AL JOHNSON CONSTRUCTION CO. Jeneral Contractors

1700 NORTHWESTERN FINANCIAL CENTER MINNEAPOLIS, MINNESOTA 55431 Telephone : 612/831-8151

October 26, 1979

Mr. Dan Greenwald Manufacturing Engineering Manager Ford Motor Company Twin Cities Assembly Plant 966 South Mississippi River Blvd. St. Paul, Minnesota 55116

Dear Mr. Greenwald:

Thank you for meeting with me on, 22 October 1979, to discuss the possibility of our disposing of waste material in the area south of your steam plant. The material would consist of broken concrete, sandstone, and possibly some clean sand which would be obtained from the Ford Lock site where we have the contract for the rehabilitation of the lock.

The total quantity of concrete and sandstone that we are proposing to dispose of on your property is 29,000 cu. yd. with the possibility of an additional 18,000 cu. yd. of sand if we cannot find another use for the sand. The estimated quantities and periods of disposal are as follows:

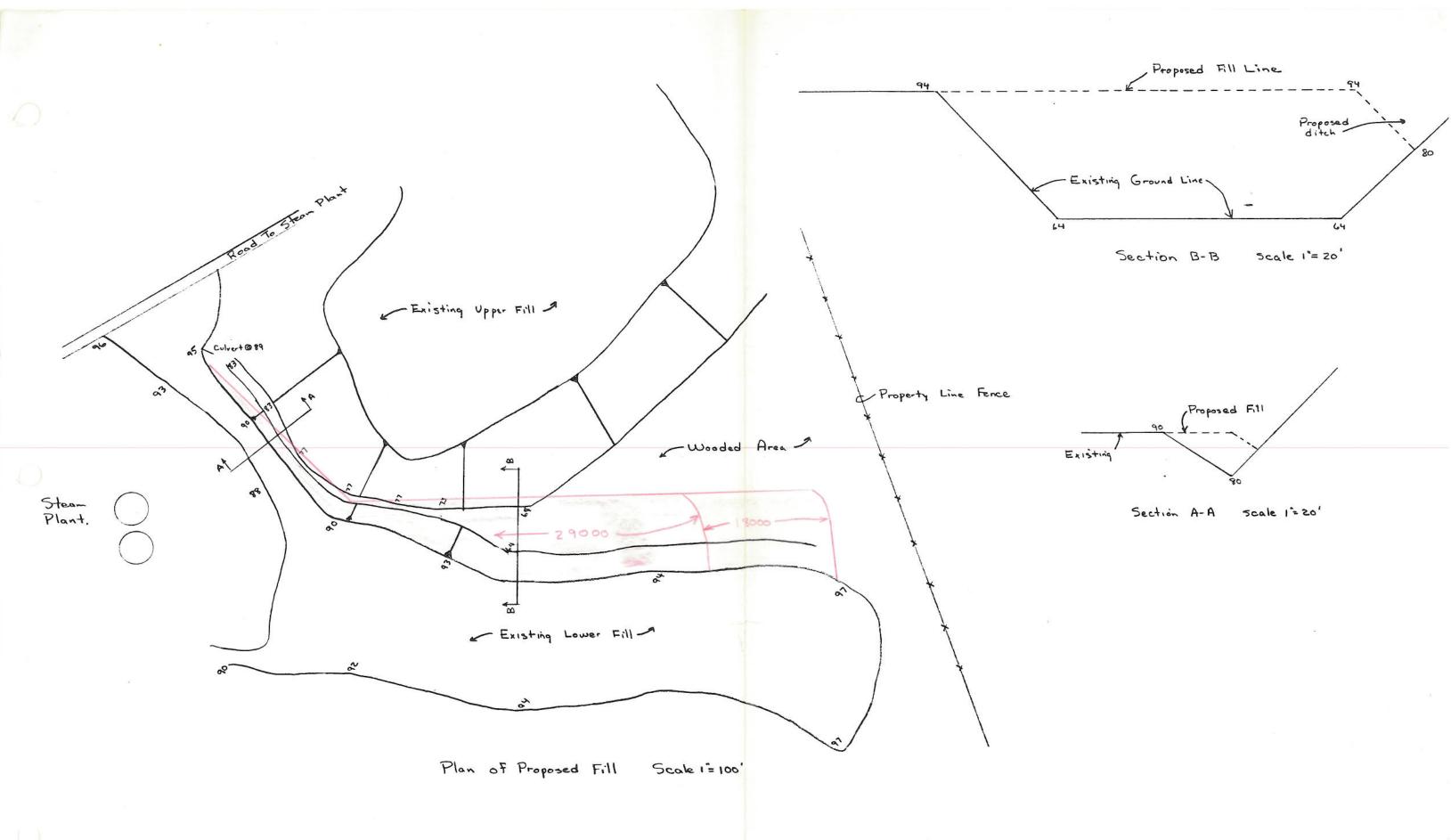
| 1,000 c.y. of Concrete   | November 1979    |
|--------------------------|------------------|
| 9,000 c.y. of Concrete   | December 1979    |
| 9,000 c.y. of Concrete   | December 1980    |
| 10,000 c.y. of Sandstone | December 1980    |
| 18,000 c.y. of Sand      | April - May 1981 |

Attached is a drawing of the proposed fill area. The area shown to be filled is what we thought would be the best use of the waste material in developing the area as a possible storage site for your trucks. We would be willing to fill the area in any other way you wished. We would propose to bury the existing trees in the fill. Sand would be placed on top of the fill to give a smooth surface on which you could build your parking area. In addition, we would offer to pay the Ford Motor Company \$.25 for every cubic yard of material actually wasted in the proposed area.

Mr. Dan Greenwald October 26, 1979 Page 2

.

With the time being very short on our need for a disposal site in 1979, we would appreciate your early consideration in this matter. Again, thank you for your time and effort.


Very truly yours,

AL JOHNSON CONSTRUCTION CO.

George W. Barbato

Project Manager

GWB:ck Attachment



Proposed Waste Disposal Area at Ford Motor Company

Al Johnson Const

10/26/79



### Twin Cities Assembly Facility Groundwater Monitoring Wells Survey

March 3, 1982



MN-COMP 0043699

Stationary Source Environmental Control Office Environmental and Safety Engineering Staff



MAY 0 7 1982

MINN. POLLUTION CONTROL AGENCY

### Twin Cities Assembly Facility Groundwater Monitoring Wells Survey

March 3, 1982

Conducted By

Ford Motor Company Stationary Source Environmental Control Office Survey and Evaluation

Survey Conducted by:

E. D. Chraszcz

Prepared by:

Chraszcz

MN-COMP 0043700

Concur:

M. Reinke, Manager

### Twin Cities Assembly Plant Groundwater Monitoring Wells Survey March 3, 1982

# Table of Contents

,

|     | Introduction                        |     |
|-----|-------------------------------------|-----|
|     | Site Description and Well Locations |     |
|     | Summary                             |     |
| IV. | Results                             | . 7 |

# Appendices

| Α.      | Sampling Procedures    | • | • | • | • | • |   | • | • | •   | • | • |   | • | • | • | • | 10 |
|---------|------------------------|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|----|
| Β.      | Analytical Procedures. | • | • | ٠ | • | • | • | • | • | •   | • | ٠ | • | • | • | • | • | 14 |
| L.<br>D | Field Data Sheets      | • | • | • | • | • | • | • | ٠ | •   | • | ٠ | • | • | ٠ | ٠ | • | 17 |
| U .     | Laboratory Data Sheets | • | • | • | • | • | • | • | • | • 1 | • | • | • | • | • | • | • | 22 |

### List of Tables

| 2.<br>3.<br>4. | Summary of Results | 7<br>8<br>9 |
|----------------|--------------------|-------------|
| 1.             | Location of Wells  | 3           |

#### I. INTRODUCTION

As part of an investigation into potential groundwater contamination resulting from an old inactive disposal site at the Twin Cities Assembly Plant, the Minnesota Pollution Control Agency (MPCA) requested Ford Motor Company to install four (4) groundwater monitoring wells in the vicinity of the inactive site. Prior to installing the wells a hydrogeologic survey was conducted by Soil Testing Services of Minnesota, Inc. Based on the information contained in the survey, the well locations were selected and submitted to the MPCA. Following their approval Soil Testing Services installed the wells.

On March 3, 1982 representatives from Ford's Stationary Source Environmental Control Office (SSECO) conducted a sampling program of the groundwater in the wells. Mr. Douglas Day of the MPCA was present during the sampling to review the procedures used and to obtain split samples. The parameters selected for analysis were based on a joint agreement between Ford and the MPCA and included:

. USEPA volatile priority pollutants

. Xylenes

Methylethylketone

. Methylisobutylketone

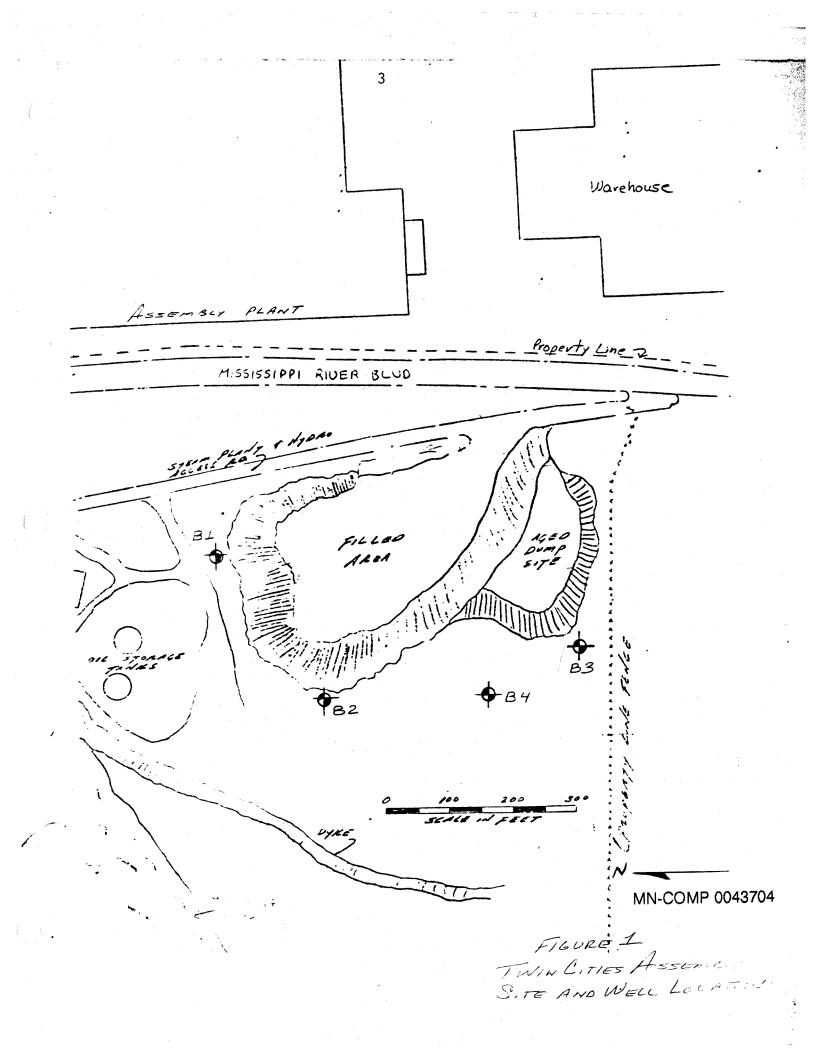
pН

Specific conductivity

Dissolved heavy metals (Cd,Cr,Pb,Cu,Ni,Zn)

MN-COMP 0043702

#### II. SITE DESCRIPTION AND WELL LOCATIONS


and the second second

2

The inactive disposal site is approximately 4 acres in size and is located west of the main assembly plant building between Mississippi River Boulevard and the Mississippi River. The site was used by the plant to dispose of construction rubble, paint sludges and old paints and solvents. It has not been used since 1965. The attached Figure 1 shows the location of the site and the approximate location of the 4 groundwater monitoring wells installed. The final locations of the wells were dictated somewhat by access to the rather rugged terrain found in the disposal site area, and the presence of underlying bedrock in certain locations which prohibited sampling the uppermost groundwater, directly connecting the Mississippi River.

and the state of the second second

Installation of the wells was completed in December of 1981. The well casings are 2" schedule 80 PVC pipe with the lower 10' of casing slotted and wrapped with Miarafi 140S fabric. The Miarafi acts as a filter to limit the amount of sediment entering the wells. Detailed information on the procedures used for installing the wells and the well boring logs can be obtained from the final report of Soil Testing Services of Minnesota dated February 26, 1982. The specifics of each are listed below: MN-COMP 0043703



| Well No. | Bottom of Casing<br>Elevation (Ft.) | Casing Length<br>from Grade (Ft.) |
|----------|-------------------------------------|-----------------------------------|
| B-1      | 678.52                              | 51.0                              |
| B-2      | 671.27                              | 44.5                              |
| B-3      | 672.49                              | 24.5                              |
| B-4      | 675.97                              | 29.5                              |

On the basis of the preliminary measurements obtained by Soil Testing Services following completion of the wells, the groundwater movement in the area is to the west northwest, toward the Mississippi River. On this basis, Well No. B-1 is anticipated to be an upgradient well, or at least unaffected by the disposal site, while Wells B-2, B-3, and B-4 are downgradient of the site.

4

III. SUMMARY

A summary of the results from the well samplings appears in Table 1. On the basis of static water level measurements, Well B-1 can be considered the upgradient or unaffected by the disposal site and Wells B-2, B-3 and B-4 downgradient of the disposal site.

As indicated by the data, metal concentrations in the groundwater from the downgradient wells are consistently low. Only trace levels of three organic compounds were detected in three of the wells; two of which were present in the upgradient well. These findings indicate no apparent contamination due to the inactive disposal site.

5

12 - A March March Stand

MN-COMP 0043706

# Table 1

# Twin Cities Assembly Plant Groundwater Analysis Summary

|                       |              | W         | <u>ell No.</u> |           |           |
|-----------------------|--------------|-----------|----------------|-----------|-----------|
| Dissolved Metals      | <u>Units</u> | <u>B1</u> | <u>B2</u>      | <u>B3</u> | <u>B4</u> |
| Copper                | mg/1         | 0.03      | 0.02           | 0.01      | 0.01      |
| Cadmium               | mg/1         | 0.02      | <0.01          | <0.01     | 0.02      |
| Zinc                  | mg/1         | 0.06      | 0.04           | <0.02     | 0.09      |
| Nickel                | mg/1         | 0.07      | 0.04           | 0.02      | 0.05      |
| Chromium              | mg/l         | <0.05     | <0.05          | <0.05     | <0.05     |
| Lead                  | mg/1         | 0.12      | <0.05          | <0.05     | 0.06      |
| pH                    | Units        | 7.08      | 7.01           | 7.07      | 6.84      |
| Specific Conductivity | Umhos/cm     | 985       | 1064           | 1666      | 1482      |
| Temperature           | °F.          | 47        | 45             | 45        | 46        |
| Organics              |              |           |                |           | •         |
| 1,2 Dichloroethylene  | μ <b>g/1</b> | <2        | 15             | <2        | <2        |
| Trichloroethylene     | μ <b>g/1</b> | 4         | 5              | <2        | <2        |
| Toluene               | μ <b>g/l</b> | 1         | 1 a. <b>1</b>  | <1        | 1         |

MN-COMP 0043707

. .

,

#### IV. RESULTS

Static water level measurements obtained prior to well clearing and sampling are tabulated below, together with measurements made by Soil Testing Services on January 5, 1982 following the well installations and developments:

#### Table 2

#### Groundwater Level Data

| Well No. | <u>Static Wate</u><br>1/5/82 | r Levels<br><u>3/3/82</u> |
|----------|------------------------------|---------------------------|
| B-1      | 688.62                       | 688.35                    |
| B-2      | 688.11                       | 687.71                    |
| B-3      | 688.65                       | 688.27                    |
| B-4      | 688.53                       | 688.05                    |

The March data agrees fairly well with the previous data and tends to confirm the west to northwest groundwater movement. On this basis, Well B-1 is upgradient of the disposal site and the remaining three wells are downgradient.

The results of the dissolved metals analyses appear in Table 3. The final value represents the average of 7 consecutive readings made on each sample.

Table 4 contains the results of analyses for the volatile organic materials. Duplicate analysis showed excellent agreement; both field and well casing material blanks were satisfactory.

Specifications regarding the exact method of analysis with respect to metals and organics can be found in Appendix C together with the detection levels associated with each procedure.

|          | <u>B1</u> | <u>B2</u> | <u>B3</u> | <u>B4</u> |
|----------|-----------|-----------|-----------|-----------|
| Lead     | 0.12      | <.05      | <.05      | 0.06      |
| Chromium | <.05      | <.05      | <.05      | <.05      |
| Nickel   | 0.07      | 0.04      | 0.03      | 0.05      |
| Zinc     | 0.06      | 0.04      | <.02      | 0.09      |
| Cadmium  | 0.02      | <.01      | <.01      | 0.02      |
| Copper   | 0.03      | 0.02      | 0.01      | 0.01      |

All values are the average of seven measurements of the same sample. Units are mg/l.

#### MN-COMP 0043709

#### TABLE 4 Twin Cities Assembly Plant Groundwater Monitoring Results Volatile Organics March 3, 1982

|                      | <u>B1</u> | <u>Bl (Dup</u> ) | <u>B2</u> | B2 (Dup) | <u>B3</u> | <u>B3 (Dup)</u> | <u>B4</u> | <u>B4 (Dup</u> ) |
|----------------------|-----------|------------------|-----------|----------|-----------|-----------------|-----------|------------------|
| 1,2 Dichloroethylene |           | -                | 13        | 17       | -         | -               | -         | -                |
| Trichloroethylene    | 4         | 3                | 5         | 5        |           | · _             | -         | -                |
| Toluene              | 1         | 2                | 1         | 1        | -         | -               | 1         | 1                |

Duplicate field blanks showed no detectable levels of volatile organics.

Well casing blanks showed 4 PPB Toluene and 6 PPB methylene chloride, however these are attributed to the laboratory atmosphere.

Only detectable quantities are reported.

MN-COMP 0043710

# APPENDIX A

# SAMPLING PROCEDURES

#### APPENDIX A

11

#### SAMPLING PROCEDURES

Prior to sampling, static water level determinations were made. Based on the static and the measured depth of each well, the volumes of water in each well casing calculated. Each well was then cleared to remove three times the calculated water volume. Wells B-1 and B-2 were cleared by manual methods utilizing a stainless steel bailer. Wells B-3 and B-4 were not as deep and therefore could be cleared with a peristalic pump and tygon tubing suction line. Once clearing was completed, the static water level was again determined and the samples were withdrawn from the wells with a stainless steel bailer. Table 5 represents some of the pertinent well data as it relates to the monitoring survey.

In order to avoid either cross contamination or contamination from extraneous sources, the stainless steel bailer and attached stainless cable were subjected to a thorough cleaning before being immersed in a well. The bailer and cable were first rinsed with organic free water followed by a methanol rinse and finally a second rinse with organic free water.

The wells were sampled in the following order: Wells B-1, B-2, B-4, and B-3. Well B-1 was sampled first since it was considered the upgradient well. Water level recovery was rapid, therefore samples were collected immediately after well evacuation. Samples for volatile priority pollutants plus xylenes, methylethyl ketone, and methylisobutyl ketone were

### Table 5 Twih Cities Assembly Plant Survey of Ground Water Monitoring Wells March 3, 1982 Well Data

| Well Number | Time<br>Sampled | Elevation<br>(Ft.) | Static<br>Water<br>Level<br>(Ft.) |         | Well<br>Volume<br>(liters) | Amount<br>of Water<br>Removed<br>(liters) | Bailing  |
|-------------|-----------------|--------------------|-----------------------------------|---------|----------------------------|-------------------------------------------|----------|
| B1          | 12:00 Noon      | 730.52             | 42' 2"                            | 53' 65" | 6.2                        | 19                                        | 41' 1"   |
| B2          | 2:45 p.m.       | 718.96             | 26' 3"                            | 46' 9"  | 11.1                       | 33                                        | 31' 3"   |
| B3          | 4:35 p.m.       | 704.85             | 16' 7"                            | 27' 35" | 5.8                        | 18                                        | 16' 7"   |
| B4          | 3:25 p.m.       | 708.63             | 20' 7"                            | 30' 10" | 5.6                        | 17                                        | 20' 7.5" |

collected by transferring some of the sample from the bailer to a cleaned glass beaker, and subsequently filling individual volatile organic sampling vials. Care was taken to avoid both unnecessary agitation of the sample and air bubbles trapped in the sealed vial. Volatile samples were maintained at 4° C until analysis. A second portion of the sample was filtered through a 0.45 micron filter on site and the filtrate acidified to pH 2. This sample was analyzed for dissolved metals. pH, conductivity and temperature determinations which were performed on site.

# APPENDIX B

Analytical Procedures

# MN-COMP 0043715

a state share

-

Constant & States

#### APPENDIX B

#### Analytical Procedures

Temperature and specific conductivity were determined on site using a Horiba Model U-7 water analyzer. pH was measured on site using an Extech Model 631 digital meter.

Metal determinations were made using an Instrument Laboratory IL 151 atomic absorption spectrometer and EPA methodology. The detection limits listed below were calculated by determining the standard deviation from a series of seven measurements of the lowest standard for each metal analyzed. The standard deviations were then multiplied by two which results in confidence limits of approximately 95%.

| Metals Detection | Limits (mg/l) |
|------------------|---------------|
| Copper           | 0.01          |
| Cadmium          | 0.01          |
| Zinc             | 0.02          |
| Nickel           | 0.03          |
| Chromium         | 0.05          |
| Lead             | 0.05          |

Volatile organic concentrations were measured utilizing a Hewlett Packard HP 5992 GC/MS, incorporating a thirty meter, fused Silica, thick coat, DB-5 capillary column. The GC/MS was used in conjunction with an Envirochem Unicon purge and trap device and a Hewlett Packard dual floppy disc data storage system. The detection limits listed below were determined by the lower peak area threshold limit, which is set by the analytical program used.

| Priority Pollutant<br>VOA Compound                                                                                                                                                                                                                          | Detection<br>Limit(ppb)                                                                                                                                 | Priority Pollutant<br>VOA Compound                                                                                                                                                                                        | Detection<br>Limit(ppb)                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Purgeables A<br>Methylene Chloride<br>1,1 Dichloroethylene<br>1,1 Dichloroethane<br>Chloroform<br>Carbon tetrachloride<br>1,2 Dichloropropane<br>Trichloroethylene<br>1,1,2 Trichloroethane<br>Dibromochloromethane<br>Tetrachloroethylene<br>Chlorobenzene | < 1<br>< 5<br>< 1<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5                                                                 | Purgeables B<br>1,2 Dichloroethylene<br>1,2 Dichloroethane<br>1,1,1 Trichloroethane<br>Bromodichloromethane<br>trans 1,3 Dichloropropene<br>Benzene<br>Bromoform<br>1,1,2,2 Tetrachloroethane<br>Toluene<br>Ethyl Benzene | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 |
| <u>VO</u>                                                                                                                                                                                                                                                   | nity Pollutant<br>A Compound                                                                                                                            | Detection<br>Limit(ppb)                                                                                                                                                                                                   |                                                                    |
| Ch<br>Di<br>Br<br>Vi<br>Ch<br>Me<br>Me                                                                                                                                                                                                                      | ingeables <u>C</u><br>loromethane<br>chlorodifluoromet<br>romomethane<br>nyl Chloride<br>loroethane<br><u>Others</u><br>ethyl Isobutyl Ketone<br>ylenes | < 10<br>< 5<br>< 5<br>MN-COMP 00<br>tone < 1                                                                                                                                                                              | 43717                                                              |

# APPENDIX C

# FIELD DATA SHEETS

MN-COMP 0043718

GROUNDWATER MONITORING SAMPLING DATA SHEE:

| Date                                  | t Twin Cities Assembly                   | Reason for Sampling <u>Required m</u>                                                                          | ONITORING            |
|---------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|
| Wo 1 1                                | 3/3/72                                   | Person Sampling <u>FC, TG, RB</u> ,                                                                            |                      |
| WEIT                                  | #,                                       | Laboratory Handling<br>Analysis <u>SSECO</u>                                                                   | -                    |
| Ι.                                    | Well Data USGS Coordinates               |                                                                                                                |                      |
|                                       | Casing Elevation 730,52                  | Screen Material                                                                                                |                      |
|                                       | Casing Material <u>PVC</u>               | Casing Diameter/7                                                                                              |                      |
|                                       | Casing Depth 53 642" (642.5_             | ) Static Water Level $\frac{42'2''}{2}$                                                                        | (506')               |
|                                       | Metal Guard Elevation Nove               | Well Volume 6,2 Liters                                                                                         |                      |
|                                       | Type of Well Verticle                    | Location of Well <u>North edge</u>                                                                             | OF bloff             |
|                                       | Up- or Downgradient UpgRAdien;           |                                                                                                                |                      |
| Ī.                                    | Well Clearing Data                       | and a second |                      |
|                                       | Device Used Stanless Steel Baile         | Material of Construction <u>Star</u>                                                                           | Nless Stee           |
|                                       | Volume of Water Removed /9 4.4           |                                                                                                                |                      |
| III.                                  | Sampling Data                            |                                                                                                                |                      |
|                                       |                                          | DRY & CIEAR Barometric Pressure                                                                                |                      |
| Parat                                 | nple Sample<br><u>meters Equipment</u>   | Container Sample<br>and Volume Preservative                                                                    | Pelding<br>Tire      |
|                                       | No Odok                                  |                                                                                                                |                      |
| ·                                     | Static AFter bailing 41'                 | / <sup>12</sup>                                                                                                |                      |
|                                       | Time of SAMPLING 12:00                   |                                                                                                                | 196 MIL 4            |
|                                       |                                          |                                                                                                                |                      |
| دها د مین میری .<br>بر این در میرسیمی |                                          |                                                                                                                |                      |
| •                                     |                                          |                                                                                                                |                      |
| · · · · · · · · · · · · · · · · · · · | Rd Data                                  |                                                                                                                |                      |
| •                                     | <ul> <li>A memory application</li> </ul> | 79 x .01639 = 6.221 ters x3 = 18.5                                                                             |                      |
| •                                     | Well Voiume = 136.5 x 3,14 x .8          |                                                                                                                | د وکت <sup>ی</sup> م |
| •                                     | Well Voiume = 136.5 x 3,14 x .8          |                                                                                                                |                      |
| · · · · · · · · · · · · · · · · · · · | Well Voiume = 136.5 x 3,14 x .8          |                                                                                                                |                      |
| · · · · · · · · · · · · · · · · · · · | Well Voiume = 136.5 x 3,14 x .8          |                                                                                                                | -645                 |
| · · · · · · · · · · · · · · · · · · · | Well Voiume = 136.5 x 3,14 x .8          |                                                                                                                |                      |

()

| Plant Twin Cities Assembly                     | Reason for Sampling Required monitor.                   |
|------------------------------------------------|---------------------------------------------------------|
| Date <u>3/3/82</u>                             | Person Sampling <u>E.C.</u> , <u>T.G.</u> , <u>R.B.</u> |
| Well # <u>B-2</u>                              | Laboratory Handling<br>Analysis SSECD                   |
| I. Well Data USGS Coordinates                  |                                                         |
| Casing Elevation 718,96                        | Screen Material PVC                                     |
| Casing Material PVC                            | Casing Diameter 178"                                    |
| Casing Depth 46'9" (56                         | <u></u>                                                 |
| Metal Guard Elevation None                     | Well Volume 84 Liters                                   |
| Type of Well Verticle                          | Location of Well North west edge                        |
| Up- or Downgradient DowNGA                     |                                                         |
| II. Well Clearing Data                         |                                                         |
| Device Used Stain less Stee                    | 1 BAILER Material of Construction Stanless              |
| Volume of Water Removed $\underline{\sim}$     |                                                         |
| III. Sampling Data                             |                                                         |
|                                                | s <u>DRY &amp; PARHY Clear</u> Barometric Pressure      |
| Sample Sample .<br><u>Parameters Equipment</u> | Container Sample<br>and Volume Preservative             |
| Static After Sampling                          | 31 '3 ''                                                |
|                                                | ?:45 pm                                                 |
|                                                | ·                                                       |
|                                                |                                                         |
|                                                |                                                         |
| IV. Field Data                                 | , outborns: 25Liter,                                    |
| Well volume = 186" x 3.1                       | 4 x . 879 x .01639 = 8.41, ters \$ 5 = 251. ters        |
| In t. Al conductivity of di                    | lated SAmple 551                                        |
| Notes: TEMP, OF SAMPle                         | 15°F                                                    |
|                                                |                                                         |
| · Conductivity At 25'C                         | 7.01<br>                                                |
|                                                |                                                         |

# GROUNDWATER MONITOTING SAMPLING DATA SHEE;

· · · •

 $(\alpha_{i},\beta_{i}) = (\alpha_{i},\beta_{i}) = (\alpha_{i},\beta_{i}$ 

· · · · · ·

|                  | t Twin Cities Assembly<br>3/3/82                                                                               | Reason for Sampling <u>Required</u> <u>monitoring</u>    |
|------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                  | # B-4                                                                                                          | Person Sampling <u>E.C., T. J. R.B.</u>                  |
| nerr             |                                                                                                                | Laboratory Handling<br>Analysis <i>SSECO</i>             |
| T                | Well Data USGS Coordinates                                                                                     |                                                          |
| ••               |                                                                                                                |                                                          |
|                  | Casing Elevation _708.63                                                                                       | Screen Material <u>PVC</u><br>Casing Diameter <i>17P</i> |
|                  | Casing Material                                                                                                | Casing Diameter / 7/2                                    |
|                  | Casing Depth <u>30'10" (370</u> ")                                                                             | Static Water Level(247")                                 |
|                  | Metal Guard Elevation None                                                                                     | Well Volume <u>5,6 Liters</u>                            |
|                  | Type of Well Westerla                                                                                          | Location of Well Southwest edge of bl                    |
|                  | Do- or Downgradient Downgradien                                                                                | LOCALION OF WELL DOUTNWEST Edge of bl                    |
| <b>T T</b>       | · · · · · · · · · · · · · · · · · · ·                                                                          |                                                          |
| ÷ .              | Well Clearing Data                                                                                             |                                                          |
|                  |                                                                                                                | Material of Construction Tygon                           |
|                  | Yolume of Water Removed                                                                                        | 225                                                      |
| III.,            | Sampling Data                                                                                                  |                                                          |
|                  | Significant Weather Conditions $\_  ot \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Barometric Pressure                                      |
| ranam            | eters Equipment                                                                                                | and Volume Preservative Time                             |
|                  | odor SAmple Silty                                                                                              |                                                          |
| Str              | Atic AFter bailing 20'7"                                                                                       |                                                          |
| Tim              | ne of SAMPLING 3:25pm                                                                                          |                                                          |
| a,               |                                                                                                                |                                                          |
|                  | ·                                                                                                              |                                                          |
| 17 ·<br>         | Field Data                                                                                                     |                                                          |
|                  | Weil Holome = 123" x 01629 x 3                                                                                 | 14 x . 879 = 5,6 L, ters x 3 = 16,7                      |
|                  | Initial Conduct by of diluted sam                                                                              | nAip = 760                                               |
|                  |                                                                                                                |                                                          |
| Note:            | TEMP OF SAMPLE 46                                                                                              | °F NN CONTRA                                             |
| 1999 - C. (1999) | pH 6,8                                                                                                         | MN-COMP 0043721                                          |
|                  | * Conductionity At 25°C 148                                                                                    | 2 microahos km                                           |
|                  | /                                                                                                              |                                                          |
|                  |                                                                                                                |                                                          |

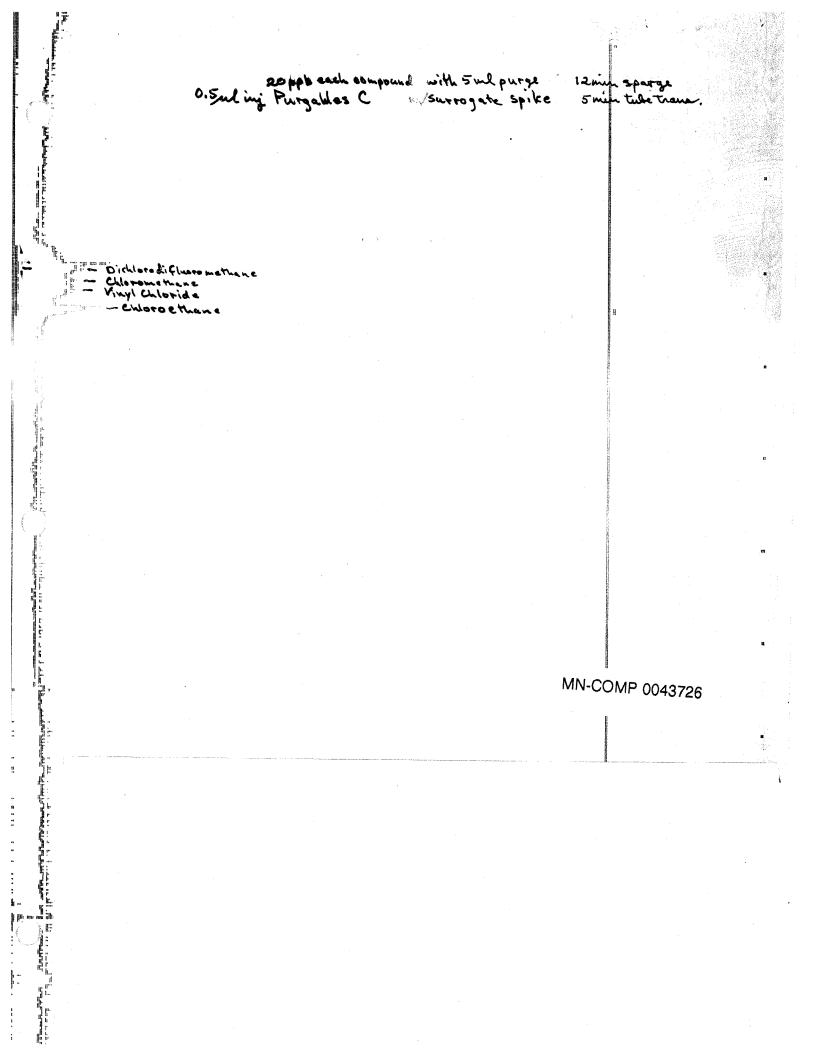
with durined water OF 19 micromhos/cm. 760-19 x2 = 1482

