exiting				
Weekday	3 56	50%	5.0%	710	254	356				
Saturday	1.00	50%	50%	217	100	1 2 2				
	1.23	700/	010/	240	123	123				
	0.3	77/0	ZI70 750/	60	4/	13				
	0.32	23%	15%	04	10	48				
"peak hour of ad	acent street traft	IC								

TRIP GENERATION	- CIVIC (OF	FICE)						
ITE Class	General O	General Office Building (710)						
rate per	1000 sf GLA							
"may contain a mi	xture of tend	antsa restaurant/	cafeteria"					
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting	
Weekday	11.03	17.18	50%	50%	3309	1655	1655	
Saturday	2.46	4.67	50%	50%	738	369	369	
AM Peak Hour*	1.56	2.96	88%	12%	468	412	56	
PM Peak Hour*	1.49	2.86	17%	83%	447	76	371	
*peak hour of adjac	*peak hour of adjacent street traffic							
ITE Class	Research a	and Development	Center (76)					
rate per	1000 sf G	LA						
"facilities devoted	almost exclu	usively to research a	nd developme	nt activities	."			
Time	ITE Rate	Plus 1 Std. Dev.	Entering	Exiting	ITE Est. Trips	Entering	Exiting	
Weekday	8.11	13.95	50%	50%	2433	1217	1217	
Saturday	1.9	3.71	50%	50%	570	285	285	
AM Peak Hour	1.22	2.53	83%	17%	366	304	62	
PM Peak Hour*	1.07	2.25	15%	85%	321	48	273	
*peak hour of adjac	ent street tr	affic						

TRIP GENERATIO	N - RESIDE	NTIAL				
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	16,720	26,600	8,360	13300	8,360	13300
Saturday	17,240	28,640	8,620	14320	8,620	14320
AM Peak Hour*	1,200	2,680	258	670	828	2010
PM Peak Hour*	1.400	3.120	854	1810	546	1310

TRIP GENERATION - INDUSTRIAL						
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	300	1,394	150	697	150	697
Saturday	246	498	123	249	123	249
AM Peak Hour*	60	184	47	162	13	32
PM Peak Hour*	64	194	16	53	48	171

TRIP GENERATIO	N -					
	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	10,675	11,080	5,338	5540	5,338	5540
Saturday	10,510	12,493	5,255	6246	5,255	6246
AM Peak Hour*	240	1,710	149	821	91	889
PM Peak Hour*	678	928	298	445	379	482

TRIP GENERATION - CIVIC (OFFICE) Min Max Min Max Min Entering Entering Exiting Exiting Max Weekday 2,433 3,309 1,217 1655 1655 1,217 Saturday 570 738 285 369 285 369 AM Peak Hour* 412 366 468 304 56 62 PM Peak Hour* 321 447 48 76 273 371

TRIP GENERATION -OFFICE

	Min	Max	Min Entering	Max Entering	Min Exiting	Max Exiting
Weekday	2,028	2,758	1,014	1379	1,014	1379
Saturday	475	615	238	308	238	308
AM Peak Hour*	305	390	253	343	47	52
PM Peak Hour*	268	373	40	63	227	309

JOBS & HOUSING BALANCE	Low	High
Included in analysis	Yes	Yes
Housing Units within a half mile	4,590	4,590
Housing Units in project	4,000	4,000
Employees within a half mile	2,117	2,117
Employees in project	1,800	1,800
Job/Household Ratio	0.46	0.46
IDEAL Job/Household Ratio	1.50	1.50
Reduction Credit	2.60%	2.60%

Trip Reduction Credit =	$1 - \left(\frac{ABS(1.5 \times (h-e))}{1.5 \times (h+e)}\right) - 0.25 \times 0.02$	
Where:	0.25	
h = study area households (or hous	ing units)	

e = study area employment Source: Ewing, R. & Genvero, R., 2010. Travel and the Built Environment: A Meta-Analysis. Journal of the American Planning Association, 76(3), pp. 265-294. Criterion Planner/Engineers and Fehr & Peers Associates, 2001. Index 4D Method. A Quick-Response Method of Estimating Travel Impacts from Land-Use Changes, s.l.: US EPA.

LOCAL SERVING RETAIL	Low	High
Included in analysis	Yes	Yes
Local Serving Retail Presence	Yes	Yes
Reduction Credit	2%	2%
Calculation		

Trip Reduction Credit =

2%

Source: Parsons Brinckerhoff Quade & Douglas, I., Cervero, R., Howard Stein-Hudson Associates & Zupan, J., 1996. Influence of Land Use Mix and Neighborhood Design on Transit Demand, Washington, DC: TRB National Transit Institute, 2000. Coordinating Transportation and Land Use Course Manual, New

National Transit Institute, 2000. Coordinating Transportation and Land Use Course Manual, New Brunswick, NJ: Rutgers University.

Included in analysis		Yes	Yes
Percent of housing units below mark	et rate	12%	12%
Redu	uction Credit	0.6%	0.6%
Calculation			
Calculation Residential Trip Reduction Credit =	Where:		

 $Maximum Trip Reduction for Affordable Housing = (-0.0565 \times $41,663) \times (\frac{0.25}{11,915}) = 5\%$

	Reduction Credit	Context
depends on	the proposed project job & housing	balance
MIN	-3.0%	0 balance - all housing or all jobs
Low	2.6%	Approximately 0.46 jobs for each household within a half mile
High	2.6%	Approximately 0.46 jobs for each household within a half mile
MAX	9.0%	IDEAL Job/Household Ratio=1.5

Reduction Cre	dit Context
literature research	
MIN	0.0% no local retail presence
Low	2.0% less than 20% local retail
High	2.0% less than 20% local retail
МАХ	8.0% 80% ore more local retail

Reduction Credit	Context
depends on the % of affordable housing i	n the proposed project
MIN	0.0% no below market-rate housing
Low	Percent of housing units below market 0.6% rate=0.12
High	Percent of housing units below market 0.6% rate=0.12
МАХ	5.0% calculated based on the source