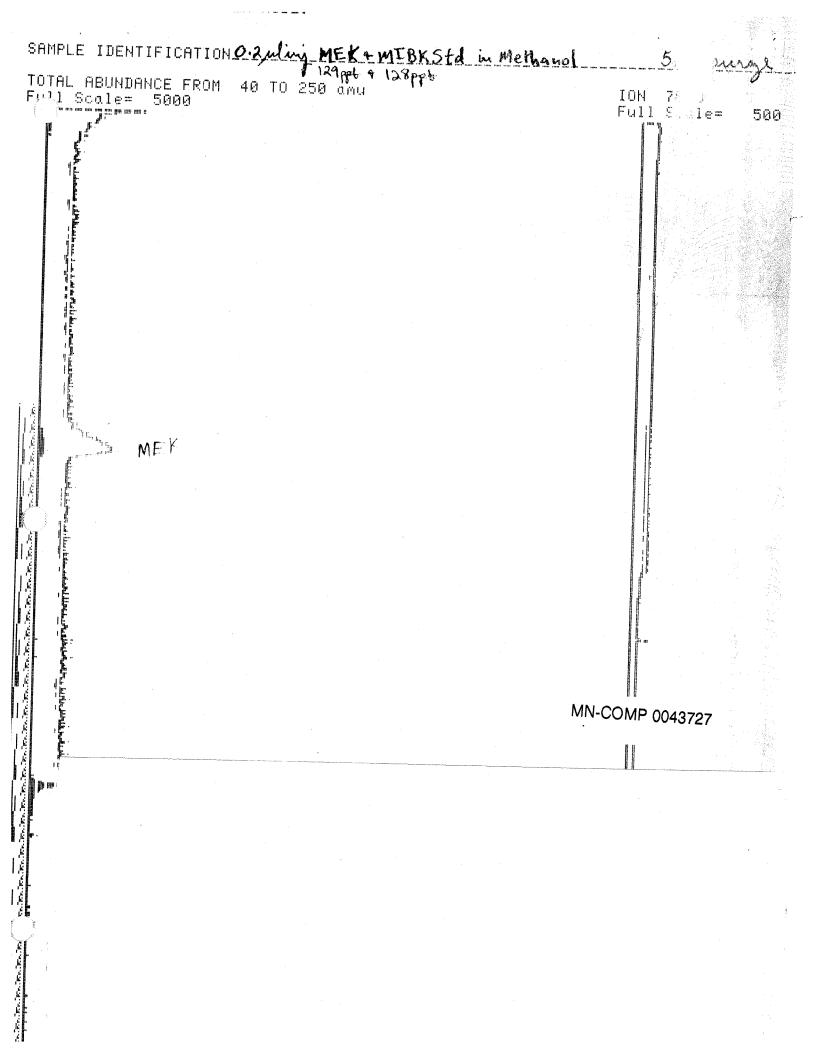
GROUNDWATER MUNITORING SAMPLING DATA SHELT

88.45 rr

| Plant Tww Cities Assembly                          | Reason for Sampling Required monitoring                                                                        |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Date 3/3/82                                        | Person Sampling <u>EC, T.M., R.B</u>                                                                           |
| Well # <u>6-3</u>                                  | Laboratory Handling<br>Analysis                                                                                |
| I. Well Data USGS Coordinates                      |                                                                                                                |
| Casing Elevation704.85                             | Screen Material slotted PVC                                                                                    |
| Casing Material <u>PVC</u>                         | Casing Diameter 178                                                                                            |
| Casing Depth (327.5)                               |                                                                                                                |
| Metal Guard Elevation Nonc                         | Well Volume 5,8 L, ters                                                                                        |
| Type of Well Verticle                              | Location of Well South edge of bluff                                                                           |
| Up- or Downgradient Downgradien                    | , <del>/</del>                                                                                                 |
| II. Well Clearing Data                             |                                                                                                                |
| Device Used faristalic fump                        | Material of Construction Tygon                                                                                 |
| Volume of Water Removed                            | ۶                                                                                                              |
| III. Sampling Data                                 |                                                                                                                |
| Significant Weather Conditions $\underline{D}_{A}$ | Barometric Pressure                                                                                            |
| Sample Sample<br>Parameters Equipment              | ContainerSampleHoldingand VolumePreservativeTime                                                               |
| 2. No odor                                         |                                                                                                                |
| 3. Static After bailing 16'7'                      | en de la companya de |
| Time of sampling 4:35 pm                           |                                                                                                                |
|                                                    |                                                                                                                |
|                                                    |                                                                                                                |
| IV. Field Data                                     |                                                                                                                |
|                                                    | 1120 - = RI, top: y3 - 17 4 Liters                                                                             |
| Well volume = 128.5 x 3, 14 x . 879 x . 0          | Amale 852                                                                                                      |
| Initial Conductivity of diluted s.                 | 4mpr 005                                                                                                       |
| TEMPORESAMOLE 4/5°F                                |                                                                                                                |
| pH 7.07                                            |                                                                                                                |
| * Conductivity At 25°C 1666 mi                     | cro mhos lcm MN-COMP 0043722                                                                                   |
|                                                    |                                                                                                                |
|                                                    | uch litel therefore sample was diluted                                                                         |
| & Note Conductivity exceeds mater Ci               | APABility therefore sample was diluted                                                                         |
| with distilled water of 19                         | micrombos/cm. 852-19 x2=1666                                                                                   |

APPENDIX D LABORATORY DATA SHEETS


MN-COMP 0043723


alay print a consideration in

- And Andrews

asuling Pugables À 5 min tube 1,1 Dichloroettrylens Mittylens Chlorido 1 i.... ]]e nc. ∤ <sup>prin</sup> ]]e nc. r | þ Dichloroetham 1,1 Chloroform

20ppb each compound with 5 ml purge 0.5 ul inj Purgables B 12 min Sparge 5 min tubo tra 1,2 Dichloroothylene E. .,





ra recorded in PEARFINDE ain run SAVING ALL SPECTRA. MPLE IDENTIFICATION Twin Cities - Field Blank w/Surre ite Spike 5ml punge TAK ABUNDANCE FROM 35 TO 250 amu ION S1.1 Full Écales 500 ور ماند با ماند والمقدم في المانية المانية المانية والمقرماتين \_\_\_\_\_\_ MN-COMP 0043728

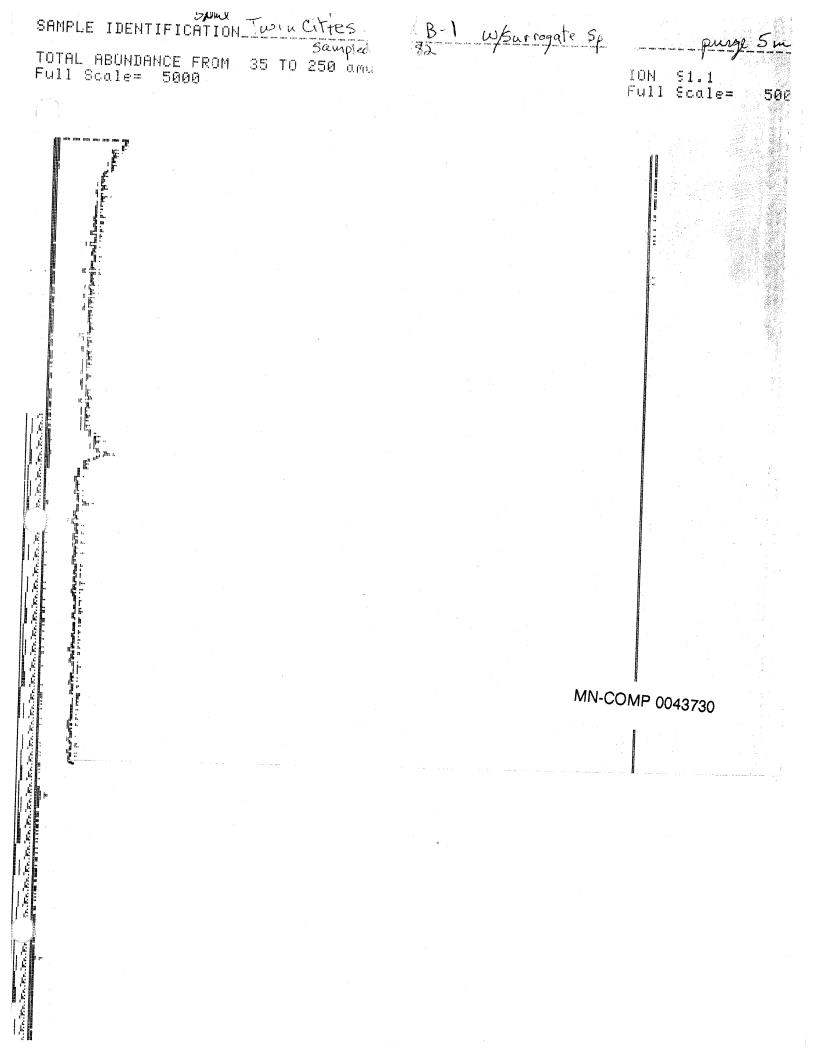
AMPLE IDENTIFICATIONS. Onl Twin Cities VOA- AV

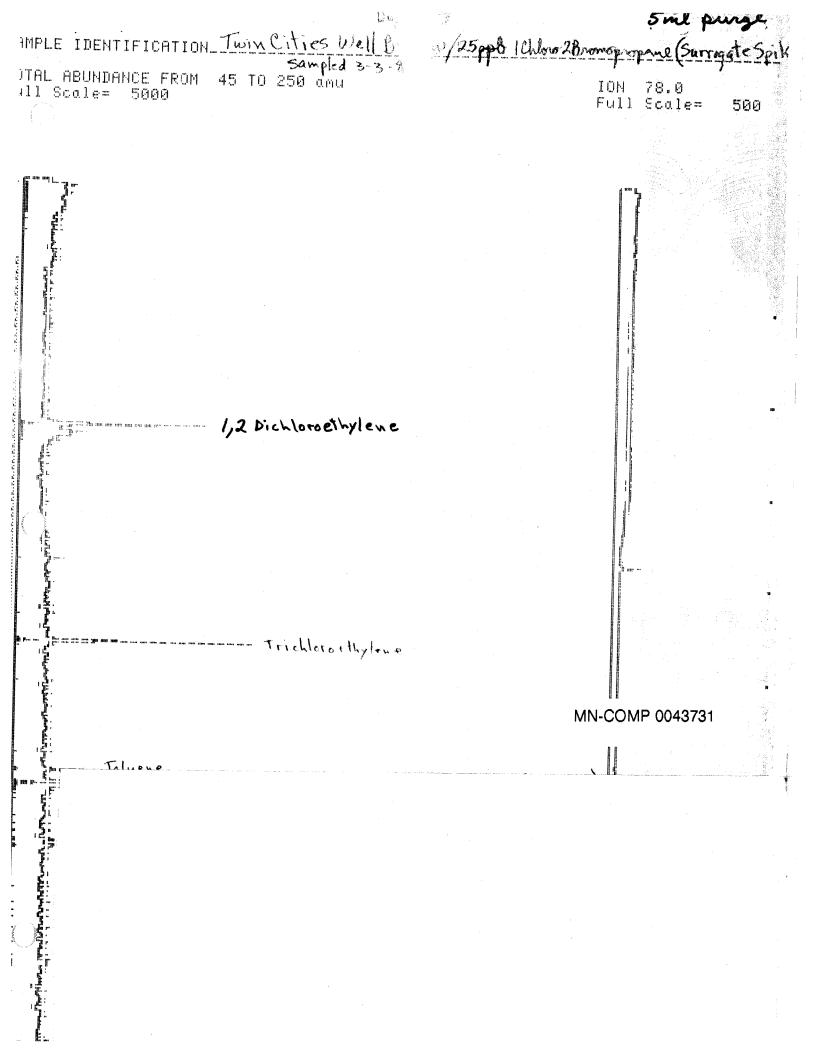
wis involution

JTAL ABUNDANCE FROM 35 TO 250 amu

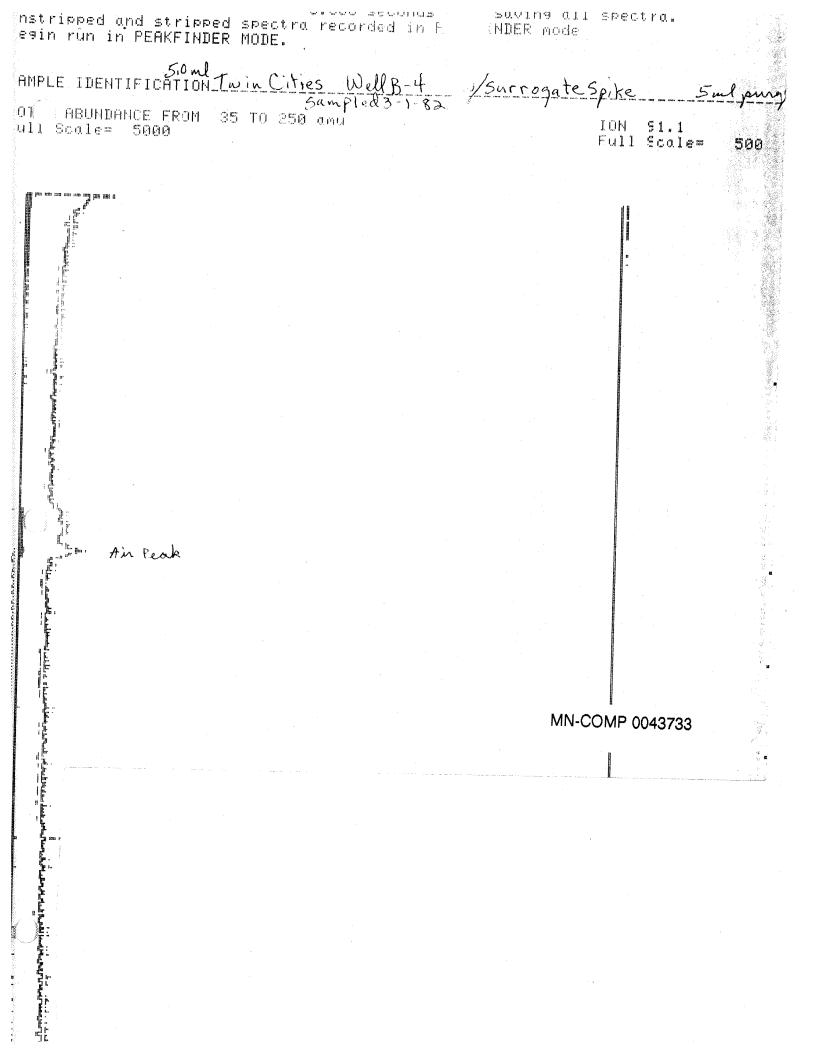
==== Methylene Chloride

Heling and


Bing Blank Wsurrogetespi


ION S1.1 Full Scale=

500


pr

2 m





instripped and stripped spectra recorded in PEAKFINDER mode legin run in PEAKFINDER MODE.  $D_{\rm applies}$  fr vynus wnen Savins all spe Sulpinge AMPLE IDENTIFICATION 5. Onl Twin Cities B-3 wespet 1ellers 2 Propage 0 ABUNDANCE FROM 45 TO 250 amu ION 78.0 Full Scale= 500 Failta Railta Bailta MN-COMP 0043732 Ē



Standardization VCA Stal 3-12-82 - 15 Cal each 1,2 Dichlor rethylene, Trichloroethyling, Toluene + Xylems in the mes Methaust incurtations and peck areas listed below. Concentration inventration in Major ions of interest Peak Areq under compressed in Mathamil 5. inl H20 purge D & Ton O curve 21,21 - Lossethylene 1.265mg/ml 50.6 ppt 95.90 60.95 98.0 2824 richementhylene 1.4556mg/ml 58,2 ppb 129,85 132,0 95,0 6274 Tolume 0.86694 mg/ml 34.7, 206 91.05 92.0 65.0 9499 Xylines (Sismess) C. 8685mg/ml. 34.74 ppb 106 91.05 78.0 4120 bro 26 may spare (Surgets 0. 2 mg/ml ~ 25 ppt 77 79 49 2121 nalytical Data - analyzed on 3/9/32 compound pA =100 711 Well B-3 unit B-4 WellB-2. Willinogato <100 10°C 2 Dichlowethylen Conc <2 ppt 12.7 ppt <2 ppt PA 390 <100 393 216 Totuene Conc 1.4 0.8 /.4MN-COMP 0043734< 100</td>< 100</td> PA 1 < 100 <100 <100 (ylenes (3 isomers) conc <1 <1 <1 <1 <1 l'étier VOA compounds were not détected « Rume for companies FA 2254 2073 2044 page 52 002B comopropanitionogate) Conc. ~27 ~24 ~24 tandardization and concentration calculations were done using i ary ion O peak areas and known standard concentrations. Date Date 3-12-82 lessed a Understood by me, Invented by Recorded by T. Geyes

Project No.\_\_\_\_\_ Book No.\_\_\_2 THE Twin Cities Groundwater & VOAs ege No.. Data - Duplicate Runs for Samples plus Blanks For standards values and tabulation see page 52, this bo - Samples for Welle B-2 and B-3 were rerun on 3/17/82 Samples for Welle B-1, B-4, Field Blank & Casing Blank were run 4/12/8 Duplicate Duplicate Duplicate Duplicate Duplicate PVC Blank PVC Blank PVC Blank Field Compounds <u>Weurroyate Weurroyate Weurroyate Weurroyate (Weurroyate Weurroyate Weur</u> 12 Dichloroethylene conc <2 17.1 <2 307 PA 609 <100 <100 <100 <100 <100 <100 Trichlorsethyling Conc 2.6 5-1 <2 <2 <2 < Q <2< 2PA 515 274 <100 < 10C 257 <100 9.31 97: Toluene conc. 210 < | 1-0 < 11,0 < 3.7 3.9 PA < 100 <100 <100 <100 <160 < 10 C 133 230 X ylenes conc. <1 < |  $\leq |$ <1 $\leq |$ < |~ 1  $\leq 1$ PAI 3103 4660 4588 3234 4528 3648 382 Chlorod Bromopropan (Sarrozt) Conc Ailother VOA compounds where Less than Detection Limit, see page 52 MEK and MIBK abor less than Detection Limit " My 52 Except Methylene Chloride (see below)

Methylene Chloride Conc <1 <1 <1 <1 <1 <1 <1 750 667 6.0 6.0

MN-COMP 0043735

To Fag. ... Date 11-15-82 Date Invented by

()

| 2003# 1949. <u>×</u> | IIILE I un unes broundwales VUP 5 |
|----------------------|-----------------------------------|
|                      | THE TWO CLUES Groundwales VOA 5   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>≁ IIILE</u>                                                                                                   | 1 mm u                                                                                                                                                                                                                              | nes bi      | roundwates | VUA S          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------------|
| n Page No. Haing this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k coated DB-                                                                                                     | -5 Fused                                                                                                                                                                                                                            | silica cap  | alla y col | and the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | icon purgett                                                                                                     | rap syst                                                                                                                                                                                                                            | em with '   | and pur    | e volume       |
| Friority Iollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentration                                                                                                    | Standard                                                                                                                                                                                                                            | Primary Ion | Peak Area  | Detection      |
| VOA compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Standard (ug /2)                                                                                              | Peak Area                                                                                                                                                                                                                           | of Interest | Threshold  | Limit (mg/1)   |
| Purgables A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | n - Angeland - Angeland<br>Angeland - Angeland - An |             |            |                |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                               | 2210                                                                                                                                                                                                                                | 49          | 100        | 0,9 (<1)       |
| 1,1 Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second second second                                                                                     | 504                                                                                                                                                                                                                                 | 96          |            | 4,0 (<5)       |
| , 1 Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 2114                                                                                                                                                                                                                                | 63          |            | 0.9 (<1)       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | 2122                                                                                                                                                                                                                                | 83          |            | 0.9 (<1)       |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second | 883                                                                                                                                                                                                                                 | 117         |            | 2,3 (<5)       |
| 1,2 Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 732                                                                                                                                                                                                                                 | 63          |            | 2,7 (45)       |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 2390                                                                                                                                                                                                                                | 129,95      |            | 1.4 (~2)       |
| 1,2 Trichbroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 505                                                                                                                                                                                                                                 | 99          |            | 4.0 (5)        |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 734                                                                                                                                                                                                                                 | 127         | 2<br>      | 2,7 (<5)       |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 1251                                                                                                                                                                                                                                | 165.8       |            | 1.6 (2)        |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 3689                                                                                                                                                                                                                                | 112         |            | 0.5 (<1)       |
| Purgables B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                     |             |            | -              |
| 1,2 Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 1098                                                                                                                                                                                                                                | 96          |            | 1,8 (<2)       |
| 1,2 Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 1647                                                                                                                                                                                                                                | 62          |            | 1.2 (2)        |
| 1.1 Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 1102                                                                                                                                                                                                                                | 97          |            | 1.8 (<2)       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * - <b></b>                                                                                                      | 1340                                                                                                                                                                                                                                | 83          |            | 1.5 (42)       |
| rome 1,3 Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ********                                                                                                         | 29.59                                                                                                                                                                                                                               | 75          |            | C.7 (<1)       |
| A 1,3 Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | 1303                                                                                                                                                                                                                                | 75          |            | 1.5 (2)        |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  | 4500                                                                                                                                                                                                                                | 78          |            | 0.4 (~1)       |
| 1, 2, 2 Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  | 491                                                                                                                                                                                                                                 | 173         |            | 4.1 (<5)       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 1215                                                                                                                                                                                                                                | 83          |            | 1.6 (2)        |
| Ethyl Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 5032                                                                                                                                                                                                                                | 91,05       |            | a4 (<1)        |
| Puraables C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | 5876                                                                                                                                                                                                                                | 91.05       |            | 0,3 (<1)       |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 1409                                                                                                                                                                                                                                |             |            |                |
| )ichlorodiflupromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 1089                                                                                                                                                                                                                                | 50          |            | 1.8 (2)        |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  | 714                                                                                                                                                                                                                                 | 85          |            | 2.8 (45)       |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | 200<br>897                                                                                                                                                                                                                          | 94          |            | 10.0 (<10)     |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  | 896                                                                                                                                                                                                                                 | 62          |            | 2,2 (5)        |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                     | ΨŢ          |            | 2.2 (25)       |
| lethy/ Isobuty/ Ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128                                                                                                              | 3208                                                                                                                                                                                                                                | 58          |            | 01 GN          |
| 1ª x Ethyl Ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129                                                                                                              | 426                                                                                                                                                                                                                                 | 58          |            | 0.6 (<1)       |
| Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                               | 4968                                                                                                                                                                                                                                | 72<br>91.05 |            | 4,7 (~5)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n na sana ana ana ana ana ana ana ana an                                                                         |                                                                                                                                                                                                                                     | GUIL        |            | 0.4 (<1)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                     |             | MN-COI     | MP 0043736     |
| Alexandra and a second and a | Record                                                                                                           | led by Tom                                                                                                                                                                                                                          | Frever      | 4-15-8:    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                     |             |            |                |

Twin Cities Assembly Plant Groundwater Monitoring Wells Survey

6)

December 1, 1982



MN-COMP 0043737

Stationary Source Environmental Control Office Environmental and Safety Engineering Staff

| DISPOSE of Copies<br>(Black Stamped) by:   |      |  |
|--------------------------------------------|------|--|
| RETAIN Record Copy<br>(Red Stamped) Until: |      |  |
| Schedule Number:                           | 11.3 |  |

Twin Cities Assembly Plant Groundwater Monitoring Wells Survey

December 1, 1982

Conducted By

Ford Motor Company Stationary Source Environmental Control Office Survey and Evaluation

Survey Conducted By:

E. D. Chraszer E. D. Chraszer

T. S. Geyer

Prepared By:

nasza

Concur: . M. Reinke, Manager



## MINN. POLLUTION CONTROL AGENCY

Ford Motor Company Environmental and Safety Engineering Staff

Mr. Douglass N. Day Minnesota Pollution Control Agency Regulatory Compliance Section Solid and Hazardous Waste Division 1935 West County Road B2 Roseville, MN 55113 One Parklane Boulevard Dearborn, Michigan 48126

February 11, 1983

Subject: Twin Cities Assembly Plant Waste Disposal Site--Groundwater Investigation

Dear Mr. Day:

Attached for your review is our final report covering the groundwater and Mississippi River samplings performed December 1, 1982 in the vicinity of the inactive waste disposal site at the Twin Cities Assembly Plant.

The results of groundwater elevation measurements confirm our earlier contention of a westerly groundwater flow to the Mississippi River. Accordingly, both Wells B1 and B5 can be considered upgradient wells, unaffected by the disposal site. The similarity of groundwater elevation with the Mississippi River also confirms a hydraulic connection between the two. Thus any contribution of the disposal site would undoubtedly flow into the River.

Dissolved metals in both the groundwaters and River were well below U.S. EPA Interim Drinking Water Standards. Only trace levels of five organics were detected in the groundwaters, three of which were also detected in the River upstream of the disposal site. 1,2 Dichloroethylene was detected in downgradient wells B2 and B4 at concentrations of 21 ugm/l and 8 ugm/l respectively, however none was detected in any River water samples.

In their February 26, 1982 Hydrogeologic Engineering Evaluation, Soils Testing Services estimated the groundwater flow past the disposal site to be approximately 15,000 gallons per day. Recent groundwater elevational data supports the hydraulic gradient used in their estimate. On this basis, and an estimated River flow of  $6.5 \times 10^9$  gallons per day at this location, a groundwater dilution factor of  $4.3 \times 10^5$  would be achieved. Thus the trace levels of 1,2 dichloroethylene detected could not present a problem to any potential user.

These findings, establish that the disposal site is not adversely affecting any water supplies and no further investigations of this site is warranted.

Very truly yours, 1 Kente

J.M. Reinke, Manager Survey and Evaluation Stationary Source Environmental Control Office

jb Attachment cc: R.M.Major

## Twin Cities Assembly Plant Groundwater Monitoring Wells Survey December 1, 1982

## Table of Contents

## Subject

| Ι.   | Introduction                        | 1 |
|------|-------------------------------------|---|
| II.  | Site Description and Well Locations | 2 |
| III. |                                     | 4 |
| IV.  | Results                             | 6 |

## Appendices

| Α. | Sampling Procedures                  | 13 |
|----|--------------------------------------|----|
| Β. | Analytical Procedures                | 17 |
| С. | Field Data Sheets                    | 20 |
| D. | STS Consultants Well Drilling Report | 26 |

## List of Tables

| 1. | Summary of Results          | • |   |   |   |  |  |  |  |  | • |   | 5  |
|----|-----------------------------|---|---|---|---|--|--|--|--|--|---|---|----|
| 2. | Well Casing Elevations      |   | • |   |   |  |  |  |  |  |   | 3 | 6  |
| 3. | Groundwater Level Data      |   |   |   |   |  |  |  |  |  |   |   | 7  |
| 4. | River Sampling Results      |   |   |   |   |  |  |  |  |  |   |   | 10 |
| 5. | Groundwater Metals Results. |   |   |   |   |  |  |  |  |  |   |   | 11 |
| 6. | Groundwater Organic Results |   | • | • |   |  |  |  |  |  |   |   | 12 |
| 7. | Well Data                   |   |   |   | • |  |  |  |  |  |   |   | 15 |

## List of Figures

| 1. | Site and Well | Location. | •   | • • | • |      |      |    |   |   | • |  |  |  | 3 |
|----|---------------|-----------|-----|-----|---|------|------|----|---|---|---|--|--|--|---|
| 2. | Groundwater E | levations | and | F1c | W | Dire | ecti | on | • | • |   |  |  |  | 8 |

#### Introduction

Ι.

As part of a continuing investigation into potential groundwater contamination resulting from an old inactive disposal site at the Twin Cities Plant, the Minnesota Pollution Control Agency (MPCA) requested Ford Motor Company to install an additional groundwater well (B5) to be monitored in conjunction with the four wells currently in place. The additional well location was approved by the MPCA prior to installation. In addition, samples and elevation data of the Mississippi River were also obtained for informational purposes.

On December 1, 1982 representatives from Ford's Stationary Source Environmental Control Office (SSECO) conducted a sampling program of the groundwater in the wells. Mr. Douglas Day of the MPCA was present during the sampling to review the procedures used and to obtain split samples. As in the first survey on March 3, 1982, the parameters selected for analysis were based on a joint agreement between Ford and the MPCA and included:

. USEPA volatile priority pollutants

. Xylenes

. Methylethylketone

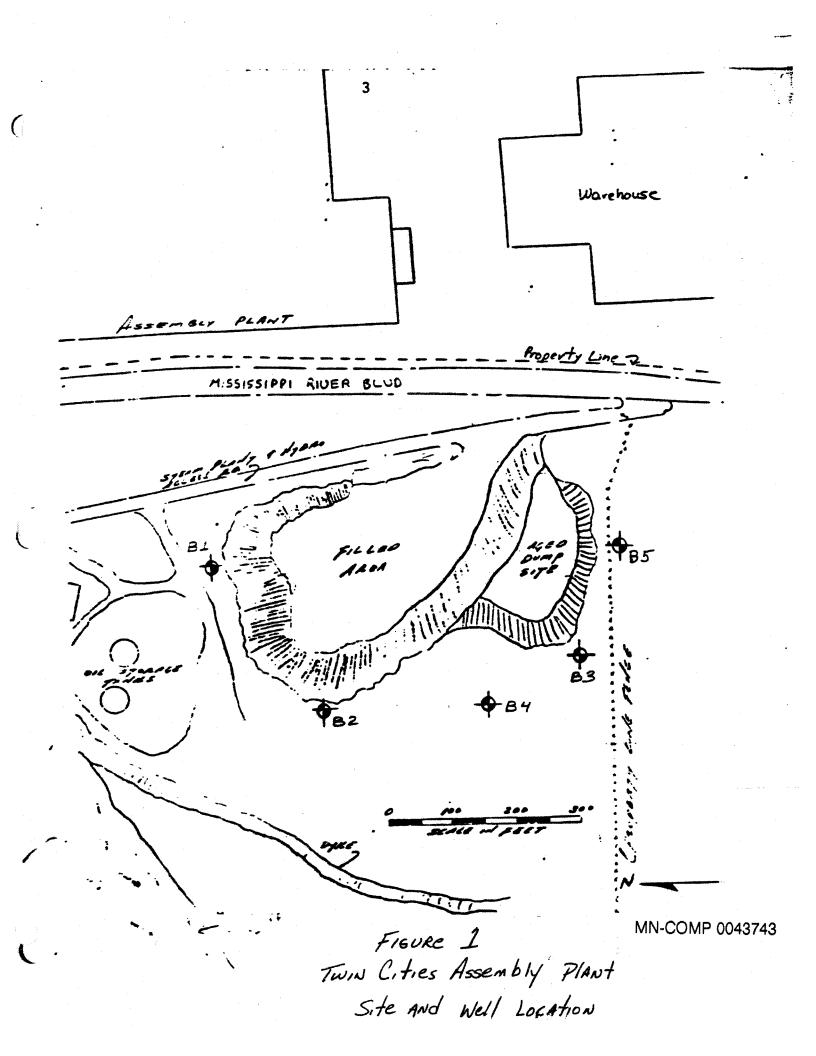
. Methylisobutylketone

. pH

Specific conductivity

Dissolved heavy metals (Cd,Cr,Pb,Cn,Ni,Zn)

1


#### II. Site Description and Well Locations

The disposal site was used by the plant to dispose of construction rubble, paint sludges and old paints and solvents. It has not been used since 1965. For a thorough description of the plant site, refer to the report dated March 3, 1982.

Figure 1 shows the location of the original 4 monitoring wells and the location of the recently installed 5th well. Well B5 was installed on November 30, 1982. The well casing is 2" schedule 80 PVC pipe with the lower 10' of casing slotted and wrapped with Miarafi 140S fabric. Detailed information on the procedures used for installing the well and the well boring log can be obtained from the report of Soil Testing Services of Minnesota dated December 14, 1982 contained in Appendix D.

## MN-COMP 0043742

2



III. Summary

A summary of the results from the well and river sampling appears in Table I. On the basis of static water level measurements, Wells B1 and B5 should be considered upgradient wells. These wells appear to be unaffected by the disposal site while Wells B2, B3 and B4 are downgradient of the disposal site.

As indicated by the data, metals concentrations in the groundwater from the wells and the samples from the river are consistently low, significantly below USEPA Interim Drinking Water Standards. Only trace levels of five volatile organic compounds were detected in the wells, three of which were also detected in the river both upstream and downstream of the site.