TRANSIT SERVICE FREQUENCY		Low	High
Included in analysis		Yes	Yes
Average daily weekday buses within 1/4 mile	<u>}</u>	465	605
Average daily weekday trains / rapid transit	within 1/2 mile	216	432
Dedicated shuttles that serve the project		0	0
	Transit Sarvica Inday	1.00	1 00
	Tansit service muex	1.00	1.00
Calculation	Reduction Credit	7.47%	7.50%
Calculation	Reduction Credit	7.47%	7.50%
Calculation Tip Rate Reduction = $t \times 0.075$ Where:	t = Transit service index	7.47%	7.50%
Calculation Tip Rate Reduction = $t \times 0.075$ Where: Transit Service Index = $b + 2 \times (r + s)$	t = Transit service index	7.47%	7.50%
Calculation Tip Rate Reduction = $t \times 0.075$ Where: Transit Service Index = $\frac{b + 2 \times (r + s)}{900}$	t = Transit service index t = Transit service index b = average daily weekday But	7.47%	7.50%
Calculation Tip Rate Reduction = $t \times 0.075$ Where: Transit Service Index = $\frac{b + 2 \times (r + s)}{900}$ Where:	t = Transit service index t = Transit service index b = average daily weekday But r = average daily weekday Rail within ½ mile	7.47%	7.50%

Notes: Institut tips snouto be based on toos stops located within a 1/4 time and tapid tainst stopping at stations within 1/2 time. The number of transit trips must include both directions to calculate the average daily buses, rapid service, shuttles, etc. (e.g., 1 northbound route A + 2 southbound route A buses = 3 bus trips)

A "transit trip" is one route traveling in one direction, counting as 1 trip.

Developments larger than 1/2 mile across must be broken into smaller units for determining the average transit service index.

Reduction Credit	Context
depends on the proposed transit system frequency	
MIN	0.0% no transit service within 1/2 mile
Low	7.5% existing service
High	7.5% project proposed to add transit service
МАХ	Ideal Transit Service "Trips" (buses + 2x 7.5% rapid transit trips)=900

	low	High
Included in analysis	Yes	Yes
Mix of uses within 1/2 mile	Yes	Yes
Intersections legs per square mile	590	886
Sidewalk completeness	100%	100%
Sidewalks on both sides	100%	100%
Sidewalks on one side	0%	0%
Existing average block size (mile)	0.41	0.41
Future average block size (mile)	0.11	0.08
Block Size Reduction	-73%	-80%
Walking Environment Index	0.73	0.83
Reduction Credit	6.56%	7.46%
Calculation		
Tip Rate Reduction = $\frac{i+s+b}{2}$ Where:		
3 i = Intersecti	on density	
s = Sidewalk	completeness	
b = (-1)*block	k size reduction	
$\label{eq:linearcond} $ \frac{1300 \mbox{ (or 1.0, whichever is less)} - including spectrum rate of the set of the s$	ng alleys n one side, Trails and wa	alkways should be

Reduction Credit	Context
depends on the proposed street network and	l sidewalk infrastructure plan
MIN	0.0% single use within 1/2 mile walk
Low	mile=590.47619047619, Sidewalk completeness=1 & block size reduced 6.6% by 0.731707317073171
High	mile=885.714285714286, Sidewalk completeness=1 & block size reduced 7.5% by 0.804878048780488
МАХ	Ideal intersection density of 1,300 legs per smile, 100% sidewalk and extreme 9.0% block size

BICYCLE FACILITY	Low	High
Included in analysis	Yes	Yes
Additional (separate) bike lane mileage per square mile ${}_{\left(a\right)}$	15	21
Bike parking (b) outdoor bike parking	Yes	Yes
indoor secure bike parking	No	Yes
Indoor secure bike parking with showers/lockers/changing facilities	No	Yes
Bike share infrastructure (c)	No	Yes
Winter maintenance of bicycle lanes/paths and sidewalks (d)	No	Yes
Months w. average temperature below freezing in Saint Paul	3	3
Additional increase in bike+walk trips*	8%	8%
Bike Mode Share Increase	5.84%	14.77%
Reduction Credit	2.92%	7.38%

0 -	1.0.1	
1 3		on.
1.0		

Tip Rate Reduction = bike mode share increase/2 assuming bike mode share increase shifts from transit and driving equally Notes: (a) Bicycle network - 1% increase in bicycle mode share for each additional mile of bike lane per square mile.

SOURCE: Dill, Jennifer and Theresa Carr (2003). "Bicycle Commuting and Facilities in Major U.S. Cities: If You Build Them, Commuters Will Use Them -

(b) Outdoor bike parking - 8.6% increase; Indoor secure bike parking - 13.8% increase; indoor with amenities - 22.4% increase

SOURCE: Wardman, Tight, and Page - 2007 as summarized in Pucher, Dill, and Handy (2010) (Referenced in TCRP Report 95, Traveler Response to Transportation System Changes Handbook, Third Edition; Chapter 16, Pedestrian and Bicycle Facilities)

(c) bike share will increase bike mode share by 5~8%

SOURCE: Victoria Transport Policy Institute (2008), Public Bike Systems: Automated Bike Rentals for Short Utilitarian Trips, http://www.vtpi.org/tdm/tdm126.htm. Note: this research does not state if the shift from automobile trips to bicycle trips is for commute or non-commute trips, nor does the research state at what time of day these trips occur, i.e. peak or non peak trips.

(d) Based on Tahoe's model (baseline 7 months) SOURCE: Tahoe Region Bicycle and Pedestrian Use Model, developed by LSC Transportation Consultants and Alta Planning as part of the Tahoe Basin Bicycle/Pedestrian Master Plan (2009)

Reduction Credit		
depends on proposed bicycle infrastructure		
MIN	0.0%	no bicycle infrastructure
Low	2.9%	some bicycle infrastructure improvement
High	7.4%	significant bicycle infrastructure improvement
МАХ	9.0%	maximum bicycle infrastructure improvement

PARKING SUPPLY	Low	High
Included in analysis	Yes	Yes
Parking supply allocation	Fully dedicated	Mixed
ITE Parking Generation "required" supply	6,916	6,916
Project parking supply	7,500	4,000
Shared parking supply	0	2,000
Parking supply reduction	-8%	42%
All non-parking supply reduction combined		
Residential	22%	28%
Non-residential	22%	28%
Reduction Credit		
Residential	0.00%	7.31%
Non-residential	0.00%	7.31%

Tip Rate Reduction = p-(m+t+b)

2

Where: p=parking supply reduction

m+t+b=all non-parking supply reduction combined

Reduction Credit	Context
depends on parking supply and its assoc	iated land use
MIN	parking supply fully dedicated and all above ITE 0.0% requirements
Low	parking supply fully dedicated, applied only to uses 0.0% with a supply below ITE
High	7.3% parking supply fully shared, applied to all uses
МАХ	no parking is provided and there are measures in place to manage overspill such as residential parking 50.0% permits, parking time-limits, parking pricing, etc.