#### 4

## Table 1

## Groundwater Analysis Summary December 1, 1982

|                                                                                                       |                                                                              |                                                                        |                                                                          | Well                                                                    |                                                                         |                                                                          |                                                                           | River                                                                    |                                    |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|
| Dissolved Metals                                                                                      |                                                                              | B1                                                                     | B2                                                                       | B3                                                                      | B4                                                                      | B5                                                                       | R11                                                                       | R21                                                                      | R31                                |
| Copper<br>Cadmium<br>Zinc<br>Nickel<br>Chromium<br>Lead<br>pH<br>Specific Conductivity<br>Temperature | mg/l<br>mg/l<br>mg/l<br>mg/l<br>mg/l<br>Units<br>Umhos/cm<br><sup>O</sup> F. | <0.005<br>0.003<br><0.05<br>0.06<br><0.05<br>0.005<br>7.1<br>982<br>47 | <0.005<br>0.003<br><0.05<br><0.02<br><0.05<br>0.005<br>8.6<br>1210<br>51 | <pre>&lt;0.005 0.003 &lt;0.05 &lt;0.02 &lt;0.05 0.004 9.0 1260 52</pre> | <0.005<br>0.005<br>0.06<br><0.02<br><0.05<br>0.006<br>8.2<br>1580<br>53 | <0.005<br><0.001<br><0.05<br><0.02<br><0.05<br>0.003<br>8.4<br>942<br>51 | <0.005<br><0.001<br><0.05<br><0.02<br><0.05<br><0.002<br>8.5<br>377<br>34 | <0.005<br>0.001<br><0.05<br><0.02<br><0.05<br><0.002<br>8.6<br>380<br>33 | <0.005<br><0.05<br><0.05<br><0.002 |
| Volatile Organics Detect                                                                              | ced                                                                          |                                                                        |                                                                          |                                                                         |                                                                         |                                                                          |                                                                           |                                                                          |                                    |
| 1,2-Dichloroethylene<br>Benzene<br>Toluene<br>Chlorobenzene<br>Xylene(3 isomers)                      | ן/מע<br>ו/מע<br>ו/מע<br>ו/מע<br>ו/מע                                         | ND<br><1<br>(2.1)<br>ND<br><1                                          | 22.0<br><1<br><1<br>ND<br><1                                             | <pre>&lt; 2 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1</pre>             | 6.7<br><1<br><1<br><1<br><1<br><1<br><1<br><1                           | ND<br><1<br><1<br>ND<br><1                                               | ND<br><1<br>(3)<br>ND<br><1                                               | ND<br><1<br><1<br>ND<br><1                                               | ND<br><1<br><1<br>ND<br><1         |
| Note 1:                                                                                               |                                                                              |                                                                        |                                                                          |                                                                         |                                                                         | 0.                                                                       | veraged                                                                   | fusit                                                                    | Sumplia                            |

R1--Mississippi River upstream of Ford Power Plant. R2--Mississippi River near southern property boundary. R3--Mississippi River in park approx. 200 yds. south of Ford property. At the time of Well B5 installation, the PVC casings of all wells were resurveyed by Soil Testing Services. This information was used to determine if any settling of well casings had occurred. The survey was completed on December 1, 1982. Static head measurements taken on December 1, in conjunction with updated well elevations, now provide a clearer picture of groundwater flow direction. Listed below are both the new and original casing elevations.

#### Table 2

#### Well Casing Elevations

|                                 | January 1982                         | December 1982                                  |
|---------------------------------|--------------------------------------|------------------------------------------------|
| Well B1<br>B2<br>B3<br>B4<br>B5 | 730.52<br>718.96<br>704.85<br>708.63 | 730.49<br>718.75<br>704.67<br>708.48<br>703.81 |
| *BM-1<br>*BM-2                  |                                      | 691.75<br>691.81                               |
| *Lath                           |                                      | 698.57                                         |

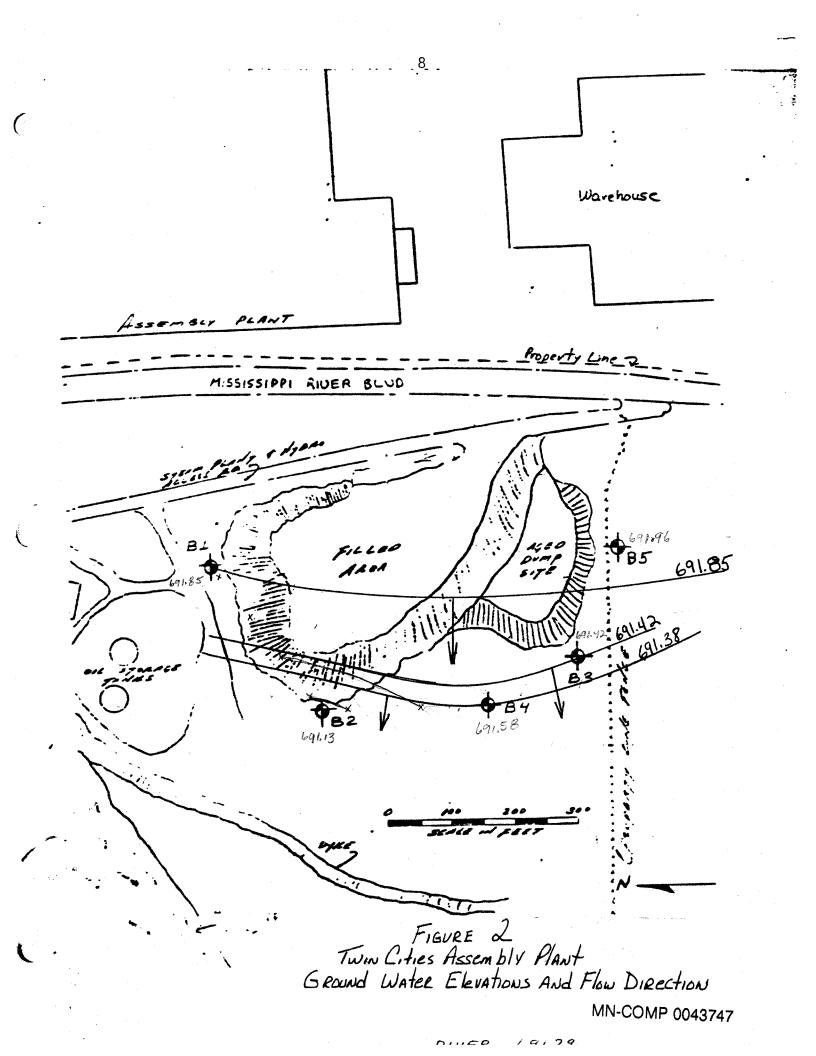
\*BM-1 In river approximately 20' from southern fence line. \*BM-2 In river approximately 50' north of BM-1. \*Lath On river bank near BM-2.

Additionally, three locations were established in and along the river to monitor river elevations. STS installed a lath on the river bank and two metal benchmark stakes in the river. The site plan in the attached STS report illustrates the location of the new benchmarks.

IV. <u>Results</u> (Cont.)

Listed below are the static water levels as measured on December 1, 1982.

#### Table 3


#### Groundwater Level Data

|                            | Static Water Levels                            |
|----------------------------|------------------------------------------------|
| Well No.                   | 12/1/82                                        |
| B1<br>B2<br>B3<br>B4<br>B5 | 691.85<br>691.13<br>691.42<br>691.58<br>691.96 |
| River                      | 051.50                                         |
| BM-1                       | 691.42                                         |

Based on the groundwater elevations, the flow appears to be moving westerly toward the river as illustrated in Figure 2. This direction supports our original contention that Well B1 is an upgradient well and, in addition, confirms that Well B5 is likewise an upgradient well.

The river elevation was determined at 9:00 am on December 1, (691.21) and at 2:15 pm (691.42). Although the elevation increased by .21 the water level in Well B4 showed no appreciable change. There may be a delay, however, associated with correlating river and well elevations which could not be determined during this survey.

On December 1, 1982 SSECO collected samples of Mississippi River water in order to analytically compare river water to well water. Samples were collected upstream of the Ford powerplant and downstream near the southern boundary of Ford property and approximately 200 yards



IV. <u>Results</u> (Cont.)

south of the property, in the park. The results are shown in Table 4. Only trace levels of these organics were detected. Dissolved metals were all below detectable levels.

Specifications regarding the exact method of analysis with respect to metals and organics can be found in Appendix B together with the detection levels associated with each procedure.

The results of the dissolved metals analyses appear in Table 5.

Table 6 contains the results of analyses for the volatile organic compounds. As indicated, the samples were run in duplicate and the results show acceptable agreement.

9

## Table 4

## Twin Cities Assembly Plant River Sampling Results December 1, 1982

|                       | Units           | River<br>Upstream<br>of Power<br>Plant | River<br>Downstream<br>on Ford<br>Property | River<br>Downstream<br>in Park |
|-----------------------|-----------------|----------------------------------------|--------------------------------------------|--------------------------------|
| Dissolved Metals      |                 |                                        |                                            |                                |
| Copper                | mg/l            | <0.05                                  | <0.05                                      | <0.05                          |
| Cadmium               | mg/l            | <0.001                                 | 0.001                                      |                                |
| Zinc                  | mg71            | <0.05                                  | <0.05                                      | <0.05                          |
| Nickel                | mg/1            | <0.02                                  | <0.02                                      |                                |
| Chromium              | mg/l            | <0.05                                  | <0.05                                      | <0.05                          |
| Lead                  | mg/l            | <0.002                                 | <0.002                                     | <0.002                         |
| pH                    | units           | 8.5                                    | 8.6                                        |                                |
| Specific Conductivity | umhos/cm        | 377                                    | 380                                        |                                |
| Temperature           | <sup>O</sup> F. | 34                                     | 33                                         |                                |
| Volatile Organics     |                 |                                        |                                            |                                |
| 1,2-Dichloroethylene  | ן/מע            | ND                                     | ND                                         | ND                             |
| Benzene               | ו/מר            | ∠1                                     | < 1                                        | <1                             |
| Toluene               | ו/מר            | 3.0                                    | < 1                                        | <1                             |
| Chlorobenzene         | ו/מר            | ND                                     | ND                                         | ND                             |
| Xylene                | ו/מר            | ∠1                                     | < 1                                        | <1                             |

1

MN-COMP 0043749

10

| Table 5 | e 5 |
|---------|-----|
|---------|-----|

| Twin Cities | Assembly Plant   |
|-------------|------------------|
| Groundwater | Analysis Summary |
| Dissolved   | Metals Results   |

| Dissolved Metals      | Units    | <u>B1</u>   | <u>B2</u> | <u>B3</u> | <u>B4</u> | <u>B5</u> |
|-----------------------|----------|-------------|-----------|-----------|-----------|-----------|
| Copper                | mg/1     | < 0.05      | <0.05     | <0.05     | <0.05     | < 0.05    |
| Cadmium               | mg/1     | 0.003       | 0.003     | 0.003     | 0.005     | < 0.001   |
| Zinc                  | mg/1     | < 0.05      | <0.05     | <0.05     | 0.06      | <0.05     |
| Nickel                | mg/1     | 0.06        | < 0.02    | < 0.02    | <0.02     | <0.02     |
| Chromium              | mg/1     | < 0.05      | < 0.05    | <0.05     | <0.05     | < 0.05    |
| Lead                  | mg/1     | <0.005      | 0.005     | 0.004     | 0.006     | 0.003     |
| рH                    | Units    | 7.1         | 8.6       | 9.0       | 8.2       | 8.4       |
| Specific Conductivity | Umhos/cm | <b>9</b> 82 | 1210      | 1260      | 1580      | 942       |
| Temperature           | °F.      | 47          | 51        | 52        | 53        | 51        |

| -   |       |   | ~ |
|-----|-------|---|---|
| 12  | bl    | Ω | 6 |
| i u | $\nu$ | C | 0 |

|                      | <u>Units</u> | <u>B1</u> | B1<br>Duplicate | <u>B2</u> | <u>B2</u> | <u>B3</u> | <u>B3</u> | <u>B4</u> | <u>B4</u> | <u>B5</u> | <u>B5</u> |
|----------------------|--------------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1,2-Dichloroethylene | 1/وىر        | ND        | ND              | 21.3      | 22.6      | ND        | <2        | 8.1       | 5.3       | ND        | ND        |
| Benzene              | 1/gu         | <1        | < 1             | <1        | < 1       | <1        | <1        | <1        | <1        | <1        | <1        |
| Toluene              | ug/1         | 1.9       | 2.2             | 1.1       | <1        | < 1       | 1.6       | 0.6       | <0.1      | 0.6       | 0.5       |
| Chlorobenzene        | ມg/1         | ND        | ND              | ND        | ND        | <1        | <1        | <1        | <1        | ND        | ND        |
| Xylene (3 isomers)   | Jg/1         | <1        | <1              | <1        | <1        | <1        | <1        | <1        | <1        | <1        | <1        |

Appendix A

Sampling Procedures

#### Appendix A

#### Sampling Procedures

Prior to sampling, static water level determinations were made. Based on the static and the depth of each well, the volumes of water in each well casing was calculated. Each well was then cleared to remove three times the calculated water volume. Wells B1, B2 and B5 were cleared by manual methods utilizing a stainless steel bailer. Wells B3 and B4 were not as deep and therefore could be cleared with a peristalic pump and Tygon tubing suction line. Once clearing was completed, the static water level was again determined and the samples were withdrawn from the wells with a stainless steel bailer. Table 7 represents some of the pertinent well data as it relates to the monitoring survey.

In order to avoid either cross contamination or contamination from extraneous sources, the stainless steel bailer was subjected to a thorough cleaning before being immersed in a well. The bailer was first rinsed with organic free water followed by a methanol rinse and finally a second rinse with organic free water. Also, at each well a new section of braided nylon line was attached to the bailer for sampling purposes.

The wells were sampled in the following order: Wells B3, B4, B2, B1, and B5. Well B3 was sampled first since the first sampling indicated no detectable levels of trace organics. Samples for volatile priority pollutants plus xylenes, methylethyl ketone, and methylisobutyl ketone were collected by transferring some of the sample from the bailer to the individual volatile organic sampling vials. Care was taken to avoid MN-COMP 0043753

## Table 7

## Twin Cities Assembly Plant Survey of Groundwater Monitoring Wells December 1, 1982 Well Data

٦

| TimeElevationLevelDepthVolumeRemovedWell NumberSampled(ft)(ft)(ft)(liters)(liters) | <u>(ft)</u> |
|------------------------------------------------------------------------------------|-------------|
| B1 12:05 pm 730.49 38'7-3/4" 53'6½" 8 24                                           | 38'7"       |
| B2 11:45 am 718.75 27'7-7/16" 46'9" 10 30                                          | 27'6-3/4"   |
| B3 10:55 am 704.67 13'3" 27'3 <sup>1</sup> 2" 7.6 23                               | 13'2-5/8"   |
| <b>B4</b> 11:20 am 708.48 $17'1'_4"$ 30'10" 7.4 22                                 | 17'1"       |
| B5 12:40 pm 703.81 11'10¼" 24'8" 6.9 21                                            | 11'11"      |

MN-COMP 0043754

15

## Appendix A (Cont.)

both unnecessary agitation of the sample and air bubbles trapped in the sealed vial. Volatile samples were maintained at 4°C. until analysis. A second portion of the sample was filtered through a 0.45 micron filter on site and the filtrate acidified to pH2. This sample was analyzed for dissolved metals. PH, conductivity and temperature determinations were performed on site.

## Appendix B

#### Analytical Procedures

Temperature, pH and specific conductivity were determined on site using a Horiba Model U-7 water analyzer. Metals determinations were made using an Instrument Laboratory (IL) 151 atomic absorption spectrometer. Additionally, a Model 453 IL graphite furnace was employed for the determination of lead. Listed below are the detection limits:

Metals Detection Limits (mg/l)

| Copper   | 0.05  |
|----------|-------|
| Lead     | 0.002 |
| Cadmium  | 0.001 |
| Zinc     | 0.05  |
| Nickel   | 0.02  |
| Chromium | 0.05  |

The low detection limits for nickel and cadmium were achieved on the

flame unit by concentrating the sample by a factor of 10.

#### Appendix B (Cont.)

Volatile organic concentrations were measured utilizing a Hewlett Packard HP 5992 GC/MS, incorporating a thirty meter, fused Silica, thick coat, DB-5 capillary column. The GC/MS was used in conjunction with an Envirochem Unicon purge and trap device and a Hewlett Packard dual floppy disc data storage system. The detection limits listed below were determined by the lower peak area threshold limit, which is set by the analytical program used.

| Priority Pollutant    | Detection             | Priority Pollutant        | Detection             |
|-----------------------|-----------------------|---------------------------|-----------------------|
| VOA Compound          | <pre>Limit(ppb)</pre> | VOA Compound              | <pre>Limit(ppb)</pre> |
|                       |                       |                           |                       |
| Purgeables A          |                       | Purgeables B              |                       |
| Methylene Chloride    | < 1                   | 1,2 Dichloroethylene      | < 2                   |
| 1,1 Dichloroethylene  | < 5                   | 1.2 Dichloroethane        | < 2                   |
| 1,1 Dichloroethane    | < 1                   | 1,1,1 Trichloroethane     | < 2                   |
| Chloroform            | < 1                   | Bromodichloromethane      | < 2                   |
| Carbon tetrachloride  | < 5                   | trans 1,3 Dichloropropene | < 2                   |
| 1,2 Dichloropropane   | < 5                   | cis 1,3 Dichloropropene   | < 2                   |
| Trichloroethylene     | < 2                   | Benzene                   | < 1                   |
| 1,1,2 Trichloroethane | < 5                   | Bromoform                 | < 5                   |
| Dibromochloromethane  | < 5                   | 1,1,2,2 Tetrachloroethane | < 2                   |
| Tetrachloroethylene   | < 2                   | Toluene                   | < ]                   |
| Chlorobenzene         | < 1                   | Ethyl Benzene             | < 1                   |
| Priority              | / Pollutant           | Detection                 |                       |

Limit(ppb)

#### Purgeables C

**VOA** Compound

| Chloromethane           | < 2  |
|-------------------------|------|
| Dichlorodifluoromethane | < 5  |
| Bromomethane            | < 10 |
| Vinyl Chloride          | < 5  |
| Chloroethane            | < 5  |
| Others                  |      |
| Methyl Isobutyl Ketone  | < 1  |
| Methyl Ethyl Ketone     | < 5  |
| Xylenes                 | < 1  |
| -                       |      |

## Appendix C

## Field Data Sheets

į

| D]ant  | Twin Cities                               | Reason for Sampli                      | n langed a              | 4 1 10          |
|--------|-------------------------------------------|----------------------------------------|-------------------------|-----------------|
|        | 12-1-82                                   | Person Sampling _                      |                         |                 |
|        | B-1                                       | Laboratory Handlin                     | ,                       |                 |
| HCII # |                                           | Analysis S.                            | -                       |                 |
|        |                                           |                                        |                         |                 |
| Ι.     | Well Data USGS Coordinates                |                                        |                         |                 |
|        | Casing Elevation                          | Screen Mater                           | ial <u>PVC</u>          |                 |
|        | Casing Material                           | Casing Diame                           | ter / 7/8 ''            |                 |
|        | Casing Depth <u>53'6'5" (642,5'</u>       | $\underline{\mathcal{D}}$ Static Water | Level <u>38' 734'</u>   | (463.75)        |
|        | Metal Gaurd Elevation None                | Well Volume                            | 8 Liters                |                 |
|        | Type of Well <u>Verticle</u>              | Location of                            | Well <u>North edge</u>  | OF bluff        |
|        | Up- or Downgradient                       | *****                                  |                         |                 |
| II.    | Well Clearing Data                        |                                        |                         |                 |
|        | Device Used <u>Stainkess steel bailed</u> | <u>e</u> Material of                   | Construction <u>sta</u> | inkess steel    |
|        | Volume of Water Removed                   | eps                                    |                         |                 |
| III.   | Sampling Data                             |                                        | z                       |                 |
|        | Significant Weather Conditions            | Ba                                     | rometric Pressure       |                 |
|        |                                           |                                        |                         |                 |
|        | ple Sample<br>Deters Equipment            | Container<br>and Volume                | Sample<br>Preservative  | Holding<br>Time |
| VOI    |                                           |                                        | Cool to 4°C             | · ·             |
|        |                                           | 250ml plastic                          | HNO3                    | 6 mas           |
|        |                                           |                                        |                         |                 |
| IV.    | Field Data                                |                                        |                         |                 |
|        | Well Volume ( 3.14 x .01639 x $r^2$ x     | (h) 3,14x.016394                       | (.879× 178,75=          | P Liters        |
|        | Analytical Results: Temperature           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |
| Note   | The trans so allow 30                     | 1711 Time                              |                         | - 0             |
| note   | es: Static before SAMPLING 38             | I TIME OF                              | SAMPING 12:05           | pm              |
|        |                                           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |
|        |                                           |                                        |                         |                 |

| Plant  | Twin Cities                                    | Reason for Sampli       | ng Required mor        | uitaeing    |
|--------|------------------------------------------------|-------------------------|------------------------|-------------|
| Date _ | 12-1-82                                        |                         | F.C. T.G.              |             |
| Well # | <u>B-2</u>                                     | Laboratory Handli       | J                      | ,           |
|        |                                                | Analysis                | SECO                   |             |
| Ι.     | Well Data USGS Coordinates                     |                         |                        |             |
|        | Casing Elevation 718.75                        | Screen Mater            | ial PVC                |             |
|        | Casing Material PVC                            | Casing Diame            | ter 178                | 1           |
|        | Casing Depth                                   | Static Water            | Level 27'776"          | (331.44")*  |
|        | Metal Gaurd Elevation None                     |                         | 10 Liters              |             |
|        | Type of Well <u>Verticle</u>                   | Location of             | Well Northwest edge    | of bluff    |
|        | Up- or Downgradient                            |                         |                        |             |
| II.    |                                                |                         |                        |             |
|        | Device Used <u>Stanless steel ban</u>          | ler Material of         | Construction stan      | less steel  |
|        | Volume of Water Removed                        |                         |                        |             |
|        |                                                |                         |                        |             |
| III.   | Sampling Data                                  | -                       |                        |             |
|        | Significant Weather Conditions                 | Ва                      | rometric Pressure      |             |
|        | nple Sample<br>neters Equipment                | Container<br>and Volume | Sample<br>Preservative | Holding<br> |
| Voi    | 4                                              | VOA VIALS               | Cool to 4°             | 14 days     |
| Diss.  | metals                                         | 250 ml PlAstic          | HNO3                   | 6 Mos       |
|        |                                                | -                       | -                      |             |
| IV.    | Field Data                                     |                         |                        |             |
|        | Well Volume ( 3.14 x .01639 x r <sup>2</sup> x | x h ) 3.14x.01639x      | .879 X 229.56 = 10     | Liters      |
|        | Analytical Results: Temperature                |                         |                        |             |
|        |                                                |                         | -                      |             |
|        |                                                |                         |                        |             |
|        |                                                | -                       |                        |             |
| Note   | es: Static before sampling 27'6                | Hill Time of -          | matula dide            |             |
| Noce   | s. STATIC DEPURE Sampling 21 6                 | I TIME OF SH            | MIPTINY 11.45 AM       | 2           |
|        |                                                |                         |                        |             |
|        |                                                |                         |                        |             |
|        |                                                |                         |                        |             |
|        |                                                |                         |                        |             |
| *      |                                                |                         |                        |             |

i

| Plant  | Twy Cities                                                                      | Reason for Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing Required mo                        | NITORING        |
|--------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|
| Date _ | 12-1-82                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E.C. T.G                               |                 |
| Well # | <u> </u>                                                                        | Laboratory Handl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                      |                 |
|        |                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SECO                                   |                 |
| Ι.     | Well Data USGS Coordinates                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        | Casing Elevation <u>704.67</u>                                                  | Screen Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rial PVC                               |                 |
|        | Casing Material <u>PYC</u>                                                      | Casing Diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rial <u>PVC</u><br>eter <u>77</u> 7    | - · ·           |
|        | Casing Depth                                                                    | Static Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r Level <u>13'3'' (</u>                | (159") ·        |
|        | Metal Gaurd Elevation None                                                      | Well Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _7.6 Liters                            |                 |
|        | Type of Well <u>Verticle</u>                                                    | Location of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well South edge                        | of bluff        |
|        | Up- or Downgradient                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
| II.    | Well Clearing Data                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        | Device Used Peristalic Rump                                                     | Material o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f Construction <u>S</u> ./.            | ICON TUDING     |
|        | Volume of Water Removed                                                         | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | ,               |
| III.   | Sampling Data                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х<br>х                                 |                 |
|        | Significant Weather Conditions                                                  | Ва                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arometric Pressure                     |                 |
| -      |                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                 |
|        | ple Sample<br><u>eters Eq</u> uipment                                           | Container<br>and Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample<br>Preservative                 | Holding<br>Time |
|        | anno-shanganannan era sa kara sa sa kara sa | VOA VIAIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······································ | 14dAYS          |
|        | Metals                                                                          | 250 ml plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 6 MOS           |
| IV.    | Field Data                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        | Well Volume ( $3.14 \times .01639 \times r^2 \times$                            | h) 3,14x,0163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 × . 879 × 168,5 =                    | = 7.6 Liters    |
|        | Analytical Results: Temperature                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        |                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |
|        |                                                                                 | , and the second s |                                        |                 |
|        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
| Note   | s: Stalic before sampling 13'2'                                                 | \$8" Time of.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMAING 10:55                          | AM              |
|        |                                                                                 | nn 1999 - Tan 2000 an ann a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |
|        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |

| lant _   | Twin Cities                        | Reason for Sampli                        | ng <u>Required mor</u>  | UNTORING      |
|----------|------------------------------------|------------------------------------------|-------------------------|---------------|
| ate      | 12-1-82                            |                                          | E.C., T.G.              |               |
| ell #    | <u>B-4</u>                         | Laboratory Handli                        | ng                      |               |
|          |                                    | Analysis                                 | ECO                     |               |
| Ι.       | Well Data USGS Coordinates         |                                          |                         |               |
| *•       | Merr Bula 0505 coordinates         |                                          | <b>A</b> .              |               |
|          | Casing Elevation <u>708.48</u>     | Screen Mater                             | ial <u></u>             |               |
|          | Casing Material <u><u>PVC</u></u>  |                                          | ter <u>17/8</u> "       |               |
|          | Casing Depth <u>30'10" (370"</u> ) | Static Water                             | Level 17'14" (          | 205.25")      |
|          | Metal Gaurd Elevation <u>None</u>  | Well Volume                              | 7.4 Liters              |               |
|          | Type of Well <u>Verticle</u>       | Location of                              | Well Southwest edg      | e of bluff    |
|          | Up- or Downgradient                |                                          |                         |               |
| II.      | Well Clearing Data                 |                                          |                         |               |
|          | Device Used Peristalic Pump        | Material of                              | Construction <u>5//</u> | ON TUDING     |
|          | Volume of Water Removed $222$      |                                          |                         | ,             |
|          |                                    |                                          |                         |               |
| III.     | Sampling Data                      |                                          |                         |               |
|          | Significant Weather Conditions     | Ва                                       | rometric Pressure       |               |
| Sam      | ple Sample                         | Container                                | Sample                  | Holding       |
|          | eters Equipment                    | and Volume                               | Preservative            | Time          |
| VOA      |                                    | VOA VIALS                                | Cool to 4°C             | 14 days       |
| Diss , n | netals                             | •                                        | HNO3                    | /             |
|          | · ·                                |                                          |                         |               |
| IV.      | Field Data                         |                                          |                         |               |
| 11.      | Well Volume ( 3.14 x .01639 x r    | 2 v h ) zula nuzax                       | 070 × 11/2- 7           | 11. tope      |
|          | Analytical Results: Temperat       |                                          |                         |               |
|          | Analytical Results. Temperat       |                                          | conductivity <u>75</u>  | JU MICROhms/C |
|          |                                    |                                          |                         |               |
|          |                                    | an a |                         |               |
|          |                                    |                                          | ******                  |               |
| Notes    | s: <u>Static before sampling</u>   | 171" TIME OF S                           | Ampling 11:20 m         | <b>-</b>      |
|          |                                    |                                          | ·                       |               |
|          |                                    |                                          |                         |               |
| <u></u>  |                                    | <b></b>                                  |                         |               |
|          |                                    |                                          |                         |               |
|          |                                    |                                          |                         |               |
|          |                                    |                                          | MN-COMP 0043763         |               |

24

| Plant                          | Twin Cities                                                                                            | Reason for Sampli                                                                  | ng Recurred MON                                                                                                 | top. de      |
|--------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
|                                | 12-1-82                                                                                                | Reason for Sampling <u>Required MONITORING</u><br>Person Sampling <u>F.C., T.G</u> |                                                                                                                 |              |
|                                | <u> </u>                                                                                               | Laboratory Handling                                                                |                                                                                                                 |              |
|                                |                                                                                                        | Analysis 🔄 🥧                                                                       | SECO                                                                                                            |              |
| Ι.                             | Well Data USGS Coordinates                                                                             |                                                                                    |                                                                                                                 |              |
|                                | Casing Elevation                                                                                       | Screen Material                                                                    |                                                                                                                 |              |
|                                | Casing Material <u>PVC</u>                                                                             | Casing Diameter 17/2"                                                              |                                                                                                                 |              |
|                                | Casing Depth                                                                                           | Static Water Level <u>11'10'4" (142.25")</u>                                       |                                                                                                                 |              |
|                                | Metal Gaurd Elevation None                                                                             | Well Volume 6,9 Liters                                                             |                                                                                                                 |              |
|                                | Type of Well <u>Verticle</u>                                                                           | Location of Well South edge of bluff off peopeety                                  |                                                                                                                 |              |
|                                | Up- or Downgradient                                                                                    |                                                                                    |                                                                                                                 |              |
| II.                            | Well Clearing Data                                                                                     |                                                                                    |                                                                                                                 |              |
|                                | Device Used Stanless Steel baller                                                                      | Material of Construction <u>Stanuless steel</u>                                    |                                                                                                                 |              |
|                                | Volume of Water Removed                                                                                | RS                                                                                 |                                                                                                                 |              |
| III.                           | Sampling Data                                                                                          |                                                                                    |                                                                                                                 |              |
|                                | Significant Weather Conditions                                                                         | Barometric Pressure                                                                |                                                                                                                 |              |
|                                | ple Sample<br>eters Equipment                                                                          | Container<br>and Volume                                                            | Sample<br>Preservative                                                                                          | Holding<br>  |
| _Vor                           | ······································                                                                 | VOA VIALS                                                                          | Cool to 4°C                                                                                                     | 14 days      |
| Diss                           | metals                                                                                                 | 250 ml plastic                                                                     | HN03                                                                                                            | 6 mos        |
| IV.                            | <u>Field Data</u><br>Well Volume ( 3.14 x .01639 x r <sup>2</sup> x<br>Analytical Results: Temperature | (h) <u>3.14/x.0163</u>                                                             | 9×.879×153.75=                                                                                                  | 6.91.teps    |
|                                | Analytical Results: Temperature                                                                        | <u>51</u> <sup>2</sup> Ph <u>8.4</u>                                               | Conductivity 99                                                                                                 | 2 mxeohrs/cm |
|                                |                                                                                                        |                                                                                    |                                                                                                                 |              |
|                                |                                                                                                        |                                                                                    | and provident states of the |              |
| Note                           | s: Static before SAMpling 11                                                                           | 'Il' Time or                                                                       | -amplain 17:110                                                                                                 |              |
| 10000                          | 214 TIC DEPORE SHALPHING TI                                                                            | <u> </u>                                                                           | Milp/12.40                                                                                                      |              |
|                                |                                                                                                        |                                                                                    |                                                                                                                 |              |
|                                |                                                                                                        |                                                                                    |                                                                                                                 |              |
|                                |                                                                                                        | x                                                                                  |                                                                                                                 |              |
| aprilianti dalla dalla dalla d |                                                                                                        |                                                                                    |                                                                                                                 |              |

## Appendix D

# STS Consultants Well Drilling Report



STS Consultants Ltd. 2405 Annapolis Lane Minneapolis, Minnesota 55441 (612) 559-1900

December 14, 1982

Mr. David Cloutier Ford Motor Company Twin Cities Assembly Plant 966 S. Mississippi River Blvd. St. Paul, Minnesota 55101

#### STS Job No. 92776-B

1 23 65 1

RE: Installation of Monitoring Well B-5A at the Twin Cities Assembly Plant's Steam Plant.

Dear Mr. Cloutier:

In accordance with your Purchase Order No. 763889 dated October 25, 1982, we have completed the soil boring and monitoring well installation at location B-5A. We have also resurveyed the top of the 2 inch ID Schedule 80 PVC monitoring wells at locations B-1, B-2, B-3 and B-4. In addition, we have established three vertical control points near the bank of the Mississippi River west of the disposal site.

Three copies of this letter have been sent to the above address and carbon copies have been sent to the personnel designated below. The letter is accompanied by the Log of Boring No. B-5A, the Monitoring Well Construction Diagram for location B-5A, a site plan showing the new well location and new vertical control points along the bank of the Mississippi River, and a summary of the elevation survey completed November 30, 1982.

Ford Motor Company December 14, 1982 Page Two

If we can be of further assistance to you, please do not hesitate to contact us.

Yours very truly,

STS CONSULTANTS, LTD.