To avoid double counting with other trip reduction measures, the impacts of parking supply are proposed to be assessed in conjunction with all other non-residential trip reduction measures as follows:

If the percentage reduction from all other non-residential trip reduction measures is equal to or greater than the parking supply reduction, no additional credit is granted. For example, if parking supply is reduced 10% from ITE levels, and transit, mixed use and pedestrian/bicycle trip reductions amount to 20%, the 20% figure would be used.

In effect, the parking supply reduction is only used if it is greater than the impact from other trip reduction measures, and the difference is discounted by 50%. For example, if parking supply is reduced 20% from ITE levels, and transit, mixed use and bicycle/pedestrian trip reductions amount to 10%, the parking supply reduction impact of 5% = ((20%-10%)/2) is used. The Parking Generation handbook covers most common land uses; however, for some land uses no parking generation rates are available. In these cases, the ITE parking supply would be lower than if ITE had rates, making it harder for the project supply to be lower than the ITE supply (making it harder for this measure to be applied).

SOURCE: NELSON\NYGAARD TRIP GEN STUDY

PARKING PRICING		Low			High
Included in analysis		Yes			Yes
Residents pay		No			No
Average Daily parking price	\$		-		
Parking unbundling		No			Yes
Resident Parking Price Reduction Credit		0.	00%		0.00%
Resident Unbundling Bonus Credit		0.	00%		0.00%
Employees pay		No			Yes
Daily parking price	\$		-	\$	2.50
Parking cash-out		No			Yes
Employee Parking Price Reduction Credit		0.	00%		8.33%
Employee Cash-out Bonus Credit		0.	00%		4.17%
Customers pay		No			Yes
Daily parking price	\$		-	\$	5.00
Customer Parking Price Credit		0.	00%		16.67%
Residential Parking Cost Reduction Credit			00%		0.00%
Non-Residential Parking Cost Reduction Credit			00%		9.72%
Calculation					
Parking Pricing Employee and / Cash-Out Bonus Employee Trip Reduction = (parking pricing reduction) × 50%	or Cus $\left(\left(\frac{dail}{dail}\right)\right)$	tomer Tr y parking \$7.50	ip Red I charg	uction	5%)

Reduction Credit		Context
depends on proposed parking price & cashout program	ns	
MIN	0.0%	no priced parking, no unbundled parking, and no cash-out program
Low	0.0%	Residents pay \$0, Employees pay \$0, Customers pay \$0 & no unbundled parking & no cash-out
High	9.7%	Residents pay \$, Employees pay \$2.5, Customers pay \$5 & Parking unbundling & Parking cash-out
МАХ	24.6%	pay more than \$7.5/day on parking. Unbundling resident parking and employee cash-out program exist

A maximum trip reduction of 25% should be applied to projects that commit to introducing parking pricing. This is based on the approximate midpoint of observed reductions, which range from 15% to 38% (see SOURCE below). Note that most of these studies apply to before-after or with-without comparisons, with no increase in transit service or other measures to reduce vehicle trips.

This maximum reduction should apply to prices of \$7.50 per day or greater (in 2012 dollars). If the parking charge is more than \$7.50, the 25% reduction is taken. If parking charges do not apply to all tirps to a site (e.g. customers are exempt), the reduction is pro-rated by the percentage of trips that the charges apply to. If little or no on-site parking is provided, the parking charges that the charges apply to. If solution is a strong of the strong of the

SOURCE: Shoup & Willson, Federal Tax Policy and Employer-paid Parking: The Influence of Parking Prices on Travel Demand, 1990; Comsis Corporation, 1993; Valk & Wasch, 1998; Pratt, 2000; Kumzyak, Evans, IV, & Pratt, 2010

FREE TRANSIT PASSES	Low	High	
Included in analysis	Yes	Yes	
Resident Free Transit Pass Program	No	No	
Employee Free Transit Pass Program	No	Yes	
Free Transit Pass Reduction Credit			
Residential	0.00%	0.00%	
Non-residential	0.00%	1.88%	
Calculation			
Resident and / or Employee Trip Reduc	$tion = (t) \times$	25%	
Where: t = Transit reduction impact			
SOURCE: Nelson\Nygaard research			

Reduction Credit		Context
depends on proposed transit pass program	s	
MIN	0.0%	no transit pass program
Low	0.0%	no resident program & no employee program
High	0.0%	no resident program & employee free pass offered
МАХ	3.8%	free transit pass program offered with full 15% transit service reduction

TDM PROGRAMS		Low	Hig
Included in analysis		Yes	Yes
Car sharing/short-term car rental		Yes	Yes
Carpooling/vanpooling		Yes	Yes
Ride/carpool matching programs		No	Yes
Preferred carpool/vanpool parking		No	Yes
Telecommuting/alternative work schedule		No	Yes
Guaranteed Ride Home		No	Yes
Transportation/commuter informational mate	erials	No	Yes
Dedicated employee transportation coordin	ator	No	Yes
	# of TDM Programs	2	
TDM Progr	am Reduction Credit	0.00%	4.2
Assuming that half the people that bike/walk would otherwise hav	e driven, and the other half would hav	ve taken transit	
Calculation			
Employee Trip Reduction = (2)	$\% + (10\% \times t) + ($	10% × b))
Employee Trip Reduction =	$(1\% + (5\% \times t) +$	- (5% ×	6))
Employee Trip Reduction =	$(1\% + (5\% \times t) + t = Transit reduct$	tion impact	b))

Reduction Credit	Context	
depends on proposed TDM programs		
MIN	0.0%	no TDM programs
Low	0.0%	2 TDM programs offered
High	4.2%	8 TDM programs offered
МАХ	4.4%	offered with a full 15% transit service credit and 9% bike & ped credit