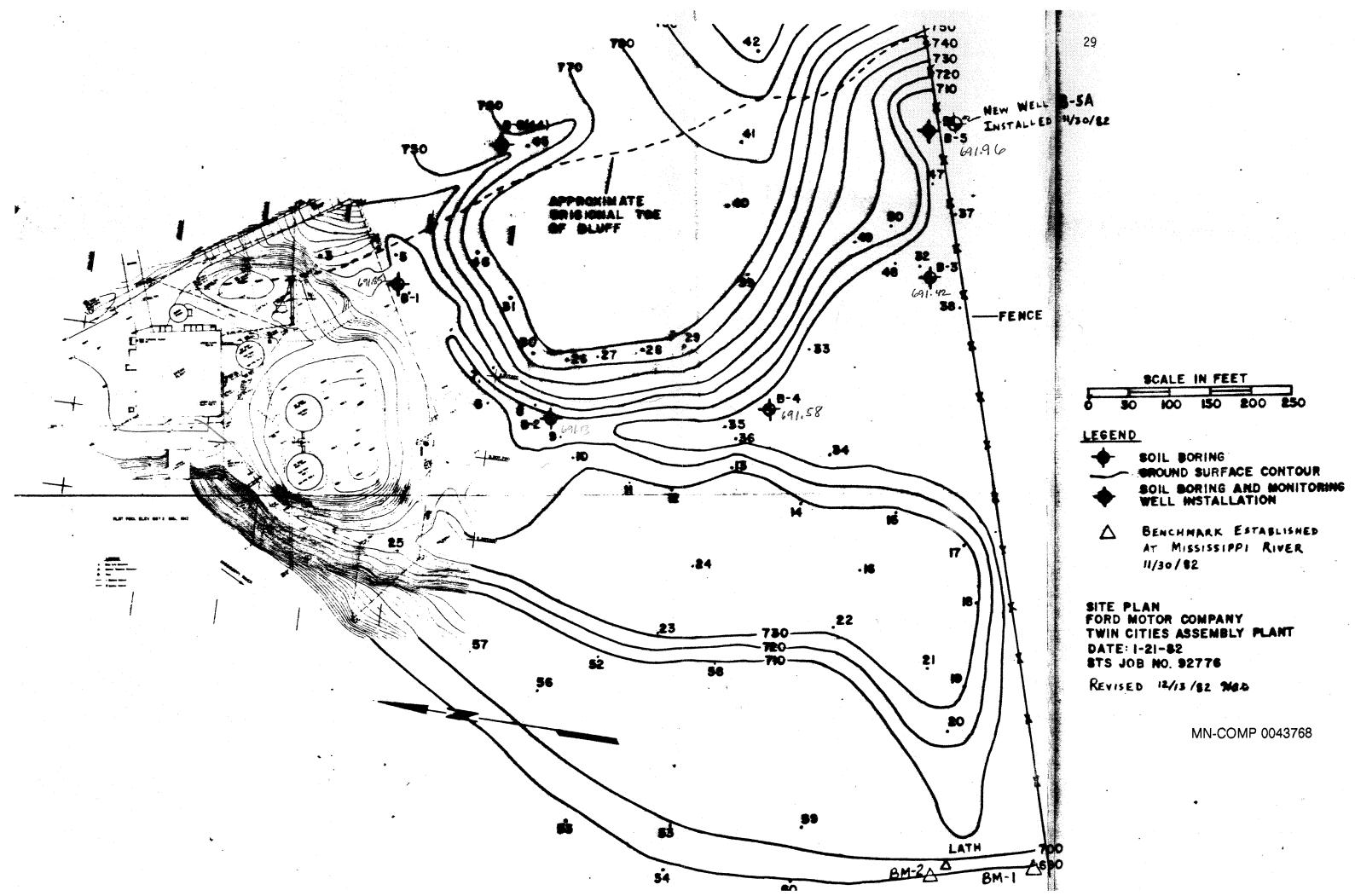
Have A. Sellick

Harvey Å. Gullicks, P.E. Project Engineer

Camma Grantos

James H. Overtoom, P.E. Principal Engineer

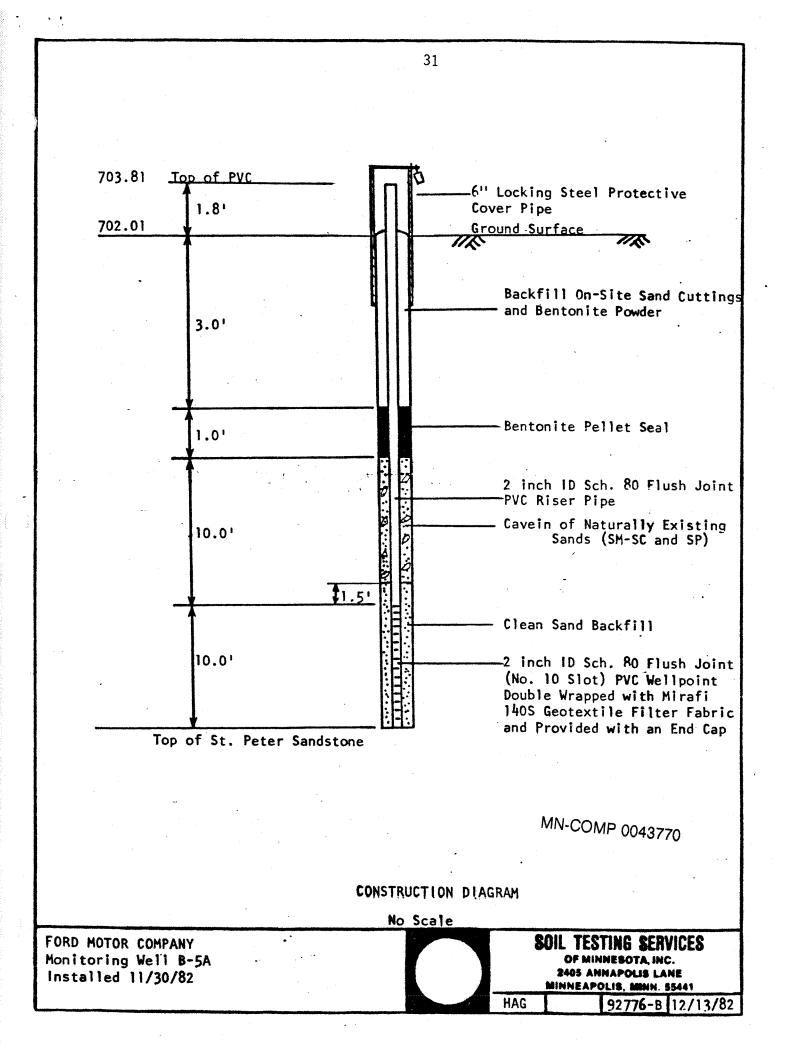
HAG/aec


Enclosures:

Site Plan Boring Log B-5A Well Construction Diagram B-5A Elevation Survey Results General Notes Unified Soil Classification System ASTM Specification D-1586

cc: Mr. Jim Reinke, Manager - Survey and Evaluation Stationary Source Environmental Control Office Ford Motor Company - Suite 628 Parkland Towers West Dearborn, Michigan 48126

Mr. A. M. Twilley Ford Motor Company Body and Assembly General Office P. O. Box 1586 - Room C-280 Dearborn, Michigan 48121


Mr. Nick Eliades Ford Motor Company Body and Assembly General Office P. O. Box 1586 Dearborn, Michigan 48121



|                    |                                                                         |                     |            |             |                   |                                  | 30                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|--------------------|-------------------------------------------------------------------------|---------------------|------------|-------------|-------------------|----------------------------------|------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------|---------|---------|
|                    |                                                                         |                     |            |             |                   | LOG OF BORI                      | NG NO.                                         | B-5                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |         |          |         |         |
| OWN                | OWNER ARCHITE                                                           |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ER             |         |          |         |         |
|                    | FORD MOTOR COMPANY, St. Paul, MN                                        |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| SITE               |                                                                         | in_l                | C I .      | ti          | es Assembly Pla   | nt                               | PROJECT                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| ļ                  | 966                                                                     | > <b>S</b>          | _          | Mĭ          | ssissippi Ŕiver   | Blvd.                            | Hydroge                                        | ologi                | and the second se |                |         |          |         |         |
|                    |                                                                         |                     |            |             |                   |                                  | 4                                              |                      | UNCON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FINED CO       | OMPRESS | VE STREE | NGTH TO | NS/FT.? |
| Z                  |                                                                         | Ľ,                  | DIST.      |             |                   |                                  |                                                | ¥.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 2       | 3 4      | 5       |         |
|                    | 0<br>V                                                                  | SAMPLE              |            |             | DESCRIPT          | ION OF MATERIAL                  |                                                | ¥.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STIC           |         | TER      | LIQ     | JID     |
| DEPTH<br>ELEVATION | SAMPLE                                                                  |                     | SAMPLE     | RECOVE      |                   |                                  |                                                | UNIT DRY<br>LBS./FT. | X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T %            |         | 'ENT %   | LIMI    |         |
|                    | SAM                                                                     | TVPE                | SAN        | REC         |                   |                                  |                                                | S_                   | STAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DARD "I        |         | TRATION  | (BLOWS) | /ਜ.)    |
| X                  | ٦."                                                                     |                     |            |             | SURFACE ELEVATION | 702                              |                                                |                      | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 2            | 0 3     | 9 40     | ) 5     | 0       |
|                    |                                                                         | <del>33</del><br>SS | Ħ          | Ш           | Topsoil - sil     | ty sand - (OL)                   |                                                |                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a              |         |          |         |         |
|                    |                                                                         | 33                  | Ш          | $\square$   |                   |                                  |                                                |                      | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0              |         |          | ·       |         |
|                    | 1                                                                       |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    | 1                                                                       |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          | ·       |         |
| 5.0                | 2                                                                       | ss                  | Ш          | П           |                   |                                  | м.<br>С. С. С |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 010            |         |          |         |         |
| <u> </u>           | -12                                                                     | 33                  | Ш          |             |                   | e sand, little                   |                                                |                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |         |          |         |         |
|                    | ゴ                                                                       | [                   |            |             |                   | to little cob<br>brown - moist   |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Λ              |         |          |         |         |
|                    | 1                                                                       |                     |            |             | dense - (SP)      | DIOWIT INOTSC                    | incu i un                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    |                                                                         |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| 10.0               | -3                                                                      | ss                  | Π          | Ш           | • .               |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\otimes^{15}$ |         |          |         |         |
|                    |                                                                         |                     | Ш          |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| <b></b>            | <u> </u>                                                                |                     |            |             | • · ·             |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    | _                                                                       | 55                  |            | Ħ           | Silty fine to     | coarse sand,                     | Come                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 &           | ļ       |          |         |         |
|                    |                                                                         | SS                  | 11         |             |                   | ace clay and c                   |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0            | 1       |          |         |         |
| 15.0               |                                                                         | ss                  | $\Pi$      | Π           | light brown t     | o yellowish br                   | own - 🐪                                        |                      | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |         |          |         |         |
|                    | ₽_                                                                      | 33                  |            | Щ           |                   | ted - medium d                   | ense - /                                       |                      | × 1/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ]       |          |         |         |
|                    | 1                                                                       |                     |            |             | (SM-SC)           |                                  | ]                                              |                      | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |         |          |         |         |
|                    | 1                                                                       | ŀ                   |            |             | Silty fine to     | medium sand,                     | some                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| 20.0               |                                                                         |                     |            |             | gravel, littl     | e clay, trace                    | cobbles                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
| 20.0               | 16                                                                      | ss                  |            |             |                   | rown - saturat                   |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    |                                                                         | <u> </u>            | 11         | Ē           |                   | um dense – (SC<br>hin clean seam |                                                | · · · ·              | $7\otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |         |          |         |         |
|                    | 7                                                                       |                     |            |             | fines             | and - PROBABLE                   |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    | 1                                                                       |                     |            |             | Weathe            | red and Rework<br>TER SANDSTONE  | ed                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         | ·        |         |         |
| 25.0               | ,                                                                       |                     | Ļ          |             | St. Peter San     |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          | 1111    |         |
| 25.4               | 7                                                                       | SS                  | Щ          | Щ           | JL. FELET JAN     | ustone                           |                                                |                      | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |         |          | 145/1   | •" Ø    |
|                    | 3                                                                       |                     |            |             | End of boring     |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    | 7                                                                       |                     |            |             |                   | d to full dept                   | h using                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |          |         |         |
|                    | -                                                                       | -<br>-              |            |             | hollow stem a     |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         | 1        |         | [ ]     |
| 30.0               | No wash water used while drilling.<br>2 inch ID PVC well installed (see |                     |            |             |                   |                                  |                                                | MN                   | -CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IP 004         | 3769    |          |         |         |
|                    | -                                                                       | attached diagram).  |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | _       |          |         |         |
|                    |                                                                         |                     |            |             | -                 |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | · ·     |          |         |         |
|                    | -                                                                       |                     |            |             |                   | -                                |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | l       |          |         |         |
|                    |                                                                         |                     |            |             | OBSERVATIONS      |                                  |                                                |                      | BORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G STAR         | ITED    | l        | 1173    | 0/82    |
| W.L.               | 13.                                                                     | 5                   |            |             |                   | STS CONSUL                       | TANTS                                          | LTD                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | PLETE   |          | 11/3    | 30/82   |
| W.L.               |                                                                         | ]                   | <b>B.C</b> | <u>).</u> R | . A.C.R.          | 2405 ANNAP                       | OLIS LANE                                      | į.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CME-7          |         | FOREM    |         | DW      |
| W.L.               |                                                                         |                     |            |             |                   | MINNEAPOLIS,                     | MINN. 5544                                     | 1                    | DRAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |         | APPRO    |         | HAG     |
| ┝──┴               |                                                                         |                     |            |             |                   |                                  |                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9277           |         | SHEET    |         | of 1    |
| I                  |                                                                         |                     |            |             |                   | The stratifics                   | ation lines                                    | TODI                 | eont (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ho an          | nenvie  | nata h   | aunda   | nv I    |

. . .

-



### ELEVATION SURVEY 11/30/82 FORD MOTOR COMPANY STS Job No. 92776-B

5.

••

| Station                                                                                                                                                                   | Point of Reference | Elevation |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--|--|--|--|--|
| B-1                                                                                                                                                                       | Top of PVC Pipe    | 730.49*   |  |  |  |  |  |
| B-2                                                                                                                                                                       | Top of PVC Pipe    | 718.75*   |  |  |  |  |  |
| B-3                                                                                                                                                                       | Top of PVC Pipe    | 704.67    |  |  |  |  |  |
| B-4                                                                                                                                                                       | Top of PVC Pipe    | 708.48    |  |  |  |  |  |
| B-5A (New Well)                                                                                                                                                           | Top of PVC Pipe    | 703.81    |  |  |  |  |  |
|                                                                                                                                                                           | Ground Surface     | 702.01    |  |  |  |  |  |
| BM-1<br>South One at River                                                                                                                                                | Top of Metal Tube  | 691.75    |  |  |  |  |  |
| BM-2<br>North One at River                                                                                                                                                | Top of Metal Tube  | 691.81    |  |  |  |  |  |
| River Elevation on 11/30                                                                                                                                                  | 0/82               | 691.35    |  |  |  |  |  |
| Top of Lathe on Bank of                                                                                                                                                   | River              | 698.57    |  |  |  |  |  |
| Note: Starting point of survey B-1 top of PVC assumed to be 730.52 + 0.1<br>ft. on 11/30/82 based on previous survey. All other elevations<br>relative to B-1 top of PVC. |                    |           |  |  |  |  |  |
| * Elevation after cu                                                                                                                                                      | tting off: MN-COMP | 0043771   |  |  |  |  |  |
| 0.03 ft. at B-1<br>0.10 ft. at B-2                                                                                                                                        |                    |           |  |  |  |  |  |

### GENERAL NOTES

#### DRILLING & SAMPLING SYMBOLS:

| <b>S</b> S | : | Split Spoon - 1 3/8" LD., 2" O.D.<br>Unless otherwise noted | OS | : | Osterberg Sampler - 3" Shelby Tube |
|------------|---|-------------------------------------------------------------|----|---|------------------------------------|
| **         |   |                                                             |    | : | Hollow Stem Auger                  |
| 21         | : | Shelby Tube - 2: O.D.,                                      | WS | : | Wash Sample                        |
|            |   | Unless otherwise noted                                      | FT | : | Fish Tail                          |
| PA         | • | Power Auger                                                 | RB | : | Rock Bit                           |
| DB         | 1 | Diamond Bit - NX, BX, AX                                    | BS | : | Buik Sample                        |
| AS         | : | Auger Sample                                                | PM | : | Pressuremeter Test, In-Situ        |
| JS         | : | Jar Sample                                                  | GS | : | Giddings Sampler                   |
| VS         | : | Vane Shear                                                  |    | • | ereer.9. ornibier                  |

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch O.D. split spoon sampler, except where otherwise noted.

#### WATER LEVEL MEASUREMENT SYMBOLS:

| WL         | :   | Water Level    | WCI : | Wet Cave In           |
|------------|-----|----------------|-------|-----------------------|
| <b>W</b> 5 | - 1 | While Sampling | DCI : | Dry Cave In           |
| WD         | :   | While Drilling | BCR : | Before Casing Removal |
| AB         | :   | After Boring   | ACR : | After Casing Removal  |

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of ground water elevations may not be possible, even after several days of observations; additional evidence of ground water elevations must be sought.

#### GRADATION DESCRIPTION & TERMINOLOGY:

Coarse Grained or Granular Soils have more than 50% of their dry weight retained on a #200 sieve; they are described as: boulders, cobbles, gravel or sand. Fine Grained soils have less than 50% of their dry weight retained on a #200 sieve; they are described as: clays or clayey silts if they are cohesive and silts if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

| Major<br>Component<br>Of Sample | Size Range                                         | Descriptive Term<br>Of Components Also<br>Present in Sample | Percent Of<br>Dry Weight |
|---------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------|
| Boulders                        | Over 8 in. (200 mm)                                | Trace                                                       | 1 - 9                    |
| Cobbles                         | <pre>\$ inches to 3 inches (200 mm to 75 mm)</pre> | Little                                                      | 10 - 19                  |
| Gravel                          | 3 inches to #4 sieve<br>(75 mm to 4.76 mm)         | Some                                                        | 20 - 34                  |
| Sand                            | #4 to #200 sieve<br>(4.76 mm to 0.074 mm)          | And                                                         | 35 - 50                  |
| Silt                            | Passing #200 sieve<br>(0.074 mm to 0.005 mm)       |                                                             |                          |
| Clay                            | Smaller than 0.005 mm                              | •                                                           |                          |

### CONSISTENCY OF COHESIVE SOILS:

### RELATIVE DENSITY OF GRANULAR SOILS:

| Unconfined Compressive<br>Strength, Qu, tsf | Consistency   | N - Blows per ft.                                    | Relative Density |
|---------------------------------------------|---------------|------------------------------------------------------|------------------|
| < 0.25                                      | Very Soft     | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | Very Loose       |
| 0.25 - 0.49                                 | Soft          |                                                      | Loose            |
| 0.50 - 0.99                                 | Medium (Firm) |                                                      | Medium Dense     |
| 1.00 - 1.99                                 | Stiff         |                                                      | Dense            |
| 2.00 - 3.99                                 | Very Stiff    |                                                      | Very Dense       |
| 4.00 - 8.00                                 | Hard          |                                                      | Extremely Dense  |
| > 8.00                                      | Very Hard     |                                                      | MN-COMP 0043772  |

# UNIFIED SOIL CLASSIFICATION SYSTEM

| Major divisions                                                                               |                                                                                          | Group<br>symbols Typical names                         |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Laboratory classification criteria                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                               | action<br>ize                                                                            | Clean gravels<br>(Little or no fines)                  | GW Well-graded gravels, gravel-sand to mixtures, little or no fines                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Well-graded gravels, gravel-sand<br>mixtures, little or no fines                                                           | $\frac{D_{60}}{C_0 - \frac{D_{60}}{D_{10}}} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \text{ between 1 and 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| -                                                                                             | Gravels<br>f of coarse fract<br>No. 4 sieve size                                         | Little                                                 | G                                                                                                                                                                                                                          | 5P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Poorly graded gravels, gravel-<br>sand mixtures, little or no fines                                                        | Not meeting all gradation requirements for GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 00 sieve size                                                                                 | Gravels<br>Gravels<br>(More than half of coarse fraction<br>larger than No. 4 sieve size | Gravels with fines<br>(Appreciable amount<br>of fines) | Builty gravels, gravel-sand-silt     10     10     10     10       Builty gravels, gravel-sand-silt     10     10     10     10       GM     U     mixtures     10     10     10       U     U     10     10     10     10 | $\begin{array}{c} \begin{array}{c} D_{60} \\ C_{u} \\ \hline D_{10} \hline D_{10} \\ \hline D_{10} \hline D_{10} \\ \hline D_{10} \hline D_{10} \hline D_{10} \\ \hline D_{10} \hline$ |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Coarse-grained solls<br>al is larger than No.                                                 | (Wo                                                                                      | Gravels<br>(Apprecia                                   | G                                                                                                                                                                                                                          | iC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clayey gravels, gravel-sand-clay<br>mixtures                                                                               | 0 2     3 2 5 E     Conversion 4 and 7 are portion of the cases requiring use of dual symbols       0 2     3 2 5 E     Conversion 4 and 7 are portion of the cases requiring use of dual symbols       0 2     3 2 5 E     Conversion 4 and 7 are portion of the cases requiring use of the case of the                                                                                    |  |  |  |  |
| Coarse -<br>waterial is larg                                                                  | raction<br>size)                                                                         | Cleen sends<br>(Little or no fines)                    | S                                                                                                                                                                                                                          | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Well-graded sands, gravelly sands, little or no fines                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Coarse grained soits<br>(More then half of meterial is <i>larger</i> than No. 200 sleve size) | Sands<br>If of coarse fractio<br>in No. 4 sieve size)                                    |                                                        | S                                                                                                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Poorly graded sands, gravelly<br>sands, little or no fines                                                                 | Not meeting all gradation requirements for SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                               | Sends<br>(More then half of coerse frection<br>is smaller then No. 4 sieve size)         | Sands with fines<br>(Appreciable amount<br>of fines)   | SM                                                                                                                                                                                                                         | d<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silty sands, sand-silt mixtures                                                                                            | Image: State of the state |  |  |  |  |
|                                                                                               | (Wo<br>isi                                                                               | Sands v<br>(Apprecia<br>of fi                          | S                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clayey sands, sand-clay mix-<br>tures                                                                                      | and 7 are borderline cases<br>requiring use of dual sym-<br>b d m line with P.I. greater than 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                               | ę                                                                                        | d deathan 50)<br>WT                                    |                                                                                                                                                                                                                            | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inorganic sits and very fine<br>sands, rock flour, sity or clay-<br>ey fine sands or clayey sits<br>with slight plasticity |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 200 sieve)                                                                                    | ~                                                                                        | (Liquid limit less r                                   | Cl                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inorganic clays of low to me-<br>dium plasticity, gravelly clays,<br>sandy clays, silty clays, lean<br>clays               | For classification of fine-grained<br>soils and fine fraction of coarse-<br>grained soils.<br>Atterberg Limits plotting in<br>hatched area are borderline classi-<br>CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| olls<br>//er than No.                                                                         |                                                                                          |                                                        | OL                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organic silts and organic silty<br>clays of low plasticity                                                                 | 40 symbols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| ine-grained :<br>terial is sme                                                                | 5                                                                                        | Icique limit grater than buj                           | Mł                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inorganic silts, micaceous or<br>diatomaceous fine sandy or<br>silty soils, elastic silts                                  | ×         Equation of A-line:           PI=0.73 (LL - 20)           30           Image: A state of the                                                                                |  |  |  |  |
| Fine-grained soils<br>(More then helf of material is smaller than No. 200                     | Silts and clays                                                                          | СН                                                     |                                                                                                                                                                                                                            | Inorgenic clays of high plas-<br>ticity, fat clays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                               |                                                                                          |                                                        | Он                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organic clays of medium to<br>high plasticity, organic sits                                                                | 4CL-MI2 ML and OL<br>0 10 20 30 40 50 50 70 80 90 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                               | Highly<br>Organic                                                                        | Si                                                     | n                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peet and other highly organic<br>soils                                                                                     | Liquid Limit<br>MN-COMP 0043773 Lasticity Chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

# AMERICAN SOCIETY FOR TESTING AND MATERIALS

1916 Race St., Philadelphia, Pa. 19103

Reprinted from Copyrighted 1968 Book of ASTM Standards, Part 11

# Standard Method for

### PENETRATION TEST AND SPLIT-BARREL SAMPLING OF SOILS'



### ASTM Designation: D 1586 - 67

This Standard of the American Society for Testing and Materials is issued under the fixed designation D 1586; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.

#### 1. Scope

A 1. 1-1-

1.1 This method describes a procedure for using a split-barrel sampler to obtain representative samples of soil for identification purposes and other laboratory tests, and to obtain a measure of the resistance of the soil to penetration of the sampler.

#### 2. Apparatus

2.1 Drilling Equipment-Any drilling equipment shall be acceptable that provides a reasonably clean hole before insertion of the sampler to ensure that the penetration test is performed on undisturbed soil, and that will permit the driving of the sampler to obtain the sample and penetration record in accordance with the procedure described in 3. Procedure. To avoid "whips" under the blows of the hammer, it is recommended that the drill rod have a stiffness equal to or greater than the A-rod. An "A" rod is a hollow drill rod or "steel" having an outside diameter of 11 in. or 41.2 mm and an inside diameter of 11 in. or 28.5 mm, through which the rotary motion of drilling is transferred

from the drilling motor to the cutting level in the hole at or above ground water bit. A stiffer drill rod is suggested for holes deeper than 50 ft (15 m). The hole shall be limited in diameter to between  $2\frac{1}{2}$  and 6 in. (57.2 and 152 mm).<sup>2</sup>

2.2 Split-Barrel Sampler-The sampler shall be constructed with the dimensions indicated in Fig. 1. The drive shoe shall be of hardened steel and shall be replaced or repaired when it becomes dented or distorted. The coupling head shall have four 1-in. (12.7-mm) (minimum diameter) vent ports and shall contain a ball check valve. If sizes other than the 2-in. (50.8-mm) sampler are permitted, the size shall be conspicuously noted on all penetration records.

2.3 Drive Weight Assembly-The assembly shall consist of a 140-lb (63.5-kg) weight, a driving head, and a guide permitting a free fall of 30 in. (0.76 m). Special precautions shall be taken to ensure that the energy of the falling weight is not reduced by friction between the drive weight and the guides.

2.4 Accessory Equipment - Labels, data sheets, sample jars, paraffin, and other necessary supplies should accompany the sampling equipment.

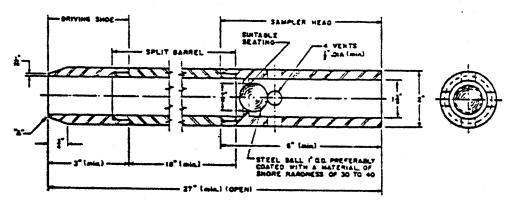
#### 3. Procedure

3.1 Clear out the hole to sampling elevation using equipment that will ensure that the material to be sampled is not disturbed by the operation. In saturated sands and silts withdraw the drill bit slowly to prevent loosening of the soil around the hole. Maintain the water level.

3.2 In no case shall a bottom-discharge bit be permitted. (Side-discharge bits are permissible.) The process of jetting through an open-tube sampler and then sampling when the desired depth is reached shall not be permitted. Where casing is used, it may not be driven below sampling elevation. Record any loss of circulation or excess pressure in drilling fluid during advancing of holes.

3.3 With the sampler resting on the bottom of the hole, drive the sampler with blows from the 140-lb (63.5-kg) hammer falling 30 in. (0.76 m) until either 18 in. (0.45 m) have been penetrated or 100 blows have been applied.

3.4 Repeat this operation at intervals not longer than 5 ft (1.5 m) in homogeneous strata and at every change of strata.


3.5 Record the number of blows required to effect each 6 in. (0.15 m) of penetration or fractions thereof. The first 6 in. (0.15 m) is considered to be a seating drive. The number of blows required for the second and third 6 in. (0.15 m) of penetration added is termed the penetration resistance, N. If the sampler is driven less than 18 in. (0.45 m), the penetration resistance is that for the last 1 ft (0.30 m) of penetration (if less than 1 ft (0.30 m) is penetrated, the logs shall state the number of blows and the fraction of 1 ft (0.30 m) penetrated).

3.6 Bring the sampler to the surface and open. Describe carefully typical

<sup>&</sup>lt;sup>1</sup> Under the standardization procedure of the Bociety, this method is under the jurisdiction of the ASTM Committee D-18 on Soil and Rock for Engineering Purposes. A list of members may be found in the ASTM Year Book.

Current edition accepted Oct. 20, 1967. Originally issued 1958. Replaces D 1586-64 T.

<sup>&</sup>lt;sup>2</sup> Hvorslev, M. J., Surface Exploration and Sampling of Soils for Civil Engineering Purposes, The Engineering Foundation, 345 East 47th St., New York, N. Y. 10017.



Norz 1-Split barrel may be 11/2 in. inside diameter provided it contains a liner of 16-gage wall thickness

Note 2-Core retainers in the driving shoe to prevent loss of sample are permitted. Nors 3-The corners at A may be slightly rounded.

| in.                                                        | mm                                          |      | in.      | <b>a</b>                      | -                                       |
|------------------------------------------------------------|---------------------------------------------|------|----------|-------------------------------|-----------------------------------------|
| 15 (16 gage)<br>16 (16 gage)<br>17<br>18<br>18<br>19<br>19 | 1.5<br>12.7<br>19.0<br>22.2<br>34.9<br>38.1 | 3.49 | 18<br>27 | · · · ·<br>· · · ·<br>· · · · | 5.08<br>7.62<br>15.24<br>45.72<br>68.53 |

TABLE OF METRIC EQUIVALENTS

F10. 1-Standard Split Barrel Sampler Assembly

#### 4. Report

samples of soils recovered as to composi-

tion, structure, consistency, color, and

condition; then put into jars without

ramming. Seal them with wax or her-

metically seal to prevent evaporation

of the soil moisture. Affix labels to the

jar or make notations on the covers (or

both) bearing job designation, boring

number, sample number, depth penetra-

tion record, and length of recovery.

Protect samples against extreme tem-

perature changes.

4.1 Data obtained in borings shall be recorded in the field and shall include the following:

4.1.1 Name and location of job,

4.1.2 Date of boring-start, finish,

4.1.3 Boring number and coordinate, if available.

4.1.4 Surface elevation, if available,

4.1.5 Sample number and depth,

4.1.6 Method of advancing sampler, penetration and recovery lengths,

4.1.7 Type and size of sampler,

4.1.8 Description of soil,

4.1.9 Thickness of layer,

4.1.10 Depth to water surface; to loss of water; to artesian head; time at which reading was made.

4.1.11 Type and make of machine,

4.1.12 Size of casing, depth of cased hole.

4.1.13 Number of blows per 6 in. (0.15 m),

4.1.14 Names of crewmen, and 4.1.15 Weather, remarks.

# MN-COMP 0043775

PECEINED

# OCT 2 5. 88

1774. Ground Virtan

# ASSESSMENT OF FILL AREAS

# Ford Motor Company Twin Cities Assembly Plant

PRINTED ON OCT 2 5 1988 MN-COMP 0044279

October 1988 Ref. No. 2191

John I.

CONESTOGA-ROVERS & ASSOCIATES

Consulting Engineers

**CONESTOGA-ROVERS & ASSOCIATES LIMITED** 651 Colby Drive Waterloo, Ontario, Canada N2V 1C2 (519) 884-0510

October 25, 1988

Reference No. 2191

Mr. Jerome Amber FORD MOTOR COMPANY 15201 Century Drive Dearborn, Michigan 48120

Dear Mr. Amber:

RE: Assessment of Fill Areas Ford Motor Company Twin Cities Assembly Plant

We have enclosed our report, "Assessment of Fill Areas, Ford Motor Company, Twin Cities Assembly Plant".