TRIP GENERATION ANALYSIS

Trip Gen Adjustments and Reductions

Standard ITE Vehicular Trip Generation Average Average Factored Factored **TOTAL Vehicle Trips** Min Total Max Total Min Entering Max Entering Min Exiting Max Exiting Average Exiting Total Entering Entering Exiting 13,300 Residential 16,720 26,600 8,360 13,300 8,360 21,660 10,830 10,830 10,830 10,830 Weekday Non-Residential 15,436 18,541 7,718 9,270 7,718 9,270 16,988 8,494 8,494 8,494 8,494 . 22,570 . 22,570 . 19,324 32,156 45,141 16,078 16,078 38,648 19,324 19,324 19,324 Total 258 670 828 2,010 1,940 464 1,419 478 1,462 Residential 1,200 2,680 AM Peak Hour* Non-Residential 971 2,752 753 1,738 207 1,035 1,862 1,245 621 1,242 619 Total 2,171 5,432 1,012 2,408 1,035 3,045 3,802 1,710 2,040 1,720 2,081 2,260 1,332 928 Residential 1,400 3,120 854 1,810 546 1,310 928 1,332 1,330 402 928 1,333 PM Peak Hour* Non-Residential 1,941 637 1,636 520 1,130 515 1,120 Total 2,730 5,061 1,256 2,447 1,474 2,644 3,896 1,852 2,059 1,847 2,049

Context Input		L
Average vehicle occupancy for Saint Paul (4 Census block groups, 2000 data)	1.08	Source
		Note:
Vehicular Mode Split	80.5%	http:/,
Transit Mode Split	9.0%	Note:
Nonmotorized (Walk/Bike) Mode Split	10.5%	

Source: ACS 2014

Note: For Highland neighborhood 80.5%, Saint Paul 80.6%. Source: ACS 2013.

http://www.mncompass.org/profiles/neighborhoods/st-paul/highland

ote: ACS data only includes work trips

Trip Gen Reduction Factors		NEW	MXD model	
				source: G. Tian, et al.(2015) Traffic G
Internal Capture Reduction	Weekday	18.7%	9.9%	measures of built environment
	AM Peak	14.2%	7.5%	
	PM Peak	17.9%	9.5%	
		LOW	HIGH	
Residential Reduction Factors combined		22.1%	39.1%	see tab "REDUCTION CALCULATION"
Non-residential Reduction Factors combined		22.1%	50.7%	see tab "REDUCTION CALCULATION"

urce: G. Tian, et al.(2015) Traffic Generated by Mixed-Use Developments: 13-region study using conistent easures of built environment

PM Entering

666

208

874

874

PM Exiting

464

453

917

917

		Daily	AM Entering	AM Exiting	PM Entering	PM Exiting			
ITE Vahisla Trips (Avarage of	Residential	21,660	478	1,462	1,332	928			
Inc vehicle https (Average of	Non-Residential	16,988	1,242	619	515	1,120			
Min and Max)	Total	38,648	1,720	2,081	1,847	2,049			
Derror Trine (Augure a Vahiala	Residential	23,393	516	1,579	1,438	1,002			
Company and led	Non-Residential	18,347	1,341	669	556	1,210			
	Total	41,740	1,858	2,248	1,995	2,212			
Enternal Deven Trine (Internal	Residential	19,018	443	1,355	1,180	823			
External Person Trips (Internal —	Non-Residential	14,916	1,151	574	456	993			
	Total	33,934	1,595	1,929	1,637	1,815			
	Residential	17,610	410	1,255	1,093	762			
External vehicle Trips (AVO —	Non-Residential	13,811	1,066	532	423	919			
applied again)	Total	31,421	1,477	1,786	1,515	1,681			
		Daily	AM Entering	AM Exiting	PM Entering	PM Exiting	Daily	AM Entering	AM Exiting
				Low					High
Reduced External Vehicle Trips	Residential	13,710	320	977	851	593	10,727	250	76
(with reduction factors)	Non-Residential	10,753	830	414	329	716	6,812	526	26
	Total	24 463	1 1 5 0	1 391	1 180	1 309	17 539	776	1.02

1,391

1,180

1,309

High 50% 30% 20% 17,539

1,150

TOTAL EXTERNAL VEHICLE TRIPS	24,463

Trip Gen Outputs: Vehicular Trips		
	Low	High
Total External Daily Vehicular Trips	24,463	17,539
Total External AM Peak Vehicular Trips	2,540	1,802
Total External PM Peak Vehicular Trips	2,489	1,792

Transit Trips	8.50%		Walk/Bike Trips	5.60%	
	Low	High		Low	High
Total External Daily Trips	6,167	10,675	Total External Daily Trips	4,063	7,033
Total External AM Peak Trips	640	1,121	Total External AM Peak Trips	422	738
Total External PM Peak Trips	627	1,081	Total External PM Peak Trips	413	712

1,027

776

Trips	Low	High	Mode split	Low
External Vehicle Trips	24,463	17,539	Auto	71%
External Transit Trips	6,167	10,675	Transit	18%
External NMT Trips	4,063	7,033	NMT	12%
TOTAL EXTERNAL TRIPS	34,692	35,246	-	

Appendices

Appendix A-2

Pedestrian and Bicycle Level of Service

The level of service provided to pedestrians and bicycles can affects the likelihood that these alternate modes of travel may be used. Higher non-motorized mode shares can be achieved by providing infrastructure that increases the level of service experienced.

Several methods have been used to estimate multi-modal level of service (MMLOS). Quantitative measures such as the Highway Capacity Manual (HCM) typically estimate the delay experienced by users. For this project, an alternative set of measures were used to incorporate an element of quality-based level of service as well. This level of service methodology was adopted by the City of Charlotte, North Carolina in its Uniform Street Development Guidelines¹.

Each factor is scored and weighted in a point-based system. The factoring is based on signal-controlled intersections, but for the purpose of this study stop-controlled intersections were included where necessary, with scoring based on interpolation of the values and characteristics. Factors were developed for the existing configuration of the intersections, and for a build condition assuming necessary intersection improvements necessary to increase the pedestrian/bicycle levels of service within the current public right-of-way.