Should you have any questions, please do not hesitate to contact us. Yours Truly,

CONESTOGA-ROVERS AND ASSOCIATES

Jon. L. Christofferson

JLC/kk

cc: J. Kallaus A. Van Norman

0CT 2 5. 38

MN-COMP 0044280

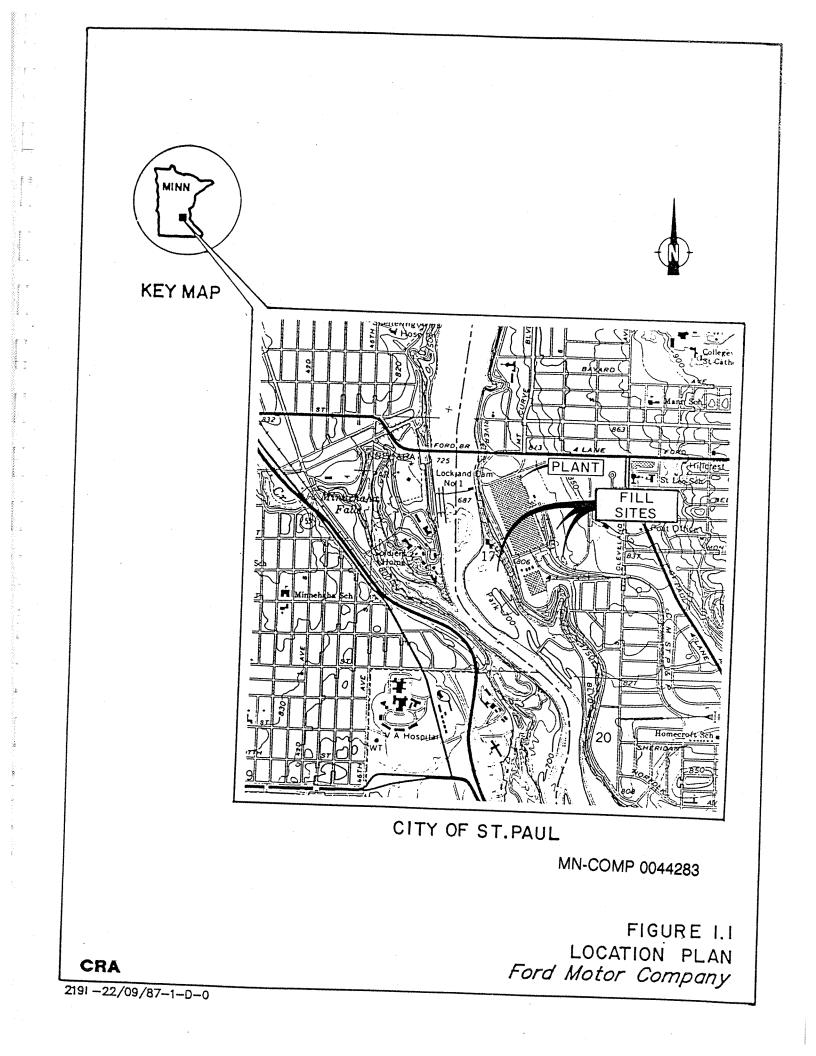
TABLE OF CONTENTS

3

and the second sec

1.000

|        |                                                          | •                                     | Page |
|--------|----------------------------------------------------------|---------------------------------------|------|
| 1.0    | INTRODUCTION                                             |                                       | 1    |
| 2.0    | BACKGROUND                                               | OCT 2 5. 88                           |      |
|        | SHEREROOND                                               |                                       | 3    |
| 3.0    | FILE REVIEW                                              | 1 MA, Gierre Voter<br>Div.            | 5    |
| 4.0    | PRELIMINARY HYDROGEOLOGIC EVA                            | LUATION                               | 9    |
|        | 4.1 GEOLOGY                                              |                                       | 9    |
|        | 4.2 HYDROGEOLOGY                                         |                                       | 11   |
|        | 4.2.1 Site Hydraulic Conduct                             | ivity                                 | 12   |
|        | 4.2.2 Hydrology                                          | -                                     | .14  |
|        | 4.3 GROUNDWATER QUALITY                                  |                                       | 15   |
|        |                                                          |                                       | 10   |
| 5.0    | FIELD ACTIVITIES                                         |                                       | 17   |
|        | 5.1 TEST PITS                                            |                                       | 17   |
|        | 5.2 SITE SURVEY                                          |                                       | 19   |
|        |                                                          |                                       |      |
| 6.0    | SUMMARY                                                  |                                       | 21   |
|        |                                                          |                                       |      |
|        | LIST OF API                                              | PENDICES                              |      |
| APPEN  | DIX A LOCATION OF SITES A AND                            | ) B                                   |      |
| APPEN  | DIX B SOIL BORING LOGS                                   |                                       |      |
| APPEN  | DIX C MONITORING DATA FROM FO<br>DATED MARCH 3, 1988 (PA | RD REPORT<br>GES 6, 8 AND 9)          |      |
| APPEN  | DIX D MONITORING DATA FROM FO<br>DATED DECEMBER 1, 1982  | RD REPORT<br>(PAGES 5, 10, 11 AND 12) |      |
| APPENI | DIX E TEST PIT LOGS                                      | MN-COMP 0044281                       |      |


APPENDIX F LABORATORY ANALYTICAL REPORTS

The Ford Motor Company, Twin Cities Assembly Plant (Plant) is located in St. Paul, Minnesota, at 966 South Mississippi River Boulevard. The Plant complex includes buildings on both sides of Mississippi River Boulevard. Buildings west of Mississippi River Boulevard are located below the river bluff on the river valley floor. Buildings east of Mississippi River Boulevard are located above the river bluff on the adjacent sand plains. The Plant location is presented on Figure 1.1.

The Plant was originally used to manufacture glass over 50 years ago. Since then the Plant has been expanded several times and is used to assemble motor vehicles. Presently the Plant is used to assemble pick-up trucks.

At different times during the Plant's history prior to 1970, paint sludges/wastes were deposited in a relatively small area on Plant property, west of Mississippi River Boulevard (Site C). This waste deposit was identified to U.S. EPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since that investigation was completed,

MN-COMP 0044282



additional earth fill has been placed over part of the waste fill. The area is now used as a parking lot for tractor trailer truck units. Excavated materials from two other sites (Sites A and B) were subsequently moved to Site C. The locations of the fill Sites are also presented on Figure 1.1 and presented in more detail on Figure 1.2.

In an effort to address environmental issues that may be associated with past waste handling and disposal practices, Ford Motor Company (Ford) hired Conestoga-Rovers & Associates (CRA) to conduct an assessment of the wastes deposited at these sites. This assessment consisted of a file review, hydrogeologic evaluation, test hole excavation (test pits), stadia survey and waste characterization sampling. From these tasks an assessment and evaluation of site conditions was conducted. The results of these efforts are provided in the following sections of this report.

### MN-COMP 0044284

At different times during the Plant's history, construction rubble and paint sludges/wastes were deposited in a relatively small area (Site C - approximately four acres in size) on Plant property west of Mississippi River Boulevard between the Boulevard and the Mississippi River. The majority of this material was deposited during the years 1950 through 1965. This practice was discontinued in 1965. During the years 1965 and 1966, construction debris was deposited in large quantities on top of this fill at Site C. The United States Corps of Engineers also deposited additional rubble between the Ford disposal Site and the river during reconstruction of the Lock and Dam No. 1 near the "Ford Bridge".

This Site C waste deposit was identified to the USEPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since the investigation was completed, additional rill has been placed over part of the Site C waste fill. Earth fill and construction rubble continue to be being brought to Site C including broken concrete and road excavation rubble from the construction of Mississippi River Boulevard. A major portion of the top of the fill has been paved with 8 inches of concrete and is now being used as a parking lot for

MN-COMP 0044287

tractor-trailer truck units. The remaining top area of Site C is being used as a snow dump during winter months for snow removed from area streets and parking lots.

Excavated materials from Site A and Site B areas were subsequently moved to Site C. Information regarding this process was noted during CRA's file review and is discussed in the section that follows.

-

## MN-COMP 0044288

A file review was conducted to compile information related to the Plant's pre-1965 waste generation, disposal practices, investigations and activities on or near the Plant facilities. Plant files were reviewed on November 17, 1987. The Minnesota Pollution Control Agency (MPCA) files were reviewed on December 4, 1987. The majority of the information and correspondence in the Plant files is dated between and including the years 1980 and 1984. The information in the MPCA files is for the most part duplication of the Ford files with the addition of internal MPCA memos and reports.

It was noted that MPCA's files contain a separate file of all the groundwater monitoring data to date that has been submitted by Ford.

The file review indicates for Site C that cardboard, wood and scrap metal may also be present in the waste deposit. Batteries, used light ballasts and capacitors were specifically excluded from the fill material and were sent to alternate off-site disposal. Undated copies of photographs show exposed drums and what appears to be paint sludge at various locations.

## MN-COMP 0044290

Two additional waste deposits are identified in the file. The first area (noted in a October 6, 1982 letter from Ford to MPCA in the files as Site A) was located at the south end of a former test track east of the assembly plant. Paint sludges/wastes were deposited in this area from around 1943 until 1960. Quantities were not reported. This area was excavated in 1966 during a railroad car loading "tri-level" expansion. Sludge and "eastern materials"\* were deposited in the Site C area.

The second area (noted in a October 6, 1982 letter from Ford to MPCA in the file as Site B) was located approximately 800 feet south and east of the main assembly building. It was reported that the area was used for burning waste and burial of factory waste during early plant operations up until 1945. Exact operational dates and quantities were not reported. The area was excavated as part of a paved parking lot expansion in 1962. Excavated materials were placed in the fill area "at the steam plant" now called Site C.

The October 6, 1982 letter from Ford to MPCA, noted above, is provided as Appendix A.

MN-COMP 0044291

\* A typographical error is suspected and "earthen materials" probably describes the excavated material.

In addition to the fill areas presently under review by CRA, a smaller waste deposit below the river bluff north of the steam plant was exavated and removed to a hazardous waste landfill (Wayne Disposal Inc., Bellville, Michigan) in July 1983 during construction of the wastewater treatment plant. Approximately 77 cubic yards was excavated and shipped. All waste observed as well as visibaly contaminated soils were removed. Analytical results of testing conducted by Ford confirmed that the waste aid not exhibit hazardous waste characteristics. This effort was the subject of Ford's Amended Superfund Notification to USEPA dated August 16, 1983.

Aerial photographs from both files were used to prepare a plan illustrating the progression of fill at Site C from the access road westward. The limit of fill in 1945, 1956, 1958 and 1962 is illustrated on the Site Plan (enclosed). Filling with paint sludges/waste ceased in 1965. The limit of the paint sludges/wastes is expected to be close to the 1962 limit. Substantial filling with demolition rubble and excavation soil has occurred since 1965. The present limit of fill is also presented on the Site Plan. The paint sludges/wastes are buried beneath approximately 30 feet of rubble including large blocks of reinforced concrete. Total fill thickness throughout the area is approximately 60 feet. The fill thickness was estimated by constructing a cross section from topographic survey data and borehole logs. This information will be presented in Section 4.0.

MN-COMP 0044293

CONESTOGA-ROVERS & ASSOCIATES

Due to the relocation of the materials from Site A and B to Site C, the discussions dealing with hydrogeologic conditions and field activities in Sections 4.0 and 5.0 respectively, deal primarily with Site C.

# MN-COMP 0044294

# 4.0 PRELIMINARY HYDROGEOLOGIC EVALUATION

### 4.1 GEOLOGY

Site C is located on a point bar adjacent to the Mississippi River (see Site Plan). A point bar is a fluvial deposit, usually sand and gravel, located on the inward bend of a river channel. Behind Site C is a river bluff which consists of bedrock overlain by unconsolidated sediments.

Geologic description of Site C is based on soil borings performed by Soil Testing Services (STS) in 1981\*. Soil boring logs are presented in Appendix B. Their locations are illustrated on the Site Plan.

At Site C, the first bedrock unit encountered is the St. Peter Sandstone. The St. Peter Sandstone is encountered at soil boring B5 at an approximate elevation of 683 feet AMSL. The St. Peter Sandstone is a white fine to medium grained quartz arenite. The sandstone has a maximum

\* Final Report, Hydrogeologic Engineering Evaluation, Ford Assembly Plant, St. Paul, Minnesota, Soil Testing Services of Minnesota, Inc. February 26, 1982.

### MN-COMP 0044295

thickness of 150 feet. At the base of the St. Peter is a shale and siltstone unit that ranges in thickness from 5 to 50 feet (Guswa and others, 1982)\*.

The Platteville Limestone, which overlies the St. Peter Sandstone, is present in the river bluffs. At the Site C, the Platteville Limestone is eroded away.

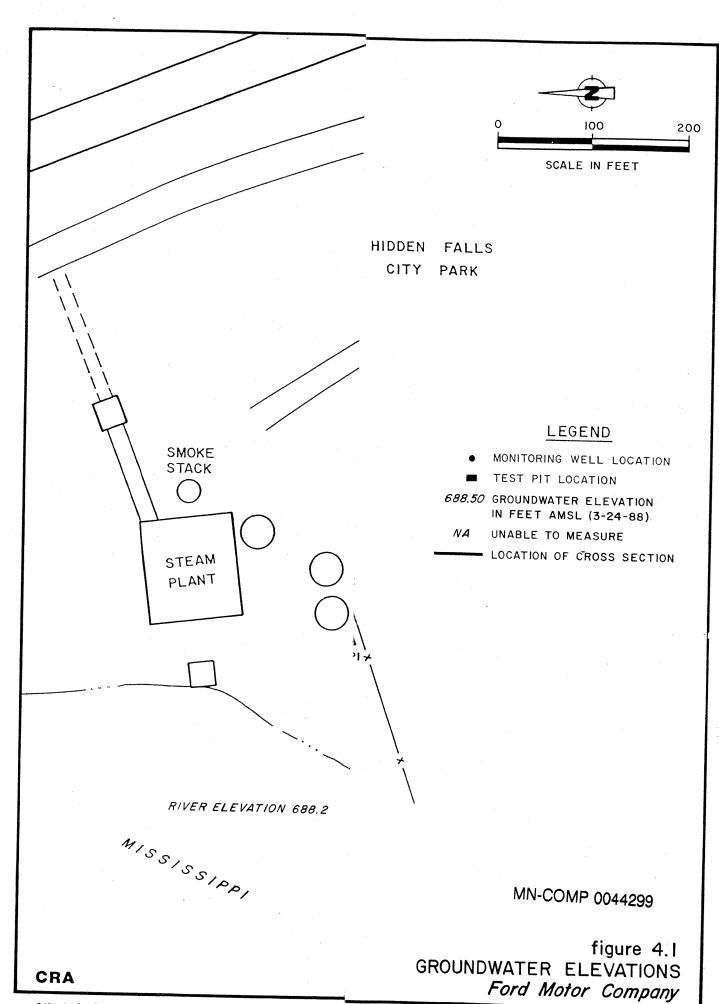
Overlying the St. Peter sandstone are consolidated sediments. At Site C, the sediment is described as an interbedded mixture of sand, silt and gravel with little clay. The sediment ranges in thickness from 25 feet to greater than 50 feet.

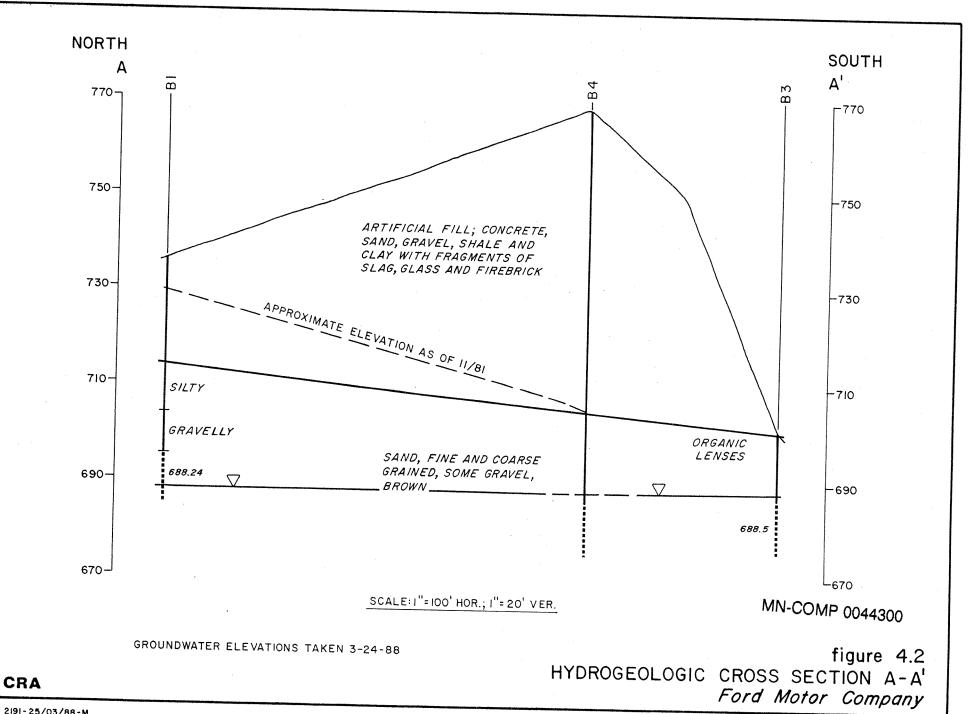
The sand and gravel deposit at Site C is overlain by artificial fill. The fill is composed of construction refuse, fire brick, slag and railroad ties intermixed with sand and gravel. Clean fill including construction rubble, broken concrete and soil continues to be placed west of Site C. In 1981, the Site C fill, as reported in the February 1982 STS report, ranged in thickness from 14 to 25 feet.

MN-COMP 0044296

<sup>\*</sup> Preliminary Evaluation of the Groundwater Flow Systems in the Twin Cities Metropolitan Area, Minnesota, U.S. Geological Survey Water Resources Investigation Report 82-44.

Based on the soil borings, a geologic cross section of the Site C area has been constructed. The location of the cross section is presented in Figure 4.1 and the cross section is presented in Figure 4.2. The cross section indicates a maximum fill thickness in excess of 60 feet.


### 4.2 HYDROGEOLOGY


Groundwater is encountered in the unconsolidated sand and gravel at an approximate elevation of 690 feet AMSL. Well construction details and groundwater elevations are summarized in Table 4.1. Well locations are presented on Figure 4.1 and the Site Plan.

Groundwater elevations measured by CRA are presented on Figure 4.1 and indicate that groundwater flows towards the Mississippi River in a northwesterly direction.

The groundwater elevation at well B4 is considered anomalous. The well casing has been broken at depth permitting infiltration through the casing. The broken parts will not fit back-together indicating possible horizontal displacement. Well B2 nas an obstruction in the well. The obstruction prohibits access to the water level by water measuring instruments.

# MN-COMP 0044298





81.81

2191-25/03/88-M

| TABLE 4 | 1. | 1 |
|---------|----|---|
|---------|----|---|

# WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATIONS

. .

| Well<br>B1 | Date Installed | Installed<br>By | Material | Depth (ft. bgs) | Approiximate Ground<br>Elevation (ft. AMSL) | Top of Casing<br>Elevation (ft. AMSL) | Mid Screen<br>Elevation (ft. AMSL) | Water Level<br>Elevations<br>(3/24/88) |
|------------|----------------|-----------------|----------|-----------------|---------------------------------------------|---------------------------------------|------------------------------------|----------------------------------------|
|            | 12/31/81       | STS             | 2" PVC   | 57.7            | 736.3                                       | 739.32*                               | 683.6                              | 688.24                                 |
| B2         | 11/18/81       | STS             | 2" PVC   | 98.7            | 770.0                                       | 773.17*                               | 676.3                              | NA**                                   |
| В3         | 11/17/81       | STS             | 2" PVC   | 24.5            | 702.0                                       | 704.67                                | 682.5                              |                                        |
| В4         | 11/19/81       | STS             | 2" PVC   | 92.5            | 768.5                                       | 769.50*                               |                                    | 688.50                                 |
| B5         | 11/30/82       | STS             | 24 542   |                 |                                             | 762.50 *                              | 681.0                              | 714.05***                              |
|            |                | 010             | 2" PVC   | 25.4            | 702.1                                       | 703.81                                | 681.7                              | 689.61                                 |

### Notes:

Resurveyed by CRA (2/16/88)
 \*\* Obstruction in well at 23.5' below top of casing

\*\*\* Anomolous, see text, Section 4

Groundwater is also encountered in the St. Peter Sandstone. The St. Peter aquifer is hydraulically connected to the overburden. The St. Peter aquifer has an average hydraulic conductivity of 2.3 x  $10^{-3}$  ft/s and a transmissivity ranging from 18,000 to 45,000 gallons/day/foot (Walton and others, 1981)\*. In the vicinity of the Site, the St. Peter is expected to discharge to the river and upward vertical gradients are expected to exist. Aqueous transport of any constituents in groundwater will be towards the river.

## 4.2.1 Site Hydraulic Conductivity

Grain size distribution curves are presented in the 1982 STS report. The grain size distribution can be used to estimate the permeability of the unconsolidated sand and gravel using Hazen's equation. Hazen's equation is an empirical formula that estimates permeability based on grain size distribution. Where:

 $K = Ad_{10}^2$ 

K is the permeability in cm/s,

A is an empirical coefficient equal to 1.0 and

 $d_{10}$  is the grain size (in mm) of the 10 percent retained.

### MN-COMP 0044302

\* Engineering Geology of the St. Paul Energy Park and Vicinity, Minnesota Geology Survey, Reprint Series 44.

Estimated hydraulic conductivity values are presented in Table 4.2. The geometric mean hydraulic conductivity is 2 x  $10^{-2}$  cm/sec. This is a relatively high hydraulic conductivity consistent with the sand and gravel soils.

Groundwater velocity can be estimated using the equation:

 $\overline{v} = \frac{Ki}{n}$ 

where:  $\overline{v}$  is the average groundwater linear velocity,

K is the hydraulic conductivity,  $(2 \times 10^{-2} \text{ cm/sec})$ i is the hydraulic gradient (0.002) and n is the porosity (0.3).

The assumed porosity is 0.3, which is common for this type of sediment. The average hydraulic gradient is 0.002, based on groundwater elevations measured by CRA and presented on Figure 4.1.

By use of the above parameters, the average linear groundwater velocity is estimated to be  $1.3 \times 10^{-4}$  cm/sec, or 0.4 ft/day. In the approximately 40 years since materials have been deposited here, groundwater would have moved approximately one mile. The Mississippi River is within 200 feet of the present limit of fill, but was approixmately 800 feet away in 1945. In either case, groundwater from beneath Site C is entering the Mississippi River. MN-COMP 0044303

CONESTOGA-ROVERS & ASSOCIATES

### TABLE 4.2

## HAZEN'S PERMEABILITY

| Borehole | Depth (ft. bgs) | d <sub>10</sub> (mm) | K (cm/sec)         |
|----------|-----------------|----------------------|--------------------|
| BH 1     | 39.5 - 41       | 0.08                 | $6 \times 10^{-3}$ |
| BH 2     | 19.5 - 21       | 0.25                 | $6 \times 10^{-2}$ |
| BH 2     | 29.5 - 31       | 0.30                 | $9 \times 10^{-2}$ |
| BH 2     | 34.5 - 36       | 0.075                | $5 \times 10^{-3}$ |
| BH 3     | 19.5 - 21       | 0.2                  | $4 \times 10^{-2}$ |
| BH 5     | 10 - 11.5       | 0.08                 | $6 \times 10^{-3}$ |
|          |                 |                      |                    |

Average =  $2 \times 10^{-2}$ 

# MN-COMP 0044304

### 4.2.2 Hydrology

Another factor in groundwater flow is the influence of the Mississippi River, which fluctuates seasonally. Upstream from the Site is Lock and Dam No. 1. Lock and Dam No. 1 is used for waterway traffic and not for flood control.

According to the U.S. Army Corps of Engineers, which operates the dam, the tail stream elevation ranges from 691 to 687 feet AMSL.

The tail stream flooding frequency at Lock and Dam No. 1 was investigated, since the Site is located on a flood plain. The frequency and tail stream elevation provided by the Corps of Engineers are:

| Frequency | Elevations (ft. AMSL) |
|-----------|-----------------------|
| 10 years  | 707                   |
| 50 years  | 714                   |
| 100 years | 717                   |
| 500 years | 724                   |

Based on ground level elevations, it should be expected that wells B3 and B5 would be submerged on an average frequency of once every ten years. Submergence could have a very significant effect on groundwater quality measured in these wells. MN-COMP 0044305

**CONESTOGA-ROVERS & ASSOCIATES** 

The tail stream elevation during the flood that occurred during April of 1965 was 719.02.

### 4.3 GROUNDWATER QUALITY

Groundwater samples were collected from the on-site monitoring wells on March 3, 1982, and December 1, 1982 by representatives from Ford's Stationary Source Environmental Control Office (SSECO). The results of this monitoring conducted by Ford are presented in the reports titled "Twin Cities Assembly Facility Groundwater Monitoring Wells Survey" and dated March 3, 1982 and December 1, 1982. The tables from these reports that summarize the monitoring data are provided for reference in Appendix C (for March 1982) and Appendix D (for December 1982). The samples were analyzed for USEPA Volatile Priority Pollutants, xylenes, methyl ethyl ketone, methyl isobutyl ketone, pH, specific conductivity and dissolved heavy metals (Cd, Cr, Pb, Cu, Ni, Zn).

Dissolved metals concentrations were low and within the range of typical groundwater concentrations\*. Three VOC parameters, 1,2-Dichloroethylene, Trichloroethylene

 Handbook on the Toxicology of Metals Vol.2 Friberg, Nordberg and Vouk, Elseview Science Publishers, 1986.

MN-COMP 0044306

and Toluene, were reported at low concentrations at three of the monitoring wells in place in March 1982. Total VOC at any individual location was less than 25 ug/L.

The same parameter list was monitored in December 1982. Dissolved metals were again typical of natural groundwater concentrations\*. The concentration of 1,2-Dichloroethylene increased slightly in monitoring well B2, but the total VOC remained below 25 ug/L. Two additional VOC parameters, chlorobenzene and xylene, were reported at trace concentrations.

As expected, no measurable impact was defined upstream and downstream in the Mississippi River monitoring conducted by SSECO on December 1, 1982. Three VOC reported downstream of the Ford plant at trace concentrations were also reported at equal or higher concentrations upstream from the property.

Handbook on the Toxicology of Metals Vo.1.2 Friberg,
 Nordberg and Vouk, Elseview Science Publishers, 1986.

MN-COMP 0044306.01

### 5.1 TEST PITS

On December 4, 1987, CRA and its subcontractor mobilized a rubber tired backhoe at Site C along the river. An attempt was made to gain access to the low land areas south of the trailer storage pad. Several attempts were made to reach the bluff, but on each attempt the backhoe got stuck. One test pit (TP1), shown on the Site Plan, was successfully completed. No evidence of past disposal (i.e. visual or odor) was noted at this test pit location.

On January 19, 1988, a second attempt was made to access this area. A track mounted backhoe was used this time and mobility was not as difficult due to trozen conditions. A total of 10 test pits were excavated to an approximate depth of nine feet below ground surface.

The individual test pit logs are presented in Appendix E. The test pit locations are presented on the Site Plan.

Physical evidence of waste presence (i.e. odor or visual) was noted only at test pits TP3 and TP8. Test pit TP3 exibited soil with a gray/black color having a

MN-COMP 0044307

CONESTOGA-ROVERS & ASSOCIATES

Table 5.1 provides a summary of the analytical results of detected parameters for leachate analysis from test pits TP3 and TP8. A copy of the laboratory report of analysis is presented in Appendix F. Leachate analysis of the sample from test pit TP3 was conducted by Toxicity Characteristic Leachate Procedure (TCLP). The leachate for sample TP8 was obtained by the Extraction Procedure (EP) Toxicity Leachate Method.

The sample from TP3 was collected from a sand seam that exhibited a strong paint waste like odor. The strong paint waste like odor suggests migration from the adjacent fill material. The flash point of a soil sample collected from TP3 was reported to be 140°F. The flash point for determining ignitability defined by RCRA regulations of less than 140°F does not apply since the waste is not a liquid.

### MN-COMP 0044308

### TABLE 5.1

## SUMMARY OF DETECTED INORGANIC PARAMETERS AND SAMPLE CHARACTERISTICS

|                  |                                                                                                                      | EPA/Minnesota<br>EP Toxicity<br><u>Leachate Criteria</u> | Test Pit 3<br>(TP3)** | Test Pit 8<br><u>(TP8)**</u> |
|------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|------------------------------|
| 2                | Arsenic (ug/L)                                                                                                       | 5,000                                                    | 10                    | ND                           |
| → Cv             | Barium (mg/L)                                                                                                        | 100                                                      | 1.5                   | 0.2                          |
|                  | Cadmium (mg/L)                                                                                                       | 1.0                                                      | ND                    | ND                           |
|                  | Copper (mg/L)                                                                                                        | 100*                                                     | 0.02                  | ND                           |
|                  | Lead (mg/L)                                                                                                          | 5.0                                                      | 0.3                   | ND                           |
|                  | Zinc (mg/L)                                                                                                          | 500*                                                     | 0.92                  | 0.03                         |
|                  |                                                                                                                      |                                                          |                       |                              |
| CONESTOGA-ROVERS | Flash Point ( <sup>O</sup> F)                                                                                        | NA                                                       | 140                   | >200                         |
|                  | Sulfide, Reactive (mg/kg)                                                                                            | NA                                                       | ND                    | 61                           |
|                  | PH                                                                                                                   | NA                                                       | 7.6                   | 7.9                          |
|                  | Notes:                                                                                                               | · · · · · · · · · · · · · · · · · · ·                    | ٨                     |                              |
|                  | NA - Not Applicable<br>ND - Not Detected                                                                             |                                                          |                       |                              |
| 37<br>60         | <ul> <li>* - State of Michigan Leachate Criteria Or</li> <li>** - TP-3 sample analyzed using TCLP whereas</li> </ul> | ly<br>as the TP-8 sample                                 | ormanics?             |                              |

was analyzed using EP Toxicity Leachate Procedure

MN-COMP 0044309

A sample from TP8 was leached and analyzed for the EP Toxicity metals. All results were well within criteria values as indicated on Table 5.1. Thus, the material would not be considered a hazardous waste under USEPA or MPCA nazardous waste regulations.

Organic results reported above detection methods in the sample leachate for TP3 are presented on Table 5.2. The sample from Test Pit 3 was extracted by the TCLP method. The sample from Test Pit 8 was analyzed for total VOC and all results were reported as below method detection limits. Therefore, no results are tabulated.

### 5.2 SITE SURVEY

On February 16, 1988, a stadia survey was completed of the Site C area to reelevaluate three wells which were extended vertically during the expansion of the trailer storage area. Table 4.1 shows the new elevations for these three wells (B1, B2 and B4) as well as the old elevations for wells B3 and B5 which were not extended and, for the purpose of the survey, assumed to be correct.

A base line was surveyed from existing buildings along Mississippi River Boulevard through the trailer storage area. Measurements were taken both north and

# MN-COMP 0044310

**CONESTOGA-ROVERS & ASSOCIATES** 

#### TABLE 5.2

# SUMMARY OF DETECTED ORGANIC PARAMETERS (ug/L)

|               | Test Pit 3<br>(TP3)* |
|---------------|----------------------|
| Toluene       | 180                  |
| Ethyl Benzene | 85                   |
| M-Xylene      | 2,600                |
| O & P Xylene  | 3,700                |

#### <u>Notes:</u>

1. S

\* - TP3 sample was analyzed using TCLP

MN-COMP 0044311

CONESTOGA-ROVERS & ASSOCIATES

south of this line to plot the present edge of the fill area. The surveyed edge of fill is presented on the Site Plan (enclosed) and Figure 4.1.

Due to the large amount of snow that had been piled along the top of the fill and the high seasonal snowfall, it was not possible to survey the low land areas and the test pit locations, or to accurately locate the top of the fill area.

Top fill area /pavement elevetions should be added to site Plan

File review indicates that two small waste deposits identified as Sites A and B were excavated during plant expansions in 1966 and 1962 respectively and moved to the river bluff fill area (Site C). Appendix A presents a 1982 Ford letter to MPCA found during the file review, that includes a figure that indicates the approximate locations of these sites. This report has dealt primarily with Site C due to the relocation of the material from Sites A and B to Site C.

As indicated on the Site Plan (enclosed), original base grade elevations under the fill pile were on the order of 710 to 720 ft. AMSL. Presently, the maximum elevation of the fill area is over 770 feet AMSL indicating that there is up to 60 feet of fill material present. Near the steam plant access road, paint sludges/waste are present in the lower half of the fill area. Small areas of exposed paint sludges/wastes on the steep bank suggest that the paint sludges/wastes are on the order of 25 feet thick.

A foot print of the area containing paint sludges/wastes can be composited from the 1958 and 1962 limits of fill. Assuming that there is 25 feet of waste and related fill over this area, there is a volume of

### MN-COMP 0044313

approximately 30,000 cubic yards of waste material believed to be non-hazardous industrial waste based on the analyses conducted.

The paint sludges/wastes are buried beneath approximately 30 feet of rubble fill including large blocks of reinforced concrete. Exposing the paint sludges/wastes and related material would require removal of a concrete parking lot and excavation of approximately 50,000 cubic yards of fill. Any such excavation would be difficult and costly due to the limited access to the Site, the need to use remote temporary fill storage, the numerous oversize pieces of concrete in the material and disruption to plant operations.

Existing 8 inch concrete pavment covers most of the waste fill and limits infiltration through this material. The low concentration of VOC in groundwater under the Site is not expected to produce a measurable effect in the Mississippi River.

MN-COMP 0044314

All of which is respectfully submitted,

CONESTOGA-ROVERS & ASSOCIATES

a.Van Norma

Alan Van Norman, P. Eng.

Don Haycar

Donald H. Haycock, P. Eng.

#### APPENDIX A

### LOCATION OF SITES A AND B

# (From Ford Letter to MPCA Dated October 6, 1982)

#### Circ: VHS/ABMH/JSA/HMS JNT/KEM/EDC/TJG



207

bcc: D. Cloutier P. Lewandowski A. Twilley

Ford Motor Company Environmental and Safety Engineering Staff DISPOSE CI (Black SI) RETAIN E. (Red Station Schedula N

One Parklane Boulevard Dearborn, Michigan 48126

October 6, 1982

1

Mr. Douglas N. Day Minnesota Pollution Control Agency Regulatory Compliance Section Solid and Hazardous Waste Division 1935 West County Road B2 Roseville, MN 55113

1

# Subject: ANTA CICLES Assembly Plant

Dear Mr. Day:

This letter is in response to your letter of August 19, 1982 and confirms our agreements reached during our meeting of September 23, 1982.