Level of Service Factors: Pedestrian

Table 1	Crossing Distance
Table 2	Signal Phasing and Timing Features
Table 2A	Left Turn Conflicts (LT into pedestrian crossing path)
Table 2B	Right Turn Conflicts (LT into pedestrian crossing path)
Table 2C	Pedestrian Phase Signal Display
Table 3	Corner Radius
Table 4	Right Turns on Red
Table 5	Crosswalk Treatment

Level of Service Factors: Bicycle

Table 8	Bicycle Travel Way and Speed of Adjacent Traffic
Table 9	Signal Features Left Turn Signal Phasing and Timing Features and Stop Bar Location
Table 10	Right Turn Conflict
Table 11	Right Turns on Red
Table 12	Intersection Crossing Distance

¹ Pedestrian & Bicycle Level of Service Methodology for Crossings at Signalized Intersections

⁽http://charlottenc.gov/Transportation/PlansProjects/Documents/USDG%20Full%2 0Document.pdf, last accessed December 15, 2016)

RECOMMENDED EXTERNAL ROADWAY SYSTEM AND PEDESTRIAN AND BICYCLE IMPROVEMENTS

Intersection	Recommended Improvements (Ped/Bike, Auto)
Ford Parkway/ Mississippi River Boulevard Access Ramps (N. and S. ramps at Ford Pkwy) Ford Pkwy/ Mount Curve Blvd	 Ladder-type or textured/colored crosswalk treatment Promote through movements on Mississippi River Blvd. Add Enhanced shared bicycle/auto lane on Ford Parkway Signalize intersection Provide NB/SB Left-turn lanes Extend WB left-turn lane Ladder-type or textured/colored crosswalk treatment Enhanced pedestrian signal features Bike boxes at intersection approaches Add enhanced shared bicycle/auto lane on Ford Parkway In-street bicycle lanes within site, shared bike lanes on porth approach
Ford Pkwy/ Cretin Ave.	 Add NB left- and right-turn lanes, * Extend WB left-turn lane, Remove part of median, EB right-turn lane* Ladder-type or textured/colored crosswalk treatment Enhanced pedestrian signal features Bike boxes at intersection approaches Enhanced shared bicycle/auto lane on Ford Parkway *May impact pedestrian/bicycle environment and will require additional review
Ford Pkwy/ Finn Street	 Ladder-type or textured/colored crosswalk treatment Enhanced pedestrian signal features Bike boxes at intersection approaches Enhanced shared bicycle/auto lane on Ford Parkway In-street bicycle lanes within site
Ford Pkwy/ Cleveland Avenue	 Ladder-type or textured/colored crosswalk treatment Bike boxes at intersections Enhanced shared bicycle/auto lane on Ford Parkway In-street bicycle lanes south of Ford Parkway
Cleveland Ave./ St. Paul Ave.	 Reconfigure intersection and traffic control pedestrian signal features Ladder-type or textured/colored crosswalk treatment Bike boxes at intersection Add in-street bicycle lanes on St. Paul Ave. Enhanced shared bicycle/auto lane on Ford Parkway

Pedestrian and Bicycle Level of Service Summary²

	Bicycle Level of S	Service	Pedestrian Le	vel of Service
Intersection	Existing Configuration	With Recommended Improvements	Existing Configuration	With Recommended Improvements
Ford Parkway/ Mississippi River Boulevard Access Ramps (North and South ramps at Ford Pkwy)	C (55)	С (68	B (88)	A (98)
Ford Parkway/ Woodlawn Avenue	D (52)	C (58)	C (69)	B (76)
Ford Parkway/Mount Curve Blvd	D (52)	B (75)	C (69)	B (78)
Ford Parkway/Cretin Avenue	D (48)	B (74)	C (68)	B (75)
Ford Parkway/ Finn Avenue	E (30)	C (60)	C (68)	B (81)
Ford Parkway/ Cleveland Avenue	D (49)	C (71)	C (73)	B (83)
Cleveland Avenue/ Saint Paul Avenue	D (50)	C (67)	C (68)	B (79)
Cleveland Avenue/Montreal Avenue	C (55)	B (75)	B (90)	A (94)
Saint Paul Avenue/Montreal Avenue	D (49)	B (79)	C (70)	B (87)
E. 46th Street/46th Avenue S. (Minneapolis)	D (40)	C (60)	C (72)	B (75)
Davern Street/Montreal Avenue	D (53)	B (75)	B (80)	B (89)

² Level of Service A-F and points as estimated from Pedestrian & Bicycle Level of Service Methodology for Crossings at Signalized Intersections, (<u>http://charlottenc.gov/Transportation/PlansProjects/Documents/USDG%20Full%20Document.pdf</u>, last accessed December 15, 2016)

Appendices

Appendix A-3

Vehicle Traffic Operations/Level of Service

Traffic levels of service and additional analysis was conducted using Synchro/Simtraffic and VISSIM software packages. This appendix documents the data collected, assumptions, and analysis.

Data Collection

Figure A-1 shows the AM and PM traffic counts for the project, collected September 11 through September 14, 2015. Counts were supplemented in the analysis by information for other locations provided by the City of St. Paul and the Minnesota Department of Transportation. Traffic signal timing and roadway geometrics included information form the City of St. Paul and other traffic studies in the area. And reviewed for quality control. No seasonal adjustments were used because September is a near-average month for traffic volumes.

Table A-1 provides a summary of existing signal timing used in the initial analysis.