The two old disposal sites located near the main assembly building are shown on the attached map and are labeled "A" and "B" for clarification and subsequent reference. Site "A" was located at the southern end of an old test track located east of the assembly building. This site was excavated in 1966 and our inspection of the site during our meeting confirmed that approximately 15-20 feet of earth has been removed to bring the parking lot level (now covering the area) down to the assembly plant grade. This was visibly apparent due to the remaining section of higher level test track area. In view of this, you agreed that no further soil boring in this area would be required.

To the best of our knowledge Site "B" was located approximately 800 feet south and east of the old main assembly plant building. This location was noted on an old photograph, however, plant personnel have difficulty believing the site was so distant from the assembly operations. The area is presently used as a railroad yard. In an attempt to better define the exact location of the site, old aerial photographs have been obtained and will be examined to try and pinpoint the site. Following our review we will meet with you to discuss our findings and the need

With respect to the disposal site located near the steam plant (Site "C"), we agreed to postpone any decision regarding the installation of an upgradient well until the additional work described below is

Mr. Douglas N. Dar Twin Cities Waste uisposal Sites -2-

October 6, 1982

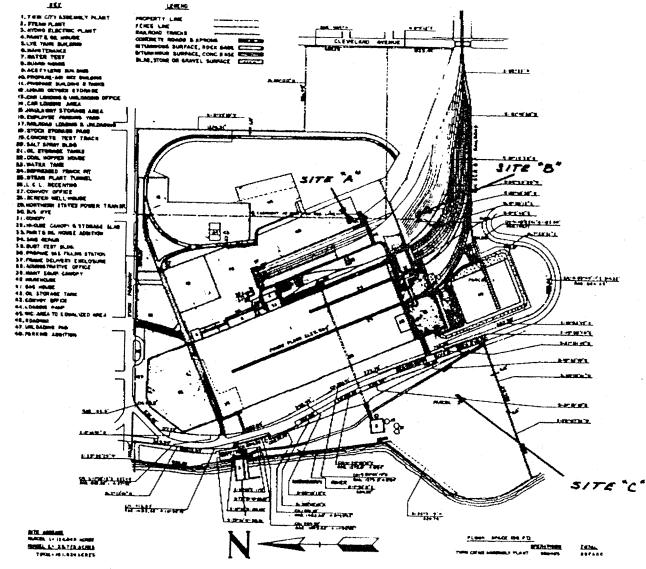
completed. This was based on the questionable value of a well at Location B6 (Former attempted boring location) and difficulty in boring into the St. Peter formation.

Ford agreed to install an additional monitoring well near old Boring B5, off plant property and within the City Park confines. The approximate location of the well is shown on the attached sketch of the disposal site. The well will be placed 10 feet into the water table and screened over the entire 10 feet. The well will be constructed of 2" PVC pipe as was used for the previously installed wells. Soil samples will be obtained during the boring.

Following the new well installation and development, all of the wells at the site will be re-surveyed to re-establish the casing top elevations. The wells will be measured for static water elevations and Mississippi River water elevations also obtained to determine its influence on the water table elevations. The wells, as well as the river, will be resampled and analyzed for dissolved heavy metals and volatile priority pollutants to obtain additional data on water quality.

Following this resampling and analyses we will meet with you to discuss further the need for additional investigation of this site and the necessity to install an upgradient well.

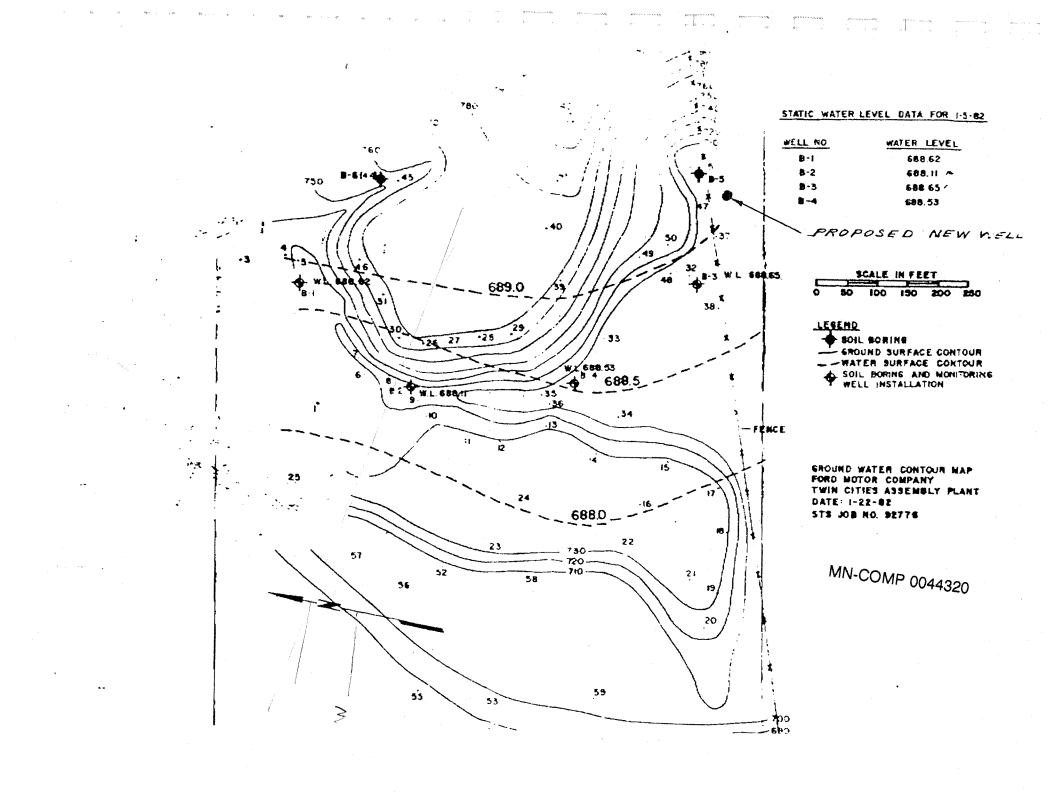
Our present schedule for this additional work is dependent upon obtaining your approval of the proposed location of the new well. Funding is being approved and we anticipate installing the well within two weeks of obtaining your concurrence with the well location. Samplings will be performed within two weeks of well completion and surveying and a report of our findings will be transmitted within four weeks of the


In addition, during the meeting, you agreed that Ford could remove some of the visible debris from the disposal site "C" in order to improve the appearance of the area. Any materials removed would be handled and disposed of in accordance with applicable regulations.

Kindly let me know as soon as possible of your decision regarding the well location. We would like to complete the sampling prior to the anticipated inclement weather your area is well noted for. If you have any questions please call me at 313/322-8852.

Very truly yours,

D. M. Reinke, Manager Survey and Evaluation Stationary Source Environmental Control Office


Attachment cc: R. M. Majors



TWO CITES ASSEMBLY PLANT

t an his the tes and the set and the set

al a



#### APPENDIX B

Jack 1. St.

Service and

na - An

1.

# SOIL BORING LOGS

| [                                                                       | LOG OF BORI                                              | NG NO. E                      | 3-1      |                                      |                  |             | -                               |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|----------|--------------------------------------|------------------|-------------|---------------------------------|--|--|
| OWNER                                                                   |                                                          | ARCHITECT                     | -ENGIN   | EER                                  |                  |             |                                 |  |  |
| Ford Motor Compar                                                       | NY                                                       |                               |          |                                      |                  |             |                                 |  |  |
| SITE                                                                    |                                                          | PROJECT N                     | IAME     |                                      |                  |             |                                 |  |  |
| Twin Cities Asse                                                        | embly Plant                                              | Ford Hydr                     |          |                                      |                  |             |                                 |  |  |
|                                                                         |                                                          |                               | I        | UNCONFINED COMPRESSIVE STRENGTH TONS |                  |             |                                 |  |  |
|                                                                         |                                                          |                               | ξm       | 1 2                                  | 3                | 4 5         |                                 |  |  |
| TH<br>VATION<br>LE NO.<br>SAMPLE<br>LE DIST.<br>VERY                    | DESCRIPTION OF MATERIAL                                  |                               | È P      | LASTIC                               | WATER<br>CONTENT |             |                                 |  |  |
| DEPTH<br>ELEVATION<br>AMPLE NO.<br>YPE SAMPLE<br>AMPLE DIST<br>IECOVERY |                                                          |                               | LBS./FT. |                                      |                  |             | $\hat{\Delta}$                  |  |  |
| DEPTH<br>ELEVA<br>SAMPLE<br>TYPE SA<br>RECOVE                           |                                                          |                               | S ST     | ANDARD "N"                           |                  | N (BLOWS/FT | []                              |  |  |
|                                                                         | FACE ELEVATION 7 729.52                                  |                               |          | 10 20                                |                  | 40 50       |                                 |  |  |
|                                                                         |                                                          |                               |          | •                                    |                  | 8 42        |                                 |  |  |
| 1 SS                                                                    |                                                          |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         | · · · · · · · · · · · · · · · · · · ·                    |                               |          | 8-11                                 |                  | <b>.</b>    |                                 |  |  |
| 2 SS                                                                    |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 5.0                                                                     |                                                          |                               |          | ⊗ 7                                  |                  |             |                                 |  |  |
| 3 SS                                                                    |                                                          | * • <i>*</i>                  | 1        | N I                                  |                  |             |                                 |  |  |
| 4 SS                                                                    |                                                          |                               | I        | ∅ 12                                 |                  |             |                                 |  |  |
| 4 33                                                                    |                                                          |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 10.0                                                                    |                                                          |                               |          | <b>1</b>                             | 2                |             |                                 |  |  |
| 5 SS Fi                                                                 | ll; sand, gravel, silt, De<br>ale and clay, with fragmen | corah                         |          | $\otimes$                            | <b>'</b>         |             |                                 |  |  |
|                                                                         | ag, glass, firebrick, etc.                               | -                             | •        |                                      |                  |             |                                 |  |  |
| mo                                                                      | lst                                                      |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 15.0<br>6 SS                                                            |                                                          |                               | l l      | Ø 9                                  |                  |             |                                 |  |  |
| 6 55                                                                    | ••••                                                     |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      | $\searrow$       |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 20.0                                                                    |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 7 SS                                                                    |                                                          |                               |          |                                      |                  |             | ) 5(<br>\                       |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             | $\backslash$                    |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      |                  |             |                                 |  |  |
| 25.0                                                                    |                                                          |                               |          | ·                                    |                  |             |                                 |  |  |
| 8 SS RI                                                                 | ver deposits                                             |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         | ninly interbedded grayish                                | brown                         |          |                                      |                  |             |                                 |  |  |
|                                                                         | andy silts and very fine s<br>SM-ML) - moist             | anus -                        |          | MNICO                                |                  |             |                                 |  |  |
|                                                                         |                                                          |                               |          |                                      | MP 00443         | 22          |                                 |  |  |
| <u>30.0</u><br>9 SS                                                     |                                                          |                               |          |                                      | 1                |             | Ç                               |  |  |
|                                                                         | •.                                                       |                               |          |                                      |                  |             |                                 |  |  |
|                                                                         | Continued                                                |                               |          |                                      |                  |             |                                 |  |  |
| WATER LEVEL O                                                           | BSERVATIONS                                              | L                             |          | DRING STAR                           |                  | 12/28/      |                                 |  |  |
| W.L. 42.0' W.D.                                                         |                                                          | NG SERVICI                    |          | DRING CON                            |                  | 12/31/      |                                 |  |  |
| W.L. B.C.R.                                                             | A.C.R. OF MINN                                           | ESOTA, INC.                   | RI       | IG CME-45                            |                  |             | <u>RM</u>                       |  |  |
| W.L.                                                                    |                                                          | APOLIS LANE<br>IS, MINN. 5544 | 1 -      | RAWN DW                              |                  | ET 1 of     | 2<br>2<br>7<br>1<br>7<br>1<br>8 |  |  |
| · · · ·                                                                 |                                                          |                               | I J C    | ов # 9277                            | ט ISHE           |             | <b>6</b>                        |  |  |

|                    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | LOG                                                                                | OF BORI                | NG NO.             | B-1                       |        |          |          |              |         |            | -  |
|--------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|------------------------|--------------------|---------------------------|--------|----------|----------|--------------|---------|------------|----|
|                    | R          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |                        | ARCHITE            |                           | GINEE  | R        |          |              | •       |            |    |
| Ford               |            | or         | Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mp     | any                                                                                |                        |                    |                           |        |          |          | ·            |         |            |    |
| SITE<br>Twin       | Cit        | les        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iss    | embly Plant                                                                        |                        | PROJECT<br>Ford Hy | 'NAME<br>drogec           | logi   |          |          |              |         |            |    |
|                    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т      |                                                                                    |                        |                    |                           | UNCONF | INED COM | APRESSIV | E STREN      | IGTH TO | NS/FT.'    |    |
|                    |            | ш          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |                        |                    | Ϋ́ω.                      | 1      | 2        | 3        | 4            | 5       | i          |    |
| DEPTH<br>ELEVATION | SAMPLE NO. | SAMPLE     | E DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERY    | DESCRIPTION OF                                                                     | MATERIAL               |                    | UNIT DRY WT<br>LBS./FT. 3 | PLAS   |          | WAT      | TER<br>ENT % |         | ۳%         |    |
|                    | MPLI       | TYPE S     | SAMPLE DIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>S |                                                                                    |                        |                    |                           | STAND  | ARD "N"  |          |              |         | –∆<br>/π.) |    |
| 3010               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |                        |                    |                           | 1(     | ) 20     | &<br>3(  |              | ) 5     | 0          | 55 |
|                    | 9          | S <u>S</u> | E Contraction of the second se |        | River deposits<br>Thinly interbedded of<br>sandy silts and very<br>(SM-ML) - moist | grayish b<br>7 fine sa | orown<br>ands -    |                           |        |          |          |              |         | •          | 22 |
| 35.0               | 10         | SS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĩ      | Light brown very fin<br>little gravel, litt                                        | ne sand w<br>le silt - | vith<br>- (SM)     |                           |        |          | 8        | 30           |         |            |    |
| 40.0               | 11         | SS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Grayish brown fine<br>and gravel with lit<br>(GM-SM) - moist to w                  | tle silt               | e sand             |                           |        |          |          |              |         |            | ×  |
| 45.0               | 12         | SS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Light brown gravel,<br>little silt - (GM) -                                        | little<br>• saturat    | sand,<br>ed        |                           |        |          |          | ⊗ 3          |         |            |    |
| <del>50.(</del>    | 112        | ss         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Light brown very fi<br>silt, little gravel                                         | ne sand,<br>- (SM)-    | some<br>- sat.     |                           |        |          | 8        | 27           |         |            |    |
|                    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | End of boring at 51<br>2" PVC well install                                         | .0 feet.<br>ed         | •                  |                           |        |          |          |              |         |            |    |
|                    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MN-COM                                                                             | P 004432               | 3                  |                           |        |          |          |              |         |            | 2  |
|                    |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    | •.                     |                    |                           |        |          |          |              |         |            |    |
|                    | WAT        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VF     | OBSERVATIONS                                                                       |                        |                    |                           | BORI   | NG STA   | RTED     |              | 12/2    |            |    |
| W.L.               | -          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    | OIL TEST               | ING SERV           | ICES                      |        | NG CO    | MPLET    |              | 12/3    |            |    |
| W.L.               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.C    |                                                                                    | OF MINN                | ESOTA, INC.        |                           | RIG    | CME-     |          | FORE         |         | RM         |    |
| W.L.               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |                        | APOLIS LAN         |                           | DRAV   | VN D     | W B      |              | OVED    |            |    |
|                    | T          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    | WINTER VI              |                    |                           | JOB    | # 92     | 776      | SHEE         | T 2     | of 2       |    |

1 1

Bolton School of School of

A
 Webb as a present station of a

n in the second second

Maria - Al

and a second sec

į. s

, ¢

184 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144

.\*\*

w<sup>3</sup>

**1** (01)

, i

| •                                |                                                    |              | i<br>F          | LOG OF BORI                                            |                                      | 2                    |            |                     |       |                      |            |           |
|----------------------------------|----------------------------------------------------|--------------|-----------------|--------------------------------------------------------|--------------------------------------|----------------------|------------|---------------------|-------|----------------------|------------|-----------|
| OWNER                            |                                                    |              |                 |                                                        | ARCHITE                              | CT-EN                | GINEE      | R                   |       | •                    | •          |           |
| Ford Mot                         | tor                                                | Con          | ipa             | iny                                                    | PROJECT                              | NAM                  | F          |                     |       |                      |            |           |
| SITE                             | - i a                                              | Δ.           |                 | embly Plant                                            | Ford Hy                              |                      |            | c Stu               | dy    |                      |            |           |
| 1 1                              | T                                                  | - T.         | T               |                                                        | UNCONFINED COMPRESSIVE STRENGTH TONS |                      |            |                     |       |                      | NS/FT.     |           |
|                                  |                                                    |              |                 |                                                        |                                      | МТ.<br>Э             | 1          | 2                   | C     | )<br>3 4             | 5          | 5         |
| NOL NON                          | PLE                                                |              |                 | DESCRIPTION OF MATERIAL                                |                                      |                      | PLAS       | TIC                 | WA    | TER                  | LIQ        |           |
| TH AT                            | SAN                                                | LE<br>V R B  |                 |                                                        |                                      | UNIT DRY<br>LBS./FT. | LIMI<br>X— | Г%<br>— — —         | CONT  | ENT %                |            | г %<br>Д  |
| DEPTH<br>ELEVATION<br>SAMPLE NO. | L H                                                | SAMPLE DIST. |                 |                                                        |                                      | CNI                  | STAND      | ARD "N              |       | TRATION              |            |           |
| ZT   "                           | IF.                                                | να           | s               | SURFACE ELEVATION 7 715.77                             |                                      |                      | 10         | ) 2(                | ) 3   | 0 40                 | ) 5        | 0         |
|                                  | 1.                                                 |              | $\top$          |                                                        |                                      |                      |            |                     |       |                      | с.<br>14   |           |
|                                  | 1                                                  |              |                 | · · · · · · · · · · · · · · · · · · ·                  |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 | Boulders, cobble and concret<br>from 0'-6.0'           | e block                              |                      |            | [                   |       |                      |            | ۰.        |
| 5.0                              |                                                    |              |                 | Removed with backhoe                                   |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 |                                                        |                                      |                      |            |                     |       |                      | •          |           |
|                                  |                                                    | ┝╌┠╴         | +               |                                                        |                                      |                      |            |                     | ·     |                      |            |           |
|                                  | . <b> </b>                                         | ┟╷╢          | $\mathbf{H}$    |                                                        |                                      |                      |            |                     | 5 20  |                      |            |           |
| 1                                | SS                                                 | μμ           |                 | Fill, dark brown gravel, sla                           | ng,                                  |                      |            | Q                   | g 20  |                      |            |           |
| 10.0                             | $\Box$                                             |              | ן<br>ר          | sand and clay , moist                                  | •                                    |                      |            |                     | •     |                      |            |           |
| 2                                | ss                                                 |              |                 | •                                                      | •                                    |                      |            | Q                   | 20    |                      |            |           |
|                                  | 1                                                  |              | 1               |                                                        |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 |                                                        |                                      |                      |            |                     |       |                      | $\searrow$ |           |
| 15.0                             | 1-                                                 |              | ╁╴              |                                                        | i                                    |                      |            |                     |       |                      |            | $\square$ |
| 3                                | ss                                                 | III P        | Щ,              | Dark brown fine to coarse sa                           | and.                                 |                      |            |                     |       |                      |            | · ·       |
|                                  |                                                    | Π            |                 | trace silt - (SP), moist                               |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 |                                                        |                                      |                      |            |                     |       |                      |            | $\bigvee$ |
|                                  |                                                    |              |                 | ,                                                      | -<br>-                               |                      |            |                     |       |                      |            |           |
| 20.0                             |                                                    | ╉╋           |                 | Light brown, very fine to me                           | edium                                |                      | -          |                     |       |                      | 6 40       |           |
| <sup>*-</sup>                    |                                                    |              |                 | sand, trace silt - (SP), wet                           |                                      |                      |            |                     |       | 1. 1                 |            |           |
|                                  |                                                    | +            | ╋               |                                                        |                                      |                      |            |                     | ·     | +                    |            |           |
|                                  |                                                    |              |                 |                                                        | •                                    |                      |            |                     |       | /                    |            |           |
| 25.0                             |                                                    |              | 111             | Light brown fine to coarse with some gravel, trace sil |                                      |                      | 1          |                     |       | 8                    | 34         |           |
| 5                                | -155                                               |              |                 | (SW-SP), wet to saturated                              |                                      |                      |            | 1                   |       |                      | 1          |           |
|                                  |                                                    |              |                 | •                                                      |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 | MN-COMP 00                                             | 44324                                | ·                    |            |                     |       |                      |            |           |
| 30.0                             | +-                                                 | ┼╢           |                 |                                                        |                                      |                      | ł          |                     |       |                      | 37         |           |
| 6                                | S                                                  |              | _               |                                                        |                                      |                      |            |                     |       |                      |            |           |
|                                  |                                                    |              |                 | Continued                                              |                                      |                      |            |                     |       |                      |            |           |
| WAT                              | ER                                                 |              |                 | OBSERVATIONS                                           |                                      |                      | BORIN      | G STAI              | ATED  |                      | 1/18/      |           |
|                                  | WATER LEVEL OBSERVATIONS<br>W.L. 29.5' W.S. SOIL T |              |                 |                                                        | NG SERVIC                            | CES                  | BORIN      | IG CO               | MPLET | ED 1                 | 1/18/      | 81        |
| W.L.                             | L. B.C.R. A.C.R. OF MINN                           |              | A.C.R. OF MINNE | SOTA, INC.                                             |                                      | 1                    | ME-4       |                     |       | <u>aan R</u><br>dved |            |           |
| W.L.                             |                                                    |              |                 | MINNEAPOLI                                             |                                      |                      |            | <u>n DW</u><br># 92 |       | SHEET                |            |           |

.

| OWNE               | R          |          |                  |                                                     | ARCHITECT-ENGINEER             |                      |       |               |          |           |        |          |
|--------------------|------------|----------|------------------|-----------------------------------------------------|--------------------------------|----------------------|-------|---------------|----------|-----------|--------|----------|
| Ford               |            | or       | Con              | pany                                                |                                |                      |       |               |          |           |        | -        |
| SITE               |            |          |                  |                                                     | PROJECT                        | T NAM                | E     |               |          |           |        |          |
| Twin               | Cit        | ies      | A                | sembly Plant                                        | Ford Hyd                       | Irogeo               |       |               |          |           |        |          |
| 1                  |            |          | Τ                |                                                     |                                | • •                  | UNCON | FINED CO      | OMPRESS  | IVE STRA  | NGTH T | JNS/FT   |
| _                  |            | w.       | F.               |                                                     |                                | Ϋ́ε.                 |       | 1             | 2        | 3         | 4      | 5        |
| DEPTH<br>ELEVATION | SAMPLE NO. | MPL      | SAMPLE DIST.     | DESCRIPTION OF MATERI                               | AL                             | UNIT DRY<br>LBS./FT. |       | STIC          |          | TER       |        | סוטג     |
| HEY                | щ          | SA       | ШZ               |                                                     |                                | H D                  |       | IT %<br>— — — |          | ENT 9     | 6 LIM  | IT %     |
|                    | MP         | ΡE       | AMA              |                                                     | -                              | - Z                  | STAN  | DARD "        | N" PENE  | TRATION   | BLOW   | ร/กัว    |
| 3010               | ີ່         | 14       | νa               | SURFACE ELEVATION                                   |                                |                      |       | 10 2          | 20 2     | 8<br>30 4 | 10     | 50       |
| 3010               |            |          | 訲                |                                                     |                                |                      | Γ     | -             |          | $\otimes$ | 37     | T        |
|                    |            |          |                  | (SW-SP)                                             |                                |                      |       |               |          |           | ĸ      |          |
|                    | 1          |          |                  |                                                     |                                |                      |       |               |          |           |        | 1        |
|                    |            |          |                  |                                                     |                                | 1                    | 1     |               |          | 1         |        | N        |
| 35.0               | 1          | <b> </b> | $\left  \right $ | 4                                                   |                                |                      | 1     |               |          |           |        |          |
| <u></u>            |            | ss       |                  |                                                     |                                |                      | 1     | 1             |          |           |        |          |
|                    | 1          | 1        |                  | Brown, fine to coarse san                           | d with                         |                      | 1     |               |          |           |        |          |
|                    | 1          |          |                  | little gravel, extremely                            | dense -                        |                      |       |               |          |           |        |          |
|                    | ]          |          | ŀŀ               | (SW), saturated                                     |                                | 1                    | [     |               |          |           |        |          |
| 40.0               | ]          |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
|                    | ]          |          |                  |                                                     |                                |                      | 1     |               | ·        |           |        |          |
|                    |            |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
|                    | ]          |          |                  |                                                     |                                |                      |       |               |          |           | 1      |          |
| 44.5               |            |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
| 44.2               | 1          |          |                  |                                                     |                                | 1                    |       |               | 1        |           | 1      | 1        |
|                    | 1          |          |                  | End of boring at 44.5 fee<br>2 " PVC well installed | t                              |                      |       |               |          |           |        |          |
|                    | 1          |          |                  | 2 PVC Well installed                                |                                |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     |                                |                      | ·     |               |          |           |        |          |
|                    | 1          |          |                  |                                                     | i                              |                      |       |               |          |           |        |          |
|                    | ]          |          |                  |                                                     | :                              |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
|                    | 1          |          |                  | • • • •                                             |                                |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     | ,                              |                      | 1     |               |          |           |        |          |
|                    | 1          |          |                  |                                                     | •                              |                      |       |               |          |           |        |          |
|                    | 1          |          |                  | MN-COMP (                                           | 044325                         |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     |                                |                      |       |               |          |           |        | l        |
|                    | 4          |          |                  |                                                     | •                              |                      |       |               |          |           |        |          |
|                    | 1          |          |                  |                                                     |                                |                      | I     |               |          |           |        |          |
|                    | 1          |          |                  |                                                     | :                              | 1                    |       |               |          |           |        | <b>.</b> |
|                    | 1          | 1        |                  |                                                     |                                |                      | 1     |               | ľ        |           |        |          |
|                    | 7          |          |                  |                                                     |                                |                      |       |               |          |           |        |          |
| Y                  |            |          |                  | LOBSERVATIONS                                       |                                |                      | BORI  | NG STA        | RTED     |           | /18/8  | 1        |
| W.L.               |            | 29.      |                  |                                                     | STING SERVI                    | CES                  | BORI  | NG CO         | MPLET    |           |        | RM       |
| W.L.               | <u> </u>   |          | B.C              | R. A.C.R. OF MI                                     | NNESOTA, INC.<br>NNAPOLIS LANE |                      |       | CME-4         | 15<br>)W | FORE      |        | RJK      |
| W.L.               |            |          |                  |                                                     | OLIS, MINN. 554                |                      | DRAV  |               |          | +         | OVED   |          |
| 1 1                |            |          |                  |                                                     |                                |                      | 1.10B | # 927         | 76       | LSHEF     | т 2    | OT 7     |

|                                          |                                       |          |           |            |         | LOG OF BOF                                     | ORING NO. 3              |                                             |                       |                            |  |  |  |  |  |
|------------------------------------------|---------------------------------------|----------|-----------|------------|---------|------------------------------------------------|--------------------------|---------------------------------------------|-----------------------|----------------------------|--|--|--|--|--|
|                                          | OWNE                                  |          |           |            |         |                                                | ARCHITE                  | CT-EN                                       | IGINEER               |                            |  |  |  |  |  |
|                                          | Ford                                  | Mot      | or        | Co         | om      | bany                                           | 000150                   | T                                           | <b>E</b>              |                            |  |  |  |  |  |
|                                          | SITE                                  | Cit      | ies       | ; <i>I</i> | ۱s      | sembly Plant                                   | PROJEC<br>Ford Hy        |                                             | ⊏<br>ologic Study     |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         |                                                | 1.0.4.1.9                |                                             |                       | SIVE STRENGTH TONS/FT.     |  |  |  |  |  |
| F.                                       |                                       | ,        | u u       |            |         |                                                |                          | з¥Т.                                        | n   1   2   3   4   5 |                            |  |  |  |  |  |
| 2 - 1<br>                                | LION                                  | о́х      | SAMPLE    | DISIO      | VERY    | DESCRIPTION OF MATERIAL                        |                          | 7.                                          | PLASTIC W             | ATER LIQUID                |  |  |  |  |  |
| 1 - A                                    | DEPTH<br>ELEVATION                    |          | SAI       | Щ          | NEF     |                                                | •<br>:                   | UNIT DRY<br>LBS./FT.                        |                       | TENT % LIMIT %             |  |  |  |  |  |
|                                          | DE                                    | SAMPLE   | TYPE      | SAMPLE     | й<br>Ш  |                                                |                          | CN CN                                       | STANDARD "N" PE       | NETRATION (BLOWS/FT.)      |  |  |  |  |  |
| 211-10<br>Prefer tel                     | X                                     | 0)       |           | Ľ          |         | SURFACE ELEVATION 7 701.99                     |                          | 1                                           | 10 20                 | <u>8</u><br>30 40 50       |  |  |  |  |  |
| ы.                                       |                                       | 1        | ss        |            |         |                                                |                          |                                             | ⊗ 3                   |                            |  |  |  |  |  |
| Maria                                    |                                       |          |           |            |         | Dark brown very fine sand,                     |                          |                                             |                       |                            |  |  |  |  |  |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                       | 2        | ss        | Ш          | $\prod$ | some silt, trace to some or (SM-OL), moist     | yanic -                  |                                             | ⊗ 3                   |                            |  |  |  |  |  |
| Б                                        | 5.0                                   | <b>-</b> | F-        | Щ          |         |                                                |                          |                                             |                       |                            |  |  |  |  |  |
| - II                                     |                                       | 2        | ss        | Ħ          | Ħ       |                                                |                          |                                             | 84                    |                            |  |  |  |  |  |
| :                                        |                                       | 3        | 53        | Ш          |         | A total to have a surger fitter and            | <b>.</b>                 |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       | 4        | ss        | Ш          | Ш       | Light brown, very fine sand silt - (SP), moist | , trace                  |                                             | 8.7                   |                            |  |  |  |  |  |
|                                          | <u>4 55 10.0</u>                      |          |           |            |         |                                                | • .<br>4 .               |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           | Щ          | Π       |                                                | :                        |                                             |                       |                            |  |  |  |  |  |
| ÷ ~                                      |                                       | 5        | <u>ss</u> | Щ          |         | Brown fine to medium sand,                     |                          |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         | little gravel - trace silt<br>moist to wet     | - (SP)-                  |                                             |                       |                            |  |  |  |  |  |
| 1 1                                      |                                       |          | -         | Н          |         |                                                |                          |                                             |                       |                            |  |  |  |  |  |
| 7 <b>7</b>                               | 15.0                                  | 6        | ss        |            |         | Brown medium to coarse sand                    | . with                   |                                             |                       | 8 29                       |  |  |  |  |  |
| 4                                        | · · · · · · · · · · · · · · · · · · · |          | 1         | j-1        |         | some gravel, trace silt - s                    | hell                     |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         | fragments - (SW) - saturate                    | 1                        |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         |                                                |                          |                                             |                       | ┟┟────┤────┤────           |  |  |  |  |  |
|                                          | 20.0                                  | 7        | ss        | $\Pi$      |         |                                                |                          |                                             |                       | 28                         |  |  |  |  |  |
| ť.                                       |                                       | ľ        | Ē         | μu<br>Ι    | Π       | Gray fine to coarse sand, t                    |                          |                                             |                       |                            |  |  |  |  |  |
| ż.                                       |                                       |          |           |            |         | silt, some gravel and cobbl (SW) - saturated   | e -                      |                                             |                       |                            |  |  |  |  |  |
| Januar -                                 |                                       |          |           |            |         |                                                | i                        |                                             |                       |                            |  |  |  |  |  |
| ÷<br>¥                                   | 25.0                                  |          | 1         | T          |         | End of boring at 24.5 ft.                      | i                        |                                             |                       |                            |  |  |  |  |  |
| *                                        | <u> </u>                              | ļ        |           |            |         | 2" PVC well installed                          |                          |                                             |                       |                            |  |  |  |  |  |
| 2                                        |                                       | 1        |           | •          |         |                                                |                          |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         |                                                | 4<br>                    | .<br>                                       |                       |                            |  |  |  |  |  |
| territy of the second                    | MN-COMP (                             |          |           |            |         |                                                | 26                       |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           | 1          |         |                                                |                          |                                             |                       |                            |  |  |  |  |  |
|                                          |                                       |          |           |            |         |                                                | •                        |                                             |                       |                            |  |  |  |  |  |
|                                          | W                                     |          |           |            |         | OBSERVATIONS                                   |                          | 'ť                                          | BORING STARTED        | · 11/17/81                 |  |  |  |  |  |
|                                          |                                       |          |           |            |         |                                                |                          |                                             | BORING COMPLET        | ED 11/17/81                |  |  |  |  |  |
|                                          | V.L. B.C.R. A.C.R.                    |          |           |            | ;.R     | 2405 ANNA                                      | SOTA, INC.<br>POLIS LANE | f                                           | DRAWN DW              | FOREMAN RM<br>APPROVED RJK |  |  |  |  |  |
| н<br>                                    |                                       |          |           |            |         | MINNEAPOLI                                     | S, MINN. 5544            | 11. 1                                       | JOB # 92776           | SHEET 1 of 1               |  |  |  |  |  |
| 5                                        | [                                     | <u></u>  |           |            |         | The stratiti                                   | cation lines             | 15 h 21 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 | sent the approxi      |                            |  |  |  |  |  |

| LOG OF BOR                                                                                                               | RING NO. 4         |                                                       |
|--------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|
| OWNER                                                                                                                    | ARCHITECT-E        | NGINEER                                               |
| Ford Motor Company                                                                                                       | PROJECT NA         | ME                                                    |
| SITE<br>Twin Cities Assembly Plant                                                                                       | Ford Hydrog        | geologic Study                                        |
| Iwin citles assembly France                                                                                              |                    | UNCONFINED COMPRESSIVE STRENGTH TONS/FT.'             |
| NOLL NOL WING WE SURFACE ELEVATION 7 705.47                                                                              |                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| Brown clay with some very                                                                                                | fine *             |                                                       |
| 1       SS       Brown very fine sand, trac         (SP)       Lenses of black organic si         2       SS       moist | lt (OL) -          | ⊗ 13                                                  |
| 5.0 Black fill - fine to mediu                                                                                           | m sand             |                                                       |
| 3 SS with graveland slag, moist                                                                                          |                    | 8.16                                                  |
|                                                                                                                          |                    | ⊗ 44                                                  |
| 5 SS                                                                                                                     |                    | ⊗ 28                                                  |
| 15.0<br>6 SS Brown fine to coarse sand<br>some gravel, trace silt -<br>wet to saturated                                  | with<br>(SW-SP) -  | ⊗ 52                                                  |
| 20.0<br>7 SS                                                                                                             |                    | ⊗ 24                                                  |
|                                                                                                                          | 44327              |                                                       |
|                                                                                                                          |                    |                                                       |
| 30.0End of boring at 29.5 ft2" PVC well installed<br>*sand (CL)- moist                                                   | •                  |                                                       |
|                                                                                                                          | 1                  | BORING STARTED 11/19/81                               |
| WATER LEVEL OBSERVATIONS<br>W.L. 19.5' W.S. SOIL TI                                                                      | STING SERVICE      | BORING COMPLETED 11/19/81<br>BIG CME-45 FOREMAN RM    |
| A.C.R. OF                                                                                                                | AINNESOTA, INC.    | RIG CME-45 FOREMAN RM<br>DRAWN DW APPROVED RJK        |
| 2405                                                                                                                     | ANNAPOLIS LANE     | DRAWN DW ATTROTED                                     |
| W.L. MINNE/                                                                                                              | POLIS, MINN. 55441 | JOB # 92776 SHEET 1 of 1                              |

|                    |            |             |                  |             |                                                   | MINNEAPOLIS,                      | MINN. 55441        |                                         | OB #     |         |           |                         | 1 of           |                   |
|--------------------|------------|-------------|------------------|-------------|---------------------------------------------------|-----------------------------------|--------------------|-----------------------------------------|----------|---------|-----------|-------------------------|----------------|-------------------|
| N.L.               |            |             |                  |             |                                                   | OF MINNES<br>2405 ANNAPO          | LIS LANE           |                                         | RAWN     |         | 1         |                         | AN RM<br>VED R |                   |
| N.L.               |            |             | W                |             | A.C.R.                                            | SOIL TESTIN                       | i SERVICE          | S B                                     | ORING    | COM     |           |                         | 20-81          |                   |
|                    | <u>14.</u> |             |                  |             | OBSERVATIONS                                      |                                   |                    |                                         |          | STAR    |           |                         | 20-81          |                   |
|                    | <u> </u>   |             | Ţ                | L           |                                                   | · • .                             |                    |                                         |          |         |           |                         |                |                   |
|                    |            | I           |                  |             |                                                   | •                                 |                    |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             |                                                   |                                   |                    | I                                       |          |         |           |                         |                | •                 |
|                    |            |             |                  |             |                                                   |                                   | -                  |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             |                                                   | MN-COMP 004                       | 4328               | ľ                                       |          |         |           |                         |                |                   |
|                    |            |             |                  |             | • • • •                                           |                                   |                    |                                         |          |         |           | l                       |                |                   |
|                    | ľ          |             |                  |             | *(OL-GM)                                          |                                   |                    |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             | 1                                                 |                                   |                    |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             |                                                   |                                   |                    |                                         |          |         |           |                         |                |                   |
|                    |            | ·           |                  |             | i                                                 |                                   |                    |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             | ground surrace                                    | •                                 |                    |                                         |          |         |           |                         |                |                   |
|                    |            |             |                  |             | Boring grouted ground surface                     | rrom bottom t                     | o                  | Į                                       |          |         |           |                         | 1              |                   |
|                    | ł          | - • .       | ·                |             | End of boring                                     | at 19.5 feet.                     |                    | [                                       |          |         | 1         |                         | 1              |                   |
| 20.0               |            |             | щ                | -           |                                                   |                                   |                    | ŀ                                       |          |         | <u> </u>  |                         | <u> </u>       |                   |
|                    | 7          | ss          |                  |             | saturated                                         | u ciuj (u                         |                    | l                                       | •        |         |           |                         | 1              |                   |
|                    |            |             |                  | $\square$   | trace sand and                                    | trace clay (G                     |                    |                                         |          |         |           | .                       | 1              |                   |
|                    |            |             |                  |             | Light brown gr                                    |                                   |                    |                                         |          |         |           |                         |                |                   |
|                    | 6          | ss          | Щ                | Щ           | and little cla                                    | <u>y - (GC)</u> - satu            | rated              |                                         |          |         |           |                         |                |                   |
| 15.0               |            |             |                  |             | Grav gravel an                                    | d cobble litt                     | In could           |                                         |          |         |           |                         |                | $ \left  \right $ |
|                    |            |             | $\left  \right $ | 4           | Strong Solvent                                    | d with some si                    | It (SM)            |                                         |          |         | ļ         | $\mid$                  | 5              |                   |
|                    |            |             |                  | ſ           | SOLVENT ODOR,                                     | moist                             |                    |                                         |          |         | $\square$ | $\overline{\mathbf{k}}$ |                |                   |
|                    |            |             |                  | 1           | Gray very fine<br>trace to littl<br>SOLVENT ODOR, | to fine sand,                     | with               |                                         |          | 10 X    |           | 1                       | -              |                   |
|                    | 5_         | SS_         |                  | Щ           | lenses of hlad                                    | ·k cil+ … (/ML)                   |                    |                                         |          | ø.      |           |                         | 1              |                   |
| 10.0               |            |             | H                | -           | very fine sand                                    | t with trace t<br>I, horizontal s | o little           |                                         |          | 1       |           |                         | 1              |                   |
|                    | 4          | SS          | Щ                | Щ           | little silt -                                     | (SM-SP) - moist<br>t with trace t |                    |                                         |          |         | \$ 20     |                         |                |                   |
|                    |            |             | Π                | Πİ          | Dark brown ver                                    | y fine sand, t                    | race to            | <b> </b>                                |          |         |           | $\vdash$                |                |                   |
|                    |            |             | 1-1              |             | trace silt - (                                    | (GP), moist                       |                    |                                         |          |         |           |                         | \$ 40          |                   |
|                    | 3          | ss          |                  | Щ           | Gravel and cot                                    | ble, some fine                    | sand,              |                                         |          |         |           |                         |                |                   |
| 5.0                |            |             | H                | H           |                                                   |                                   |                    |                                         |          |         |           | +-                      |                |                   |
|                    |            | Ĕ           | Ш                | $\square$   |                                                   |                                   |                    |                                         |          |         |           |                         | 36             | 1                 |
|                    | 2          | ss          | III              | Ш           | silt, some gra                                    | avel - (SP) - m                   | oist               |                                         |          |         |           | Χ_                      |                | <b>.</b>          |
|                    |            |             | ľ                | Π           | Brown medium                                      | to coarse sand,                   | trace              | <u> </u>                                |          | +       | $\wedge$  |                         |                | ┼─-               |
|                    | 1          | ss          |                  |             | with some coal                                    | psoil, organic<br>rse sand and g  | SIIT<br>avel - *   |                                         |          | 8       | 18        |                         |                |                   |
|                    |            |             |                  | ╞╌┨         | SURFACE ELEVATIO                                  | + 701.5'                          |                    |                                         |          | 10      | 20        | 8 <u></u><br>30         | 40             | 50                |
|                    | SA         | ξ           | SA               | Ë           | SUPEACE ELEVATIO                                  |                                   |                    | 5                                       | STAP     | NDARD ' | 'N'' PEI  | NETRATIO                | N (BLOW        | S/FT              |
| DEPTH<br>ELEVATION | SAMPLE     | TYPE SAMPLE | MP               | Ó           |                                                   |                                   |                    | UNIT DRY<br>LBS./FT.                    | X-       |         |           | -•                      |                |                   |
| HT<br>VAT          |            | SAN         | μ                | /ER         | · · ·                                             |                                   |                    | E C C C C C C C C C C C C C C C C C C C |          | ASTIC   |           | ATER                    | LIC<br>LIM     | םוטנ              |
| NO                 | o<br>Z     | Ē           | LSIC             | <b>&gt;</b> | DESCRIP                                           | TION OF MATERIAL                  | ۰.                 | L WT.                                   |          | 1       | 2         | 3                       | 4              | 5                 |
|                    |            | Гш.         |                  |             |                                                   |                                   |                    | F                                       |          |         |           | -0                      |                |                   |
| }                  | <b></b>    | T           | Т                |             |                                                   |                                   | Tiona inj          | T                                       |          |         |           | SIVE ST                 | RENGTH T       | ONS               |
| Twin               | Ci         | tie         | s                | As          | sembly Plant                                      |                                   | Ford Hy            |                                         |          | 1- 5+   | udu       |                         |                |                   |
| Ford<br>SITE       | MO         | tor         | <u> </u>         | Off         | pany                                              |                                   | PROJEC             |                                         | <u> </u> |         |           |                         |                |                   |
|                    |            |             | -                |             |                                                   |                                   | ARCHITE            |                                         | IGINE    | :EH     |           |                         | •              |                   |
| OWNE               | -11        |             |                  |             |                                                   |                                   | ARCHITECT-ENGINEER |                                         |          |         |           |                         |                |                   |

| <u></u>            |        |        |        |                                 | LOG OF BOP       |                         |                      |        |              |                |                |              |            |
|--------------------|--------|--------|--------|---------------------------------|------------------|-------------------------|----------------------|--------|--------------|----------------|----------------|--------------|------------|
| OWNE               |        |        |        | •                               |                  | ARCHITE                 | CT-EN                | IGINE  | ER           |                |                |              |            |
| Ford               | Mot    | or     | Co     | mpany                           |                  | PROJECT                 | F                    | r=     |              |                |                |              |            |
|                    | Cit    | ie     | s A    | ssembly Plant                   |                  | Ford Hyd                |                      |        | c Stu        | dv.            |                | •            |            |
|                    |        | ,      | ГТ     | T                               |                  | 1                       | Г <u></u>            |        |              | •              | SIVE STRI      | ENGTH T      | 0          |
|                    |        |        |        |                                 |                  |                         | <u>ب</u>             |        |              |                | 0              |              | _          |
| NO                 | o<br>N | PLE    | DIST   | DESCRIP                         | TION OF MATERIAL |                         | 1. WT                |        | 1            | 2              | 3 4 5          |              |            |
| TH<br>ATI          |        | SAMPLE | UPLE D |                                 |                  |                         | 0.<br>./F            |        | STIC         | CON            | ATER<br>TENT 9 | LIC<br>LIM ک | )U<br>IIT  |
| DEPTH<br>ELEVATION | SAMPLE | ТҮРЕ   | SAMPLE |                                 |                  |                         | UNIT DRY<br>LBS./FT. | X-     |              |                | •              |              |            |
|                    | SA     | ≿      | SA     | SURFACE ELEVATIO                | 759 93'          |                         | 2                    |        |              |                | ETRATION       |              |            |
| $\sim$             |        |        |        |                                 |                  |                         |                      |        | 6            | 20             | <u>30 4</u>    | 10<br>T      | 50<br>T    |
|                    | 1      | SS     |        | -                               |                  |                         |                      | Ø      |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        | $\mathbb{N}$ |                |                |              |            |
|                    | 2      | ss     | Hμ     |                                 |                  |                         |                      |        |              | \$ 21          |                |              |            |
| 5.0                |        |        |        |                                 | đ                |                         |                      |        |              |                |                |              |            |
|                    | 3      | RB     |        |                                 |                  |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        | ł            |                |                |              |            |
| 10.0               |        |        |        |                                 |                  |                         | - 14<br>14           |        |              |                |                |              |            |
|                    |        |        |        | Fill; rubble,<br>and green shal | cobble, grave    | l, sand                 |                      |        |              |                |                |              |            |
|                    |        |        |        | moist                           |                  | ay .                    |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
| 15.0               |        |        |        |                                 | -                | ;                       |                      |        |              |                |                |              |            |
| 13.0               |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                | l ·          |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              | <b>.</b> .     |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
| 20.0               |        |        |        |                                 | <i>،</i>         |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  | ۰<br>ب                  |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 | -                |                         |                      |        |              |                | · ·            |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              |                |                |              |            |
| 25.0               |        |        | ₩      |                                 |                  |                         |                      |        |              | <u> </u>       |                |              |            |
|                    |        |        |        | Boulder (Limes                  | tone)            |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 |                  |                         |                      |        |              | 1              | 1              |              | $\dagger$  |
|                    |        |        | 111 :  | White Sandstor                  | e                |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 | rmation          |                         | •                    |        |              |                |                |              |            |
| 30.0               |        |        |        | ,<br>,                          |                  |                         |                      |        |              |                |                |              |            |
|                    |        |        |        |                                 | MN-COMP 004      | 4329                    |                      |        |              |                |                |              |            |
|                    |        |        |        | Continued                       |                  |                         |                      |        |              |                |                |              |            |
|                    | ATER   |        |        | OBSERVATIONS                    | <b>T</b>         | l                       | Į                    |        |              |                |                |              | L          |
| W.L.               | 112H   |        | Dry    |                                 | SOIL TESTIN      |                         |                      | BORING | ****         | ITED<br>APLETE |                | 8/81         | <u>R</u> 1 |
| W.L.               |        |        | 3.C.F  |                                 |                  | IU JENVIU<br>BOTA, INC. | 50 F                 | RIG C  |              |                | FOREM          |              | R۲         |
| W.L.               |        |        |        |                                 | 2405 ANNAI       | POLIS LANE              | . [                  | DRAWN  | I DW         |                | APPRO          | VED I        | RJ         |
|                    |        |        |        |                                 | I MINICAPULIS    | JOB # 92776 SHEET 1     |                      | 1 0    | F            |                |                |              |            |

•

Second Second

Parameter States

A CONTRACTOR OF

AND BEAM AND AND

An and a second

Real Contraction

\*\*\*\*

1

| OWNE               | 0      |             |              |             |                                          | OF BORING                             | CHITE     | T-EN                 | GINEE                                     | R      |         | ,       |         |            |
|--------------------|--------|-------------|--------------|-------------|------------------------------------------|---------------------------------------|-----------|----------------------|-------------------------------------------|--------|---------|---------|---------|------------|
|                    |        | oto         | r I          | Cor         | npany                                    |                                       |           |                      |                                           |        |         |         |         |            |
| SITE               |        |             |              |             | sembly Plant                             | PR<br>Fc                              | OJECT     | NAME                 | E<br>plogi                                | c Stu  | dy      |         |         |            |
|                    |        | · ·         | Π            | Π           |                                          |                                       |           | •                    | UNCONFINED COMPRESSIVE STRENGTH TO        |        |         |         |         |            |
|                    |        | ω           | Ŀ            |             |                                          |                                       |           | ЧЧ.                  | 1                                         | 2      | <br>: 3 | 4       | 5       |            |
| ATION              | NO.    | AMPL        | E DIS        | ЕЯУ         | DESCRIPTION C                            | F MATERIAL                            |           | UNIT DRY<br>LBS./FT. | PLASTIC WATER LI<br>LIMIT % CONTENT % LIN |        |         |         |         |            |
| DEPTH<br>ELEVATION | SAMPLE | TYPE SAMPLE | SAMPLE DIST. | <b>ECOV</b> | :                                        |                                       |           | LBS                  | X — -<br>STAND                            | ARD "N | •       | IRATION | (BLOWS/ | -7<br>(11) |
| 0.0                | ι<br>Ω | 1           | S            | ۳<br>۲      | SURFACE ELEVATION                        |                                       |           |                      | 10                                        | ) 2(   | 0 3     | 0 40    | ) 50    | 5          |
|                    | 3      | RВ          |              |             | White Sandstone<br>St. Peter Format      | ton                                   |           |                      |                                           | -      |         |         |         | ▲.         |
| 35.0               |        |             |              |             | End of boring at 3<br>Boring grouted fro | 4.8 feet.<br>m bottom to g            | ground    |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             | surface                                  |                                       |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             | <b>`</b>                                 | · · · · · · · · · · · · · · · · · · · |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | 4      |             |              |             | · .                                      |                                       |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             | · •                                      |                                       |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          | -                                     |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          | -<br>-                                | •<br>•    |                      |                                           |        |         |         |         |            |
|                    |        |             |              |             |                                          |                                       | •         |                      |                                           |        |         |         |         |            |
|                    | 1.     |             |              |             |                                          |                                       |           |                      | ·                                         |        |         |         |         |            |
|                    |        |             |              |             |                                          | •                                     |           |                      |                                           |        |         |         |         |            |
|                    | ]      |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | -      |             |              |             |                                          | · · · · · · · · · · · · · · · · · · · |           |                      |                                           |        |         | ·       |         |            |
|                    |        |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | 1      |             |              |             |                                          | •                                     | · .       |                      |                                           |        |         |         |         |            |
|                    | ]      |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | 4      |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | 1      |             |              |             |                                          |                                       |           |                      |                                           |        |         | 1.      |         |            |
|                    | ]      |             |              |             | IVI.                                     | N-COMP 0044                           | 330       |                      | 1                                         |        |         |         |         |            |
|                    | 1      |             |              |             |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | 1      |             |              |             |                                          | ••                                    |           |                      |                                           |        |         |         |         |            |
|                    | 1      |             |              | 1           |                                          |                                       |           |                      |                                           |        |         |         |         |            |
|                    | NAT    | ER          | LE           | VE          | OBSERVATIONS                             |                                       |           |                      |                                           | G STA  |         |         | 18/8    |            |
| W.L.               |        | Dry         |              |             |                                          | SOIL TESTING                          |           | CES                  | BORIN                                     | IG CO  | MPLET   | FORE    |         | RM         |
| W.L.               |        |             |              | 3.C.        | R. A.C.R.                                | OF MINNESO<br>2405 ANNAPOI            |           |                      |                                           | N DW   |         |         | OVED    | RJK        |
| W.L.               |        |             |              |             |                                          | MINNEAPOLIS, N                        | WINN. 554 | 41                   |                                           | #9277  |         |         | T 2 0   |            |

#### APPENDIX C

### MONITORING DATA FROM FORD REPORT

DATED MARCH 3, 1982

. .

(PAGES 6, 8 AND 9)

### Table 1

# Twin Cities Assembly Plant Groundwater Analysis Summary

3/3/82 ?

|                       |           | We        | ell No.   |           |           |         |
|-----------------------|-----------|-----------|-----------|-----------|-----------|---------|
| Dissolved Metals      | Units     | <u>B1</u> | <u>B2</u> | <u>B3</u> | <u>B4</u> | RAL myl |
| Copper                | mg/l      | 0.03      | 0.02      | 0.01      | 0.01      | Ū       |
| Cadmium               | mg/1      | 0.02      | <0.01     | <0.01     | 0.02      | 0,005   |
| Zinc                  | mg/1      | 0.06      | 0.04      | <0.02     | 0.09      |         |
| Nickel                | mg/1      | 0.07      | 0.04      | 0.02      | 0.05      | 0.15    |
| Chromium              | mg/l      | <0.05     | <0.05     | <0.05     | <0.05     | 0.12    |
| Lead                  | mg/1      | 0.12      | <0.05     | <0.05     | 0.06      | 0.02    |
| рН                    | Units     | 7.08      | 7.01      | 7.07      | 6.84      |         |
| Specific Conductivity | Uminos/cm | 985       | 1064      | 1666      | 1482      |         |
| Temperature           | °F.       | 47        | 45        | 45        | 46        |         |
| Organics              |           |           |           | /         |           |         |
| 1,2 Dichloroethylene  | ug/l      | <2        | 15        | <2        | <2        | 70      |
| Trichloroethylene     | µg/1      | 4         | 5         | <2        | <2        | 3) 100  |
| Toluene               | ug/1      | 1         | 1         | <1        | 1         | 2420    |

of chide

#### Table 3 Twin Cities Assembly Plant Groundwater Monitoring Results Dissolved Metals March 3, 1982

|          | <u>B1</u> | <u>B2</u> | <u>B3</u> | <u>B4</u> |
|----------|-----------|-----------|-----------|-----------|
| Lead     | 0.12      | <.05      | <.05      | 0.06      |
| Chromium | <.05      | <.05      | <-05      | <.05      |
| Nickel   | 0.07      | 0.04      | 0.03      | 0.05      |
| Zinc     | 0.06      | 0.04      | <.02      | 0.09      |
| Cadmium  | 0.02      | <.01      | <.01      | 0.02      |
| Copper   | 0.03      | 0.02      | 0.01      | 0.01      |

priti-ga beris das s

All values are the average of seven measurements of the same sample. Units are mg/l.

y on previsions page careto is 0.02 mg/l

:

#### TABLE 4 Twin Cities Assembly Plant Groundwater Monitoring Results Volatile Organics Narch 3, 1982

|                      | <u>B1</u> | <u>B1 (Dup)</u> | <u>B2</u> | <u>B2 (Dup</u> ) | <u>B3</u> | <u>B3 (Dup</u> ) | <u>B4</u> | <u>B4 (Dup)</u> |
|----------------------|-----------|-----------------|-----------|------------------|-----------|------------------|-----------|-----------------|
| 1,2 Dichloroethylene | <b>a</b>  |                 | 13        | 17               |           | -                | -         | _               |
| Trichloroethylene    | 4         | 3               | 5         | 5                |           |                  | -         |                 |
| Toluene              | 1         | 2               | 1         | 1                | -         | -                | 1         | 1               |

Duplicate field blanks showed no detectable levels of volatile organics.

Well casing blanks showed 4 PPB Toluene and 6 PPB methylene chloride, however these are attributed to the laboratory atmosphere.

Only detectable quantities are reported.

MN-COMP 0044334

Ó

#### APPENDIX D

Andreas and and and and

Managanananan Managanananan

Accession of the

and the second

0000000

### MONITORING DATA FROM FORD REPORT

DATED DECEMBER 1, 1982

(PAGES 5, 10, 11 AND 12)

| Table | 1 |
|-------|---|
|-------|---|

| Groundwater. | Ana | lys | is  | Summarv |
|--------------|-----|-----|-----|---------|
| Decemt       | )er | 1,  | 198 | 2       |

| Dissolved Metals                                                                 |                                                 |                                  | ,                                 | Well                              |                            |                           |                                     | River                         |                            |              |
|----------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------|---------------------------|-------------------------------------|-------------------------------|----------------------------|--------------|
| Copper                                                                           |                                                 | BI                               | B2                                | B3                                | B4                         | 85                        | R11                                 | R21                           | R31-                       |              |
| Cadmium<br>Zinc                                                                  | mg/l<br>mg/l                                    | <0.005<br>0.003                  | 0.003                             | <0.005<br>0.003                   | <0.005<br>0.005            | <0.005<br><0.001          | <0.005<br><0.001                    | <0.005<br>0.001               | <0.005                     | RAL<br>0.005 |
| Nickel<br>Chromium<br>Lead                                                       | mg/1<br>mg/1<br>mg/1                            | <0.05<br>0.06<br>≺0.05           | <b>&lt;0.05</b><br><0.02<br><0.05 | <b>&lt;0.05</b><br><0.02<br><0.05 | 0.06<br><0.02<br><0.05     | <0.05<br><0.02<br><0.05   | <0.08<br><0.02                      | <0,05<br><0.02                | <0.05                      | 0.15         |
| pH<br>Specific Conductivity<br>Temperature                                       | mg/l<br>Units<br>Umhos/cm<br><sup>O</sup> F.    | 0.005                            | 0.005<br>8.6<br>1210<br>51        | 0.004<br>9.0<br>1260<br>52        | 0.006<br>8.2<br>1580<br>53 | 0.003<br>8.4<br>942<br>51 | <0.05<br><0.002<br>8.5<br>377<br>34 | <0.05<br><0.002<br>8.6<br>380 | <0.05<br><0.002            | 0.12         |
| Volatile Organics Detect                                                         | ted                                             |                                  |                                   | •                                 | 30                         | 21                        | 94                                  | 33                            |                            |              |
| 1,2-Dichloroethylene<br>Benzene<br>Toluene<br>Chlorobenzene<br>Xylene(3 isomers) | ן/פע/<br>קע<br>אפע/1<br>געק/1<br>געק/1<br>געק/1 | B<br>ND<br><1<br>2.1<br>ND<br><1 | 22.0<br><1<br><1<br>ND<br><1      |                                   | <1<1                       | <1<br>ND                  | 3<br>ND                             | ND<br><1<br><1<br>ND<br><1    | ND<br><1<br><1<br>ND<br><1 |              |

### Note 1:

R1--Mississippi River upstream of Ford Power Plant. R2--Mississippi River near southern property boundary. R3--Mississippi River in park approx. 200 yds. south of Ford property.

### Twin Cities Assembly Plant River Sampling Results December 1, 1982

Ą,

.e 4

N4:18:0

8. -

| U                     | <0.05<br>0.001<br><0.05<br><0.02<br><0.05<br><0.002<br>8.6<br>380<br>33            | <0.05<br><0.05<br><0.05<br><0.002                    |
|-----------------------|------------------------------------------------------------------------------------|------------------------------------------------------|
| ND<br><1<br>3.0<br>ND | ND<br>< 1<br>< 1<br>ND                                                             | ND<br><1<br>≺1<br>ND                                 |
|                       | <0.001<br><0.05<br><0.02<br><0.05<br><0.002<br>5 8.5<br>5/cm 377<br>34<br>ND<br><1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

|                       | Groundwa            | ties Assemb<br>ter Analysi<br>ved Metals | s Summary                      | [v]82 ?     |                |              |                                                                                                                  |
|-----------------------|---------------------|------------------------------------------|--------------------------------|-------------|----------------|--------------|------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals      | Units               | <u>B1</u>                                | <u>B2</u>                      | <u>B3</u>   | <u>B4</u>      | <u>85</u>    |                                                                                                                  |
| Copper                | <b>mg/1</b><br>3/82 | < 0.05                                   | <0.05                          | <0.05       | <0.05          | <0.05        | and the second |
| Cadmlum               | mg/1                | 0.003                                    | 0.003                          | 0,003       | 0.005          | <0.001 ~ 0K. | detection linet                                                                                                  |
| Zinc                  | mg/1 3/s1           |                                          | << <li>&lt;0.05</li> <li></li> | < 0.05      | 0.06           | < 0.05       |                                                                                                                  |
| Nickel                | mg/1                | 30.0                                     | < 0.02                         | <0.02       | 20.02          | <0.02        |                                                                                                                  |
| Chramium              | mg/1                | «z < 0.05                                | < 0.05                         | < 0.05      | . ∂≎°<br><0.05 | <0.05        |                                                                                                                  |
| Lead                  | mg/1 -3/8           | <0.005                                   | 0.005                          | 0.004       | 0.006          | 0.003        |                                                                                                                  |
| рН                    | Units               | 7.1                                      | 8.6                            | 9.0         | . 06<br>8.2    | 8.4          |                                                                                                                  |
| Specific Conductivity | Umhos/cm            | <b>982</b><br>9 15                       | 1210                           | 1260        | 1580           | 942          | المحمو<br>مسيح                                                                                                   |
| Temperature           | °F.                 | 47                                       | 1064<br>51                     | / 666<br>52 | 1 482.<br>53   | 51           |                                                                                                                  |

Table 5

MN-COMP 0044338

· · · · · · · · ·

and the set

And the set

47 1.68

is detection limit 2,005 or 20.05 Compose to summary tuble 2pg previous

|                                       |       |           | Twin Citie<br>Groundwater<br>Volatile | • Analys     | is Summ   | harv $\lambda$ | (2/er, 3] |                          |           |                |     |                           |
|---------------------------------------|-------|-----------|---------------------------------------|--------------|-----------|----------------|-----------|--------------------------|-----------|----------------|-----|---------------------------|
|                                       | Units | <u>B1</u> | B1<br>Duplicate                       | <u>B2</u>    | <u>B2</u> | <u>B3</u>      | <u>B3</u> | <u>B4</u>                | <u>B4</u> | <u>B5</u>      | B5  |                           |
| 1,2-Dichloroethylene                  | _ug/1 | ND        | ND                                    | 21.3         | 22.6      | ND             | <2        | 8.1                      | 5.3       | ND             | ND  |                           |
| Benzene                               | ug/1  | <1        | < 1                                   | <1           | <1        | <1             | <1        | <1                       | <1        | <1             | <1  |                           |
| Toluene                               | 1/ویر | 1.9       | 2.2                                   | (1.1)        | <1        | <1             | 1.6       | 0.6                      | ¢0.1      | 0.6            | 0.5 | why 21 a<br>summary fable |
| Chlorobenzene                         | גע/1  | ND        | ND                                    | ND           | ND        | <1             | <1        | <1                       | / <1      | ND             | ND  | it can't                  |
| Xylene (3 isomers)                    | g/1بر | <1        | <1                                    | <1           | <1        | <1             | <1        | <1                       | <1        | <1             | <1  | helow 1                   |
| · · · · · · · · · · · · · · · · · · · |       |           | 7 VS 2.1 on Sc                        | pomen in tab | u y vs    | 21 on s        |           | ) and<br>r used<br>ummar | 7 ar      | y used<br>pumm |     | 12                        |

Table 6

.

and a construction

where is rest of analytical?