015 9041 January 2016

2015 Existing Conditions

Ford Site Redevelopment City of Saint Paul Figure A-1

									AM															PI	M							1			
Intersection	Parameter							Norma						TS	SP								Nor	mal						TSP					
		Cycle	Offset	Sequence	1	2	3	4 !	5 6	7	8	1 2	3	4	5	6 7	8	Cycle	Offset	Sequence	1 2	3	4	5 (5 7	8	1	2	3 4	5	6 7 8	1			
	Direction	-	-	-	WBL	EB	SWB	SB EI	BL WB		NB		-	-	-		-	-	-	-	WBL EB	3 SWB	SB	EBL W	/B	NB	-	-		-		1	Distance from detector to signal	800	ft
	Split	110	2	1	24	37	18	31 1	5 46		31		-	-	-		-	120	110	1	29 41	16	34	13 5	7	34	-	-		-		1	Bus Speed	30	mph
	Min Green	-	-	-	5	10	7	7 !	5 10		7		-	-	-		-	-	-	-		-	-			-	-	-		-		Phase 2	Bus Speed	43.998	fps
	Yellow	-	-	-	3.5	3.5	3.5	3.5 3	.5 3.5		3.5		-	-	-		-	-	-	-		-	-			-	-	-		-			Travel Time	18	S
	Red	-	-	-	2.5	3	3	3 2	.5 3		3		-	-	-		-	-	-	-		-	-			-	-	-		-			Travel Time Slack	10	S
	Extension	-	-	-	3	3	3	3 3	3 3		3		-	-	-		-	-	-	-		-	-			-	-	-		-			Distance from detector to signal	800	ft
Ford and 46th Ave	Walk	-	-	-		7		7	7				-	-	-		-	-	-	-		-	-		· _	-	-	-		-			Bus Speed	30	mph
	FDW	-	-	-		26		22	26				-	-	-		-	-	-	-		-	-		· _	-	-	-		-		Phase 6	Bus Speed	43.998	fps
	Recall/TSP Ph	-	-	-		С			С			Х				X		-	-	-	- C	-	-	- (- 1	-		Х			X		Travel Time	18	S
	Max Reduction	-	-	-	-	-	-			-	-	6 9	5	8	4	12	8	-	-	-		-	-		· _	-	7	10	4 9	3	14 9		Travel Time Slack	10	S
	Min Green	-	-	-	-	-	-			-	-	18 28	13	23	11	32	23	-	-	-		-	-		· _	-	22	31	12 25	10	43 25				
	Max Extension	-	-	-	-	-	-			-	-	255 255	5 255	255	255	255	255	-	-	-		-	-		· _	-	255	255 2	255 255	255	255 255	1			
	Direction	-	-	-	EBL	WB		NB/SB	EB				-	-	-		-	-	-	-	EBL WE	В	NB/SB	E	В		-	-		-		1	Distance from detector to signal	515	ft
	Split	80	47	1	15	32		33	47				-	-	-		-	110	66	1	16 64	1	30	8	0		-	-		-			Bus Speed	30	mph
	Min Green	-	-	-	8	10		10	10				-	-	-		-	-	-	-		-	-			-	-	-		-		Phase 2	Bus Speed	43.998	fps
	Yellow	-	-	-	3	4		3.5	4				-	-	-		-	-	-	-		-	-			-	-	-		-			Travel Time	12	S
	Red	-	-	-	1	1		1	1				-	-	-		-	-	-	-		-	-			-	-	-		-			Travel Time Slack	10	S
Found and Custin	Extension	-	-	-	3	3		3	3				-	-	-		-	-	-	-		-	-			-	-	-		-			Distance from detector to signal	806	ft
Ford and Cretin	Walk	-	-	-		7		7	7				-	-	-		-	-	-	-		-	-		· -	-	-	-		-			Bus Speed	30	mph
	FDW	-	-	-		9		17	7				-	-	-		-	-	-	-		-	-		· -	-	-	-		-		Phase 6	Bus Speed	43.998	fps
	Recall/TSP Ph	-	-	-		С			С			Х				Х		-	-	-	- C	-	-	- (- 1	-		Х			Х		Travel Time	18	S
	Max Reduction	-	-	-	-	-	-			-	-	4 8		8		12		-	-	-		-	-			-	4	16	8		20		Travel Time Slack	10	S
	Min Green	-	-	-	-	-	-			-	-	11 24		25		35		-	-	-		-	-			-	12	48	22		60				
	Max Extension	-	-	-	-	-	-			-	-	255 255	5	255		255		-	-	-		-	-			-	255	255	255	;	255				
	Direction	-	-	-	WBL	EB		NB/SB	WB				-	-	-		-	-	-	-	WBL EB	3	NB/SB	N N	/B		-	-		-			Distance from detector to signal	580	ft
	Split	80	43	1	14	34		32	48				-	-	-		-	110	64	1	23 42	2	45	6	5		-	-		-			Bus Speed	30	mph
	Min Green	-	-	-	7	16		8	16				-	-	-		-	-	-	-		-	-	- ·	· -	-	-	-		-		Phase 2	Bus Speed	43.998	fps
	Yellow	-	-	-	3	3.5		4	3.5				-	-	-		-	-	-	-		-	-		· -	-	-	-		-			Travel Time	13	S
	Red		-	-	1	1	+	1	1					-	-		-	-	-	-		-	-		· -	-	-	-		-			Travel Time Slack	10	S
Ford and Finn	Extension	-	-	-	3	3		3	3				-	-	-		-	-	-	-		-	-	- ·	· -	-	-	-		-			Distance from detector to signal	580	ft
	Walk	-	-	-		7		7	7	_			-	-	-		-	-	-	-		-	-	- ·	· -	-	-	-		-			Bus Speed	30	mph
	FDW	-	-	-		15		17	9				-	-	-		-	-	-	-		-	-			-	-	-		-		Phase 6	Bus Speed	43.998	tps
	Recall/TSP Ph		-	-		C			C			X	_			X	_	-	-	-	- C	-	-	- (-	-		X		_	X	-	Travel Time	13	S
	Max Reduction		-	-	-	-	-	- ·	· -	-	-	4 9	_	8		12	_	-	-	-		-	-		· -	-	6	11	11	-	16	-	Travel Time Slack	10	S
	Min Green		-	-	-	-	-	- ·	· -	-	-	10 25	-	24		36	_	-	-	-		-	-		· -	-	17	31	34		49				
	Max Extension	-	-	-	-	-	-	- ·	· -	-	-	255 255	<u> </u>	255		255	_	-	-	-		-	-		-	-	255	255	255	,	255	-			<i>c</i> .
	Direction	-	-	-	EBL	WB	SBL	NB W	BL EB	NBL	SB		-	-	-		-	-	-	-	EBL WE	B SBL	NB	WBL E	B NBL	SB	-	-		-		-	Distance from detector to signal	580	ft .
	Split	80	45	1	_	34	12	34	36	15	31			-	-		-	110	86	1	13 40) 12	45	12 4	1 19	38	-	-		-		51	Bus Speed	30	mph
	Min Green	-	-	-	/	10	/	10	/ 10	/	10		-	-	-		-	-	-	-		-	-			-	-	-		-		Phase 2	Bus Speed	43.998	tps
	Yellow		-	-	3	3.5	3	3.5	3 3.5	3	3.5			-	-		-	-	-	-		-	-			-	-	-		-		-		13	S
	Red		-	-	1	1	1	1		1	1			-	-		-	-	-	-		-	-			-	-	-		-			Iravel Time Slack	10	S
Ford and Cleveland	Extension		-	-	3	3	3	3 :	3 3	3	3			-	-		-	-	-	-		-	-			-	-	-		-			Distance from detector to signal	343	ft .
	Walk	-	-	-		15		17	/		/		-	-	-		-	-	-	-		-	-	- ·	-	-	-	-		-		Dhara C	Bus Speed	30	mph
		-	-	-		15		1/	20		1/		-	-	-		-	-	-	-		-	-	-	· -	-	-	-		-		Phase 6	Bus Speed	43.998	tps
	Kecall/ISP Ph Max Poduction	-	-	-		C		IVIAX	C		iviax	X	2	0		<u> </u>	0	-	-	-	- C	-	Iviax	- (wax	2	10	2 11	2	X 10 5 10	4	Iravel Time	8 10	S
	Min Groom	+ -	-	-	-	-	-	-		-	-	9	3	9		25 14	8 1 22	-	-	-		-	-		-	-	3	20	0 24	3	21 14 20	1	ITAVEL TIME SIGCK	10	S
	Max Extension	-	-	-	-	-	-	-		-	-	25	9	25		25 1		-	-	-		-	-		-	-	10	30	9 34	9	31 14 28	4			
	IVIAX EXtension	-	-	-	-	-	-	-	-	-	-	25	255	255		255 25	5 255	-	-	-		-	-	- ·	-	-	255	200 2	255 255	255	255 255 255				

Notes:

1) Signal Timing from A-Line Vissim (Project # 7939)_Vissim/4_RB_TSP/12 Vissim Files

2) Min green, yellow, red, extension, walk, and FDW will remain the same as existing models since those timings are from the signal timing project. Implementation of TSP won't change those. 3) Existing timing will only change for phase splits and TSP

4) No delay on TSP and no minimum reservice cycle

Existing Conditions Analysis

Also shown in Figure A-1 (and summarized below in Table A-2) are the roadway levels of service for the intersections under review for the Ford site area. Figure A-2 shows examples of the various levels of service corresponding to typical conditions. Table A-3 shows the standards for intersection delay used to assign letter grade levels of service.

Table A-2: Existing Levels of Service

	AM (PM) Peak Hour Delay	AM (PM) Peak Hour
	(average sec.)*	Level of Service*
46th Ave/46th St	12 (15)	B (B)
Ford Pkwy/Mississippi River Blvd	1/7 (2/8)	A/A (A/A)
Ford Pkwy/Woodlawn Ave	1/1 (1/1)	A/A (A/A)
Ford Pkwy/Mt Curve Blvd	1/11 (1/12)	A/B (A/B)
Ford Pkwy/Cretin Ave	11 (16)	B (B)
Ford Pkwy/Finn St	8 (16)	A (B)
Ford Pkwy/Cleveland Ave	22 (44)	C (D)
St Paul Ave/Cleveland Ave/Bohland Ave/Inner Dr	6/46 (5/59)	A/E (A/F)
Montreal Ave/Cleveland Ave	4/9 (4/10)	A/A (A/A)
Montreal Ave/St Paul Ave	12 (14)	B (B)
Mississippi River Blvd/N Ford Ramp	1/7 (2/16)	A/A (A/C)
Mississippi River Blvd/S Ford Ramp	3/9 (3/11)	A/A (A/B)

*For unsignalized intersections, delay and LOS are shown as overall/worst approach.

Figure A-2: Level of Service Examples

Level of Service A: Majority of through traffic doesn't stop

Level of Service B: Minimal waiting at traffic signal

Level of Service C: Increased number of stops and queueing

Level of Service D:

Majority of vehicles have to stop and may have to wait through more than one green light

Level of Service E:

Majority of vehicles have to stop and wait through more than one green light. Significant queueing occurs.

Level of Service F (Side-Street): Vehicles typically queued waiting for a safe opening in traffic

Vehicle Traffic Operations/Levels of Service

Table A-3: Delay Standards for Level of Service

LOS Designation	Signalized Intersection Average Delay/Vehicle (seconds)	Unsignalized Intersection Average Delay/Vehicle (seconds)
А	≤ 10	≤ 10
В	> 10 - 20	> 10 - 15
С	> 20 - 35	> 15 - 25
D	> 35 - 55	> 25 - 35
E	> 55 - 80	> 35 - 50
F	> 80	> 50

Background Traffic Growth

Daily traffic volumes on key roadway segments in the region have remained relatively stable over time (Figure A-3). For this reason, this analysis assumes that, absent development of the Ford site and other sites currently under construction, no background traffic growth would occur.

Cretin Avenue/Montreal Avenue Diversion Analysis

Traffic modeling for the project estimates that a through-connection of extended north/south routes (such as Cretin Avenue, Finn Avenue, or Mount Curve Blvd.) and extended Montreal Avenue would reduce the amount of background traffic through the Ford Parkway/Cleveland Avenue intersection. The diversion would range from 29 to 38 percent, or 178 to 315 vehicles, depending on the direction and time of day as conceptually shown in Figure A-4. The diversion of traffic has minimal impacts on these three intersections in the a.m. peak, but the overall intersection delay decreases by five seconds at the Ford Parkway/Cleveland Avenue intersection with the diversion of traffic in the p.m. peak (Table A-4).

W Highland Pkwy W Highland Pkwy h St 315 (290) W Pinehurst Ave W Pinehurst Ave Life Time Fitnes Ford Pkwy 178 (279) Ford Pkwy 38 Hillcrest Ave lillcrest Park **Bohland** Ave M Sea Salt **Bohland** Ave Congfellow Gardens Minnehaha Beechwood Ave Beechwood Ave Ave Park W Saunders Ave John H Stevens Interpretive House Veterans Home N Rome Ave W Rome Ave Minnesota ntreal Ave Montreal Ave Montreal Ave Veterans Home 43rd Ave : 40th Ave 41st 42nd Ave Yorkshire Ave Ave hana Di Prior Ave S Hampshire Ave Highland Park High School Orme Ct Rd S Minnehaha E 52nd St nbe Magoffin Ave Ed Creek Piver op Lr BING. E 53rd St E 53rd St 47th Bordner Pl S pyla E 54th St Ramlow P McDonough Mississippi River B Morgan Ave 440 Morgan Ave Park 101 Morgan Ave St Paul Ave St Paul Ave Worcester Ave Worcester Ave Davern Park Apartments Sibley Plaza Minnehaha Field Ave Minneapolis VA Off-Leash Field Ave Health Care System Dog Park E 56th St Sibley Manor Apartments Sheridan Ave W Google

Figure A-4: Potential Diversion of traffic from Ford Pkwy. / Cleveland Ave. Intersection

Vehicle Traffic Operations/Levels of Service

Table A-4 Ford Parkway/Cleveland Avenue Diversion $\text{Effects}^{(1)}$

	A	Μ	PM					
	Without Diversion	With Diversion	Without Diversion	With Diversion				
Ford Pkwy/Cretin Ave	11 (B)	14 (B)	16 (B)	19 (B)				
Ford Pkwy/Cleveland Ave	22 (C)	22 (C)	44 (D)	39 (D)				
Montreal Ave/Cleveland Ave ⁽²⁾	4 (A)/9 (A)	9 (A)/13 (B)	4 (A)/10 (B)	9 (A)/15 (C)				

Notes:

(1) Average delay, in seconds, and level of service

(2) Intersection is side-street stop control. The LOS is shown for the intersection followed by the LOS of the worst approach. Delay shown was calculated using the HCM 2010.

Direction of Approach Analysis

The Ford site redevelopment presents a significant change in the levels and mix of land uses and activities in the Highland Park area. Standard traffic analysis techniques are not sufficient to reflect the changes in travel patterns (origins, destinations, modes and routes) that may occur. A high-level run of the Metropolitan Council's travel demand model was used to estimate the likely origin and destination patterns of the Ford site activities; the model considers the magnitude of activities, typical willingness to travel, and competing opportunities. As shown in Figure A-5, the Ford site is centrally located in the region, and can be expected to have a dispersed pattern of travel. For example, downtown Minneapolis, downtown St. Paul, and the I-494 area are the three major job concentrations in the region, and are the Ford site is centrally located among them. An estimated 35 percent of the trips are expected to be generated within 2.5 miles of the Ford site (including those that stay on the site.

Figure A-5: Distribution of travel to/from Ford Site

Vehicle Traffic Operations/Levels of Service

Figure A-6 translates the travel distribution, in combination with the mode shares, to estimate the general flow of vehicular traffic. Specific roadways used may depend on the locations of land uses and parking within the site.

Figure A-6: Vehicle Trip Directions of Approach

Vehicle Traffic Operations/Levels of Service

Build Alternative Analysis

Figure A-7 and A-8 show the schematic traffic volumes estimated for the base condition, which forms the worst-case for the traffic analysis. These are the input volumes for the traffic analysis.

Table A-5 shows the resulting traffic simulation/level of service results for the area intersections with the development of the Ford site. Included in the analysis are assessments of both the overall intersection and the worst approach of the intersection.

Based on the results of the simulation, as series of potential modifications to the intersections have been identified that could provide improvements to the level of service (Table A-6). It should be noted that detailed implementation of any of these should be considered in concert with modifications to better serve pedestrian and bicycle levels and quality of service.

Figure A-7 Base Scenario AM Peak Hour Traffic Volumes

Figure A-8 Base Scenario PM Peak Hour Traffic Volumes

	Existing		No Changes		With Mitigat	tion ⁽²⁾		
Intersection ⁽¹⁾	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS		
46th Ave/46th St	12 (15)	B (B)	14 (15)	B (B)	12 (14)	B (B)		
Ford Pkwy/Mississippi River Blvd	1/7 (2/8)	A/A (A/A)	1/7 (2/9)	A/A (A/A)	1/8 (2/9)	A/A (A/A)		
Ford Pkwy/Woodlawn Ave	1/1 (1/1)	A/A (A/A)	1/1 (2/1)	A/A (A/A)	1/1 (2/2)	A/A (A/A)		
Ford Pkwy/Mt Curve Blvd	1/11 (1/12)	A/B (A/B)	39/830 (19/1063)	E/F (F/F)	12 (13)	B (B)		
Ford Pkwy/Cretin Ave	11 (16)	B (B)	30 (72)	C (E)	17 (27)	B (C)		
Ford Pkwy/Finn St	8 (16)	A (B)	6 (18)	A (B)	10 (19)	A (B)		
Ford Pkwy/Cleveland Ave	22 (44)	C (D)	23 (32)	C (C)	21 (38)	C (D)		
St Paul Ave/Cleveland Ave/Bohland Ave/Inner Dr	6/46 (5/59)	A/E (A/F)	5/28 (5/33)	A/D (A/D)	6/30 (6/45)	A/D (A/E)		
Montreal Ave/Cleveland Ave	4/9 (4/10)	A/A (A/A)	127/247 (128/246)	F/F (F/F)	14 (16)	B (B)		
Montreal Ave/St Paul Ave	12 (14)	B (B)	105/175 (172/351)	F/F (F/F)	14 (17)	B (B)		
Mississippi River Blvd/N Ford Ramp	1/7 (2/16)	A/A (A/C)	1/8 (2/15)	A/A (A/C)	1/7 (3/16)	A/A (A/C)		
Mississippi River Blvd/S Ford Ramp	3/9 (3/11)	A/A (A/B)	3/10 (3/12)	A/B (A/B)	3/10 (3/12)	A/B (A/B)		
Segment	Travel Tim	ne (sec)	Travel Time (sec)	Travel Time	(sec)		
Travel Time: EB Ford Pkwy	192 (237)		198 (216)		203 (247)	203 (247)		
Travel Time: WB Ford Pkwy	186 (204)		183 (219)		201 (222)	201 (222)		
Travel Time: SB Cleveland Ave/St Paul Ave Travel Time: NB Cleveland Ave/St Paul Ave	97 (115) 98 (110)		113 (188)		104 (141)			

Table A-5: Build (site) Levels of Service with and Without Mitigation Changes to Roadway System

Notes : (1) Accounts for diverted traffic through site; (2)vehicle traffic mitigations -- does not include changes needed to maximize pedestrian/bicycle quality of service

Table A-6: Potential Mitigations to Improve Roadway Geometrics

Intersection	Recommended Improvements
Ford Pkwy/ Mount Curve Blvd	 Signalize intersection Provide NB/SB Left-turn lanes Extend WB left-turn lane
Ford Pkwy/ Cretin Ave.	 Add NB left- and right-turn lanes, Extend WB left-turn lane, Remove part of median, EB right-turn lane
Cleveland Ave/ Montreal Ave	 Add west approach, Add traffic signal (or possible roundabout) If traffic signal, EB, WB, NB, and SB left-turn lanes should be considered Likely requires removal of on-street parking on approaches near intersection
Montreal Ave/ St Paul Ave	 Traffic signal or roundabout If traffic signal, NB left-turn lane should be considered Requires removal of part of the median Likely requires removal of on-street parking on eastbound approach near intersection If traffic signal, EB/WB left-turn lanes Optional: EB/WB right-turn lanes
Cleveland Ave./ St. Paul Ave.	• Consider reconfiguration and traffic control change (see Figure A-9)

Figure A-9: Potential Mitigations to Improve Roadway Geometrics: St. Paul Avenue at Cleveland Avenue