### APPENDIX E

Maria a sugar

Proc. 1945 Rockowski Printerend

The second second

#### TEST PIT LOGS

TEST PIT LOG

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | <b>TP1-</b> 87               |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 12/4/87                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | ВАСКНОЕ -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

|          | DEPTH |                                                                      | ELEVATION |                                       |
|----------|-------|----------------------------------------------------------------------|-----------|---------------------------------------|
|          | t BG  | STRATIGRAPHY DESCRIPTION & REMARKS                                   | ft AMSL   | DIAGRAM                               |
|          |       |                                                                      |           |                                       |
|          | 0     |                                                                      |           |                                       |
|          | 1     | (SP) SAND, fine to medium grained,<br>trace silt, trace gravel, dry. |           |                                       |
| <b>_</b> | 2     |                                                                      |           |                                       |
| F        | 3     |                                                                      |           |                                       |
| -        | 4     | Occasional seams of sandy silt (ML)                                  |           |                                       |
| -        | 5     |                                                                      |           |                                       |
| ╞        | 6     |                                                                      |           |                                       |
| _        | 7     |                                                                      |           |                                       |
| -        | 8     |                                                                      |           |                                       |
| -        | 9     |                                                                      |           |                                       |
|          | 10    | End of Test Pit at 9.0' BGS                                          |           |                                       |
| -        | 11    | Hole backfilled                                                      |           | , , , , , , , , , , , , , , , , , , , |
|          | 12    |                                                                      |           | MN-COMP 0044341                       |
|          | 13    |                                                                      |           |                                       |
|          |       |                                                                      |           |                                       |

GNHAUP'

a y a ch ch an an an all agreed have and an and a start of a start

\_ EST PIT LOG

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | TP2-88                       |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | BACKHOE -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

|   | DEPTH<br>ft BG | STRATIGRAPHY DESCRIPTION & REMARKS                                        | ELEVATION<br>ft AMSL | DIAGRAM         |
|---|----------------|---------------------------------------------------------------------------|----------------------|-----------------|
| Γ |                |                                                                           | IC AROL              | DIAGRAM         |
|   | 0              |                                                                           |                      |                 |
|   | 1              | (SM) SAND, silty, some limestone,<br>some well rounded gravel and cobbles |                      |                 |
| Ļ | 2              |                                                                           |                      |                 |
| - | 3              |                                                                           |                      |                 |
| ŀ | 4              |                                                                           |                      |                 |
| - | 5              |                                                                           |                      |                 |
| - | 6              |                                                                           |                      |                 |
| - | 7              |                                                                           |                      |                 |
| L | 8              | Layered silt (ML) and clay (CL),<br>brown to light brown                  |                      |                 |
| - | 9              |                                                                           |                      |                 |
| - | 10             |                                                                           |                      |                 |
| - | 11             | (SP) SAND, very fine grained, brown to light brown                        |                      |                 |
|   | 12             |                                                                           |                      |                 |
|   | 13             | End of Test Pit at 12.0' BGS, Hole<br>backfilled                          |                      | MN-COMP 0044342 |
| L |                | ,<br>,                                                                    |                      |                 |

TEST PIT LOG

| IMINARY ASSESSMENT OF<br>E DISPOSAL AREAS | HOLE DESIGNATION:                 | TP2A - 88                                                                  |
|-------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|
|                                           | DATE COMPLETED:                   | 1/19/88                                                                    |
| MOTOR COMPANY                             | EXCAVATION METHOD:                | BACKHOE -                                                                  |
| PAUL, MINNESOTA                           | CRA SUPERVISOR:                   | CAT 211 LC<br>S. MOCKENHAUPT                                               |
|                                           | B DISPOSAL AREAS<br>MOTOR COMPANY | B DISPOSAL AREAS<br>DATE COMPLETED:<br>MOTOR COMPANY<br>EXCAVATION METHOD: |

|   | FT ABV. |                                           | ELEVATION |                 |
|---|---------|-------------------------------------------|-----------|-----------------|
|   | GRADE   | STRATIGRAPHY DESCRIPTION & REMARKS        | ft AMSL   | DIAGRAM         |
|   | _ 7     |                                           |           |                 |
|   | 6       |                                           |           |                 |
| ļ | _ 5     |                                           |           |                 |
| · | 4       |                                           |           |                 |
|   | 3       | (Test Pit dug into side of bluff)         |           |                 |
| ļ | _ 2     | Building rubble: very large pieces        |           |                 |
| ļ | - 1     | of concrete (>3'Ø) glass, iron,<br>lumber |           |                 |
|   | 0       | Grade                                     |           |                 |
|   | -       |                                           |           |                 |
|   | -       |                                           |           | MN-COMP 0044343 |

and a second provide provide the second provide the second provided and the second provided p

### PIT LOG

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | TP3-88                       |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | BACKHOE -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

| DEPTH       ft BG       STRATIGRAPHY DESCRIPTION & REMARKS       ELEVATION         0       702.0         1       to light brown         2       3         3       seam of black/gray silty sands (SM), very strong odor from 2.0' to 3.0'         4       BGS (sample taken)         5       clean silty sands (SM) from 3.0' to |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0     702.1       1     (SM) SAND, some gravel, 'silty, brown<br>to light brown       2       3     seam of black/gray silty sands (SM),<br>very strong odor from 2.0' to 3.0'       4     BGS (sample taken)       5       clean silty sands (SM) from 3.0' to                                                                  |       |
| <pre>1 (SM) SAND, some gravel, silty, brown<br/>1 to light brown<br/>2<br/>3 seam of black/gray silty sands (SM),<br/>very strong odor from 2.0' to 3.0'<br/>4 BGS (sample taken)<br/>5 clean silty sands (SM) from 3.0' to</pre>                                                                                                |       |
| 3 seam of black/gray silty sands (SM),<br>very strong odor from 2.0' to 3.0'<br>4 BGS (sample taken)<br>5 clean silty sands (SM) from 3.0' to                                                                                                                                                                                    |       |
| 5<br>clean silty sands (SM) from 3.0' to                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                  |       |
| 7       8       (SM) SAND, gray, some odor as 2.0'                                                                                                                                                                                                                                                                               |       |
| 9 to 3.0' BGS soil                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                  |       |
| 12End of Test Pit at 12.0' BGS13gray color and odor to 12.0 BGSHole Backfilled                                                                                                                                                                                                                                                   | 44344 |

TEST

entra real particular processo Another processo proces

TEST PIT LOG

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:         | TP4-88                       |
|---------------|---------------------------------------------------|---------------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:           | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | <b>EXCAVATION METHOD:</b> | ВАСКНОЕ -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:           | CAT 211 LC<br>S. MOCKENHAUPT |
|               |                                                   |                           |                              |

|    | DEPTH  |                                                 | ELEVATION |                 |
|----|--------|-------------------------------------------------|-----------|-----------------|
| ·L | ft BG  | STRATIGRAPHY DESCRIPTION & REMARKS              | ft AMSL   | DIAGRAM         |
|    | 0      |                                                 |           |                 |
|    | 1<br>2 | (SP) SAND, very fine grained, some silt, moist  |           |                 |
|    | 3      | occasional lenses of sandy silt (ML)            |           |                 |
| -  | 4      |                                                 |           |                 |
| +  | 5      |                                                 |           |                 |
| Ļ  | 6      |                                                 |           |                 |
| F  | 7      |                                                 |           |                 |
| Ļ  | 8      |                                                 |           |                 |
| Ļ  | 9      |                                                 |           |                 |
|    | 10     |                                                 |           |                 |
|    | 11     | End of Test Pit at 10.0' BGS<br>Hole Backfilled |           |                 |
| -  | 12     |                                                 |           | MN-COMP 0044345 |
| -  | 13     |                                                 |           |                 |
|    |        |                                                 |           |                 |

an on

to an event

e ngé kar ing

### TEST PIT LOG

Not will be used a second and the se

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | <b>TP5-88</b>                |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | BACKHOE -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

| DEPTH<br>ft BG | STRATIGRAPHY DESCRIPTION & REMARKS                              | ELEVATION<br>ft AMSL | DIAGRAM         |
|----------------|-----------------------------------------------------------------|----------------------|-----------------|
|                |                                                                 |                      | DIAGNAM         |
| 0              |                                                                 | · .                  |                 |
| L 1            |                                                                 |                      |                 |
| 2              | (CL-ML) CLAY and SILT, sandy, gray to gray/blue, moist          |                      |                 |
| 3              |                                                                 |                      |                 |
| 4              |                                                                 |                      |                 |
| 5              |                                                                 |                      |                 |
| 6              | (SP) SAND, fine to very fine grained, trace silt, trace gravel, |                      |                 |
| 7              | light brown to brown                                            |                      |                 |
| 8              |                                                                 |                      |                 |
| 9              |                                                                 |                      |                 |
| 10             |                                                                 |                      |                 |
| L 11           |                                                                 |                      |                 |
| 12             |                                                                 |                      |                 |
| 13             | End of Test Pit at 12.0' BGS<br>Hole Backfilled                 |                      | MN-COMP 0044346 |
|                |                                                                 |                      |                 |

#### тест ΡΙΤ

- 14

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | <b>TP6-88</b>                |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | BACKHOE -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

| DEPTH<br>ft BG                  | STRATIGRAPHY DESCRIPTION & REMARKS                                                          | ELEVATION<br>ft AMSL | DIAGRAM         |
|---------------------------------|---------------------------------------------------------------------------------------------|----------------------|-----------------|
| 0                               |                                                                                             |                      |                 |
| _ 1<br>_ 2<br>_ 3<br>_ 4<br>_ 5 | (ML) SILT, very sandy, occasional<br>seams of yellow SM<br>(SW-GW) SAND and GRAVEL, fine to |                      |                 |
| 6<br>7<br>8                     | coarse grained, some large well<br>rounded cobbles                                          |                      |                 |
| 9<br>10<br>11                   |                                                                                             |                      |                 |
| _ 12<br>_ 13                    | End of Test Pit at 11.0' BGS<br>Hole Backfilled                                             |                      | MN-COMP 0044347 |

LOG

e i tri de se qu'ad tri as est estas és constructiones sujercontes animarianes animarianes

## TEST PIT LOG

an a standard to a standard

An and the set

| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOLE DESIGNATION:  | <b>TP7-88</b>           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| PROJECT NO .: | 2191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE COMPLETED:    |                         |
| CLIENT:       | FORD MOTOR COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 1/19/88                 |
| LOCATION:     | ST. PAUL, MINNESOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXCAVATION METHOD: | BACKHOE -<br>Cat 211 LC |
|               | The Fine Fine of Field F | CRA SUPERVISOR:    | S. MOCKENHAUPT          |

| Γ-       | DEDMI          |                                                                             |                      | S. MOCKENHAUPT  |
|----------|----------------|-----------------------------------------------------------------------------|----------------------|-----------------|
|          | DEPTH<br>ft BG | STRATIGRAPHY DESCRIPTION & REMARKS                                          | ELEVATION<br>ft AMSL | DIAGRAM         |
|          | 0              |                                                                             |                      | DIAGRAM         |
| -        | 1              | Building rubble, concrete, railroad ties, timbers                           |                      |                 |
| Ļ        | 2              |                                                                             |                      |                 |
| -        | 3              |                                                                             |                      |                 |
| F        | 4              |                                                                             |                      |                 |
| F        | 5              |                                                                             |                      |                 |
| -        | 6              |                                                                             |                      |                 |
| -        | 7              |                                                                             |                      |                 |
| F        | 8              |                                                                             |                      |                 |
| F        | 9              | (SP) SAND TOTAL                                                             |                      |                 |
| F        | 10             | (SP) SAND, very loose<br>St. Peter sand, yellow to white<br>yellow to white |                      |                 |
| <u> </u> | 11             |                                                                             |                      |                 |
| <u> </u> | 12             | End of Test Pit at 11.0' BGS<br>Hole backfilled                             |                      |                 |
| Ļ        | 13             |                                                                             |                      | MN-COMP 0044348 |
|          |                |                                                                             |                      |                 |

## TEST PIT LOG

i t e e t à De elà annuel de la de la service de la estantia de la terra de la service de

. · · · · · ·

| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | BACKHOE -                    |
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| PROJECT NAME: | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | <b>TP8-8</b> 8               |

| DEPTH<br>ft BG | STRATIGRAPHY DESCRIPTION & REMARKS                        | ELEVATION<br>ft AMSL | DIAGRAM         |
|----------------|-----------------------------------------------------------|----------------------|-----------------|
| 0              |                                                           |                      |                 |
| 1              | (GW) GRAVEL and COBBLES, very coarse grained, trace sand. |                      |                 |
| 2              |                                                           |                      |                 |
| 3              |                                                           |                      |                 |
| 4              |                                                           |                      |                 |
| _ 5            |                                                           |                      |                 |
| 6              |                                                           |                      |                 |
| 7              |                                                           |                      |                 |
| - 8<br>- 9     | Small piece of metal at 9.5'                              |                      |                 |
| 10             | (SP) SAND, very fine grained, color                       |                      |                 |
| _ 11           | change to gray/black (sample taken)                       |                      |                 |
| 12             | End of Test Pit at 12.0' BGS                              |                      |                 |
| _ 13           |                                                           | а.<br>               | MN-COMP 0044349 |

## TEST PIT LOG

A 2 IN 1998

particle terrorism of the post of the second 
|               | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS | HOLE DESIGNATION:  | <b>TP9-8</b> 8               |
|---------------|---------------------------------------------------|--------------------|------------------------------|
| PROJECT NO .: | 2191                                              | DATE COMPLETED:    | 1/19/88                      |
| CLIENT:       | FORD MOTOR COMPANY                                | EXCAVATION METHOD: | ВАСКНОЕ -                    |
| LOCATION:     | ST. PAUL, MINNESOTA                               | CRA SUPERVISOR:    | CAT 211 LC<br>S. MOCKENHAUPT |

| DEPTH<br>ft BG STRATIGRAPHY DESCRIPTION & REMARKS ft AMSL<br>0<br>(SP) SAND, very fine grained,<br>yellow/orange, trace silt. | DIAGRAM         |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (SP) SAND, very fine grained,                                                                                                 |                 |
| (SP) SAND, very fine grained,<br>1 vellow/orange, trace silt                                                                  |                 |
| i i i i i i i i i i i i i i i i i i i                                                                                         |                 |
| 2                                                                                                                             |                 |
| 3                                                                                                                             |                 |
| 4 Occasional seams of fine gravel and coarse sand.                                                                            |                 |
| 5                                                                                                                             |                 |
| 6                                                                                                                             |                 |
| 7                                                                                                                             |                 |
| 8                                                                                                                             |                 |
| 9                                                                                                                             |                 |
| 10                                                                                                                            |                 |
| 11 (SM) SAND gilter such i                                                                                                    |                 |
| (SM) SAND, silty, gray, wet to<br>12 saturated                                                                                |                 |
| 13 End of Test Pit at 12.0' BGS<br>Hole backfilled                                                                            | MN-COMP 0044350 |

## APPENDIX F

pi i i i i i i i i Innovember e contente a conte

yes i i i

Strategic Sta

-

Personal Co

## LABORATORY ANALYTICAL REPORTS



Offices: Minneapolis

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

# 219

March 22, 1988

Rec'd CRA

MAR 2 3. 88

Mr. Steven Mockenhaupt Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

Dear Mr. Mockenhaupt:

Enclosed is the report of laboratory analyses for samples received 01/22/88.

If you have any questions concerning this report, please feel free to contact Tom Halverson, Bill Scruton or me.

Sincerely,

Roger 2. Splinter, Ph.D. Director, Laboratory Services

**Enclosures** 



Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

March 22, 1988 PACE Project Number: 880122550

Attn: Mr. Steven Mockenhaupt

Project #2191

| PACE Sample Number:     |       |      | 016700<br>TP-3 (1) | 016710<br>TP-8 (2) |  |
|-------------------------|-------|------|--------------------|--------------------|--|
| Parameter               | Units | MDL  | Leachate           | Leachate           |  |
| Arsenic                 | ug/L  | 2    | 10                 | ND                 |  |
| Barium                  | mg/L  | 0.2  | 1.5                | 0.2                |  |
| Cadmium                 | mg/L  | 0.01 | ND                 | ND                 |  |
| Chromium                | mg/L  | 0.05 | ND                 | ND                 |  |
| Copper                  | mg/L  | 0.01 | 0.02               | ND                 |  |
|                         |       | 0.01 | 0.02               | ND                 |  |
| Lead                    | mg/L  | 0.1  | 0.3                | ND                 |  |
| Mercury                 | ug/L  | 0.8  | ND                 | ND                 |  |
| Selenium                | ug/L  | 6    | ND                 | ND                 |  |
| Silver                  | mg/L  | 0.04 | ND                 | ND                 |  |
| Zinc                    | mg/L  | 0.01 | 0.92               | 0.03               |  |
|                         | 0.    |      |                    |                    |  |
| Methano I               | mg/L  | 5.0  | ND                 | -                  |  |
| Ethanol                 | mg/L  | 5.0  | ND                 |                    |  |
| Iso-Propyl Alcohol      | mg/L  | 5.0  | ND                 |                    |  |
| Ethyl Acetate           | mg/L  | 5.0  | ND                 | -                  |  |
| N-Butanol               | mg/L  | 5.0  | ND                 | -                  |  |
|                         | 0     |      |                    |                    |  |
| Cyclohexane             | mg/L  | 5.0  | ND                 | -                  |  |
| Chloromethane           | ug/L  | 1.0  | ND(3)              | <b></b>            |  |
| Bromomethane            | ug/L  | 1.5  | ND (3)             | -                  |  |
| Dichlorodifluoromethane | ug/L  | 1.5  | ND(3)              | -                  |  |
| Vinyl chloride          | ug/L  | 1.5  | ND(3)              | -                  |  |
|                         | -     |      |                    |                    |  |
| Chloroethane            | ug/L  | 1.0  | ND(3)              | -                  |  |
| Trichlorofluoromethane  | ug/L  | 0.4  | ND(3)              | -                  |  |
| Allyl chloride          | ug/L  | 4.0  | ND(3)              | -                  |  |
| 1 1-Dichlopoothyland    |       |      |                    |                    |  |
| 1,1-Dichloroethylene    | ug/L  | 0.3  | ND(3)              | -                  |  |
| Tetrahydrofuran         | ug/L  | 15   | ND(3)              | -                  |  |
| 1,1-Dichloroethane      | ug/L  | 0.2  | ND(3)              | <b>6</b>           |  |
|                         |       |      |                    |                    |  |

MDL Method Detection Limit ND Not detected at or above the MDL.

laboratories, inc.

pace

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Steven Mockenhaupt Page 2

March 22, 1988 PACE Project Number: 880122550

| PACE Sample Number:            |              |     | 016700               | 016710           |
|--------------------------------|--------------|-----|----------------------|------------------|
| Parameter                      | <u>Units</u> | MDL | TP-3 (1)<br>Leachate | TP-8<br>Leachate |
| trans-1,2-Dichloroethylene     | ug/L         | 0.3 | ND(3)                | _                |
| cis-1,2-Dichloroethylene       | ug/L         | 0.5 | ND(3)                | 603              |
| Ethyl ether                    | ug/L         | 0.3 | ND(3)                | -                |
| Chloroform                     | ug/L         | 0.5 | ND(3)                | -                |
| 1,1,2-Trichlorotrifluoroethane | ug/L         | 0.7 | ND(3)                | · <b>–</b>       |
| Methyl ethyl ketone            | ug/L         | 20  | ND(3)                |                  |
| 1,2-Dichloroethane             | ug/L         | 0.2 | ND(3)                |                  |
| Dibromomethane                 | ug/L         | 1.5 | ND(3)                | -                |
| 1,1,1-Trichloroethane          | ug/L         | 0.5 | ND(3)                | -                |
| Carbon tetrachloride           | ug/L         | 0.3 | ND(3)                |                  |
| Bromodichloromethane           | ug/L         | 0.2 | ND(3)                | _                |
| Dichloroacetonitrile           | ug/L         | 1.0 | ND(3)                | _                |
| 2,3-Dichloro-l-propene         | ug/L         | 0.5 | ND(3)                | -                |
| 1,2-Dichloropropane            | ug/L         | 0.2 | ND(3)                | _                |
| 1,1-Dichloro-l-propene         | ug/L         | 1.0 | ND (3)               | -                |
| cis-1,3-Dichloro-1-propene     | ug/L         | 0.5 | ND(3)                | _                |
| 1,1,2-Trichloroethylene        | ug/L         | 0.5 | ND(3)                | -                |
| Benzene                        | ug/L         | 1.0 | ND(3)                | -                |
| 1,3-Dichloropropane            | ug/L         | 0.6 | ND(3)                | -                |
| Dibromochloromethane           | ug/L         | 1.0 | ND(3)                | -                |
| 1,1,2-Trichloroethane          | ug/L         | 1.0 | ND(3)                | _                |
| trans-1,3-Dichloro-1-propene   | ug/L         | 0.3 | ND(3)                | _                |
| 1,2-Dibromoethane              | ug/L         | 4.0 | ND(3)                | -                |
| 2-Chloroethylvinyl ether       | ug/L         | 5.0 | ND(3)                | _                |
| Bromoform                      | ug/L         | 1.0 | ND(3)                | -                |
| 1,1,1,2-Tetrachloroethane      | ug/L         | 0.3 | ND(3)                |                  |
| Methyl isobutyl ketone         | ug/L         | 1.0 | ND(3)                | _                |
| 1,2,3-Trichloropropane         | ug/L         | 4.0 | ND(3)                | -                |
| 1,1,2,2-Tetrachloroethane      | ug/L         | 1.0 | ND(3)                | -                |
| 1,1,2,2-Tetrachloroethylene    | ug/L         | 1.0 | ND(3)                | -                |
| Pentachloroethane              | ug/L         | 2.0 | ND (3)               | _                |
| Toluene                        | ug/L         | 1.0 | <u>180(3)</u>        |                  |
| Chlorobenzene                  | ug/L         | 1.0 | ND (3)               |                  |
| Ethyl benzene                  | ug/L         | 1.0 | 85 (3)               | -                |

MDL Method Detection Limit

Offices:

016710

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Steven Mockenhaupt Page 3

pace laboratories, inc.

.

March 22, 1988 PACE Project Number: 880122550

016700

PACE Sample Number:

| Parameter                                                           | <u>Units</u>                         | TP-3 (<br>MDL Leacha                                             |                         |
|---------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|-------------------------|
| Cumene<br>m-Xylene<br>p-Xylene<br>o-Xylene<br>l,3-Dichlorobenzene   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0 ND (3<br>1.0 2600(4<br>1.0 3700(4<br>1.0 3700(4<br>4.0 ND (3 | ) –<br>)(5) –<br>)(5) – |
| 1,2-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Dichlorofluoromethane | ug/L<br>ug/L<br>ug/L                 | 4.0 ND (3<br>4.0 ND (3<br>1.0 ND (3                              | ) -                     |

MDL

Method Detection Limit

MN-COMP 0044355

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Steven Mockenhaupt Page 4

pace laboratories, inc.

March 22, 1988 PACE Project Number: 880122550

|                    | E Sample Number:<br>ameter                                                                               | <u>Units</u>                              | MDL_                            | 016680<br>TP-3         | 016690<br>TP-8             |
|--------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------|----------------------------|
| Fla<br>Sul<br>pH   | nide, Reactive<br>sh Point<br>fide, Reactive                                                             | mg/kg<br>Degrees F<br>mg/kg               | 1.0<br>1<br>14<br>0.1           | ND<br>140<br>ND<br>7.6 | ND<br>GT200<br>61<br>7.9   |
| Chl                | oromethane                                                                                               | ug/kg                                     | 120                             | -                      | ND                         |
| Dic<br>Vin<br>Chl  | momethane<br>hlorodifluoromethane<br>yl Chloride<br>oroethane<br>hylene Chloride                         | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 190<br>190<br>190<br>120<br>120 | -                      | ND<br>ND<br>ND<br>ND<br>ND |
| Tri<br>All<br>1,1  | tone<br>chlorofluoromethane<br>yl chloride<br>-Dichloroethylene<br>rahydrofuran                          | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 5000<br>50<br>500<br>38<br>1800 |                        | ND<br>ND<br>ND<br>ND<br>ND |
| Tra<br>cis<br>Eth  | -Dichloroethane<br>ns-1,2-Dichloroethylene<br>-1,2-Dichloroethylene<br>yl ether<br>oroform               | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 25<br>38<br>62<br>380<br>62     | -<br>-<br>-<br>-       | ND<br>ND<br>ND<br>ND<br>ND |
| Met<br>T,2<br>Dib  | ,2-Trichlorotrifluoroethane<br>hyl ethyl ketone<br>-Dichloroethane<br>oromomethane<br>,1-Trichloroethane | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 88<br>5000<br>25<br>180<br>62   | -                      | ND<br>ND<br>ND<br>ND<br>ND |
| Bro<br>Dic<br>2.,3 | bon Tetrachloride<br>modichloromethane<br>hloroacetonitrile<br>-Dichloro-l-propene<br>-Dichloropropane   | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 38<br>25<br>10000<br>62<br>25   |                        | ND<br>ND<br>ND<br>ND<br>ND |
| cis                | -Dichloro-l-propene<br>-l,3-Dichloro-l-propene<br>,2-Trichloroethylene                                   | ug/kg<br>ug/kg<br>ug/kg                   | 120<br>62<br>62                 | -<br>-                 | ND<br>ND<br>ND             |

Method Detection Limit MDL Not detected at or above the MDL. ND

Offices:

Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Steven Mockenhaupt Page 5

pace laboratories, inc.

March 22, 1988 PACE Project Number:

880122550

| PACE Sample Number:<br>Parameter | Units | MDL | 016680<br>TP-3 | 016690<br>TP-8 |  |
|----------------------------------|-------|-----|----------------|----------------|--|
| Benzene                          | ug/kg | 120 | -              | ND             |  |
| 1,3-Dichloropropane              | ug/kg | 75  | -              | ND             |  |
| Dibromochloromethane             | ug/kg | 120 |                | ND             |  |
| 1,1,2-Trichloroethane            | ug/kg | 120 | -              | ND             |  |
| Trans-1,3-Dichloro-1-propene     | ug/kg | 38  | -              | . ND           |  |
| 1,2-Dibromoethane                | ug/kg | 500 | -              | ND             |  |
| 2-Chloroethylvinyl Ether         | ug/kg | 620 | <b></b>        | ND             |  |
| Bromoform                        | ug/kg | 120 | -              | ND             |  |
| 1,1,1,2-Tetrachloroethane        | ug/kg | 38  | -              | ND             |  |
| Methyl isobutyl ketone           | ug/kg | 120 | · -            | ND             |  |
| 1,2,3-Trichloropropane           | ug/kg | 500 | -              | ND             |  |
| 1,1,2,2-Tetrachloroethane        | ug/kg | 120 | <del></del>    | ND             |  |
| 1,1,2,2-Tetrachloroethylene      | ug/kg | 120 | -              | ND             |  |
| Pentach loroethane               | ug/kg | 250 | -              | ND             |  |
| Toluene                          | ug/kg | 120 | -              | ND             |  |
| Chlorobenzene                    | ug/kg | 120 | -              | ND             |  |
| Ethylbenzene                     | ug/kg | 120 | -              | ND             |  |
| Cumene                           | ug/kg | 120 | <b></b>        | ND             |  |
| m-Xylene                         | ug/kg | 120 | -              | ND             |  |
| p-Xylene                         | ug/kg | 120 | -              | ND             |  |
| o-Xylene                         | ug/kg | 120 | -              | ND             |  |
| 1,3-Dichlorobenzene              | ug/kg | 500 |                | ND             |  |
| 1,2-Dichlorobenzene              | ug/kg | 500 | -              | ND             |  |
| 1,4-Dichlorobenzene              | ug/kg | 500 |                | ND             |  |
| Dichlorofluoromethane            | ug/kg | 120 | -              | ND             |  |
| Methano 1                        | mg/kg | 5.0 | <del></del>    | ND             |  |
| Ethanol                          | mg/kg | 5.0 | <del>~</del>   | ND             |  |
| Iso-Propyl Alcohol               | mg/kg | 5.0 | -              | ND             |  |
| Ethyl Acetate                    | mg/kg | 5.0 | -              | ND             |  |
| N-Butanol                        | mg/kg | 5.0 | -              | ND             |  |
| Cyclohexane                      | mg/kg | 5.0 | -              | ND             |  |
|                                  |       |     |                |                |  |

Not detected at or above the MDL.

ND MDL

Method Detection Limit

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

Mr. Steven Mockenhaupt Page 6

pace

actor of

1.4

Bana ana ang

laboratories, inc.

March 22, 1988 PACE Project Number: 880122550

(1) All analysis performed on extract from Toxicity Characteristic Leach Procedure.

(2) All analyses were performed on the EP Toxicity Leachate.

- (3) Sample diluted 1 to 50; MDL's must be multiplied by dilution factor.
- (4) Sample diluted 1 to 200, MDL's must be multplied by dilution factor.
- (5) These compounds co-elute. Compound calculated as o-xylene.

The data contained in this report were obtained using EPA or other approved methodologies. All analysis were performed by me or under my direct supervision.

76

Thomas L. Halverson Inorganic Chemistry Manager

niller

William H. Scruton Organic Chemistry Manager

MN-COMP 0044358



Quality Control Data

Project # 2191 Project # 80122.550

#### Table 1

## Summary of Accuracy Data (1)

| <u>Parameter</u>                                           | True<br><u>Value</u> | Observed<br><u>Value</u> | ۲<br><u>Recovery</u> | Mean %<br><u>Recovery</u> |
|------------------------------------------------------------|----------------------|--------------------------|----------------------|---------------------------|
| Ethanol<br>Methylene                                       | 8.8                  | 8.8                      | 100                  | NA(2)                     |
| Chloride<br>Acetone<br>Isopropyl                           | 13.3<br>7.9          | 13.3<br>7.9              | 100<br>100           | NA<br>NA                  |
| Alcohol<br>Methyl Ethyl                                    | 8.0                  | 8.0                      | 100                  | NA                        |
| Ketone<br>Ethyl Acetate<br>Cyclo hexane<br>Methyl Isobutyl | 8.0<br>9.0<br>9.5    | 8.0<br>9.0<br>9.5        | 100<br>100<br>100    | NA<br>NA<br>NA            |
| Ketone<br>Toulene<br>Xylenes                               | 8.0<br>8.7<br>26.1   | 8.0<br>8.7<br>26.1       | 100<br>100<br>100    | NA<br>NA<br>NA            |

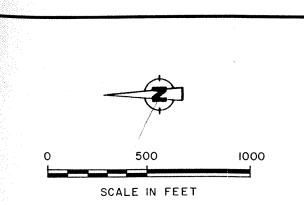
Data pertains to Continuing Calibration Check Standard.
 NA - Not available due to insufficient data.





Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa

### Quality Control Data


### Project # 2191 PACE Project # 880122.550

#### Table 3

## Summary of Precision Data

| Parameter   | <u>B1ank</u> | Sample<br><u>Result (D<sub>l</sub>)</u> | Duplicate<br><u>Result (D<sub>2</sub>)</u> | Differenc<br><u>D<sub>l</sub>-D<sub>2</sub></u> | e Date<br><u>Analyzed</u> |  |  |
|-------------|--------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------|---------------------------|--|--|
| Flash Point |              | 155                                     | 140                                        | 15                                              | 01/27/88                  |  |  |
| Barium      | 0.11         | 0.3                                     | 0.3                                        | 0                                               | 02/12/88                  |  |  |

KEY LEGENO LTWIN CITY ASSEMBLY PLANT PROPERTY LINE 2. STEAM PLANY 3. HYDRO ELECTRIC PLANT FENCE LINE RAILROAD TRACKS CLEVELAND AVENUE 4.PAINT & OR HOUSE CONCRETE ROADS & APRONE SLYE TANK BURDING INTUMINOUS SURFACE, ROCK BASE & MAIN TENANCE MTUMINOUS SURFACE, CONC. BASE CERTIN T.WATER TEST SLAS, STONE OR GRAVEL SURFACE S.GUARD HOUSE B.ACETYLENE BULDIN IO, PROPANE-AIR MOX BUILDING IL. PROPANE BUILDING & TANKS IZ.LIQUID OXYSEN STORAGE 13.CAR LOADING & UNLOADING OFFICE S HALLAWAY STORAGE AREA IS.EMPLOYEE MAKING YARD TT.RALROAD LOADING & UNLOADING M.STOCK STORAGE PADS IS.CONCRETE TEST TRACK \_\_\_\_ 20. SALT SPRAY BLDG 21.01 STORAGE TANKS SITE "A" 22. COAL HOPPER HOUSE 23. WATER TANK 24. DEPRESSED TRACK PT 25. STEAM PLANT TUNNEL SITE "B" 24.L.C.L. RECEIVING 27. CONVOY OFFICE 28 . SCREEN WELL HOUSE 29. NORTHERN STATES POWER TRANSF BO, BUS WYE 51.CONOPY 32.HI-CUBE CANOPY & STORAGE GLAS 33. PAPT & OK. HOUSE ADDITION 34. SKID REPAIR 35. DUST TEST BLDS. 34. PROPANE GAS FELLING STATION 34. PROPANE GAS FELING STATION 37. FRAME DELIVERY ENCLOSURE 38. ADMINISTRATIVE OFFICE 39. MART. EQUIP. CANOPY 40. WAREHOUSE. 41. GAS HOUSE 42. OL. STORAGE TANK 43. COMUNIC ATENT 43. CONVOY OFFICE 44.LOADING RAMP 45. HG. AREA TO EQUALIZED ARE 46.ROADWAY 47.UNLOADING MO 48.PARKING ADDITION SITE "C" 34 BH Part of previous veport-RI/FS Assessment fill areas CRIA oct. 1988



MN-COMP 0044285

figure 1.2 LOCATION OF FILL SITES Ford Motor Company

GROUNDWATER MONITORING REPORT AND EVALUATION SITE C FORD MOTOR COMPANY ST. PAUL, MINNESOTA

DRAFT

PRINTED ON JAN 11 1990

2853

January 1990

## GROUNDWATER MONITORING REPORT AND EVALUATION SITE C FORD MOTOR COMPANY ST. PAUL, MINNESOTA



PRINTED ON JAN 1 1 1990

January 1990

2853

Consulting Engineers

January 11, 1990

Reference No. 2853

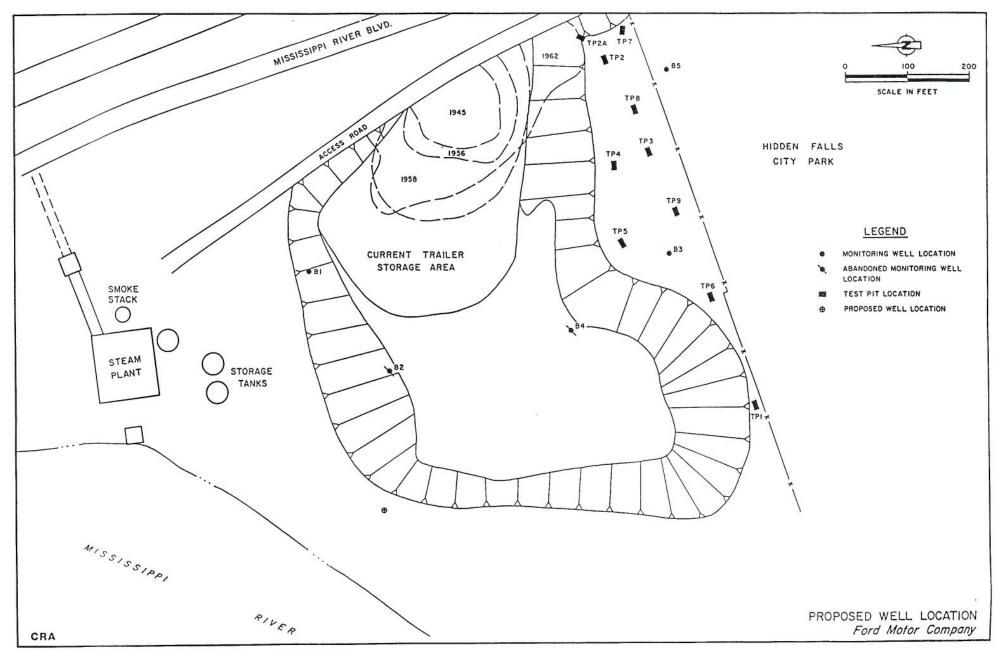
Mr. Jerome Amber FORD MOTOR COMPANY 15201 Century Drive, Suite 608 Dearborn, Michigan 48120

Dear Mr. Amber:

RE: Groundwater Monitoring Report and Evaluation - Site C

Please find enclosed the subject draft report. The groundwater data contained in this report is currently undergoing QA/QC review. This review is expected to be completed within 10 days pending receipt of all necessary data for the analytical laboratory.

If additional monitoring is undertaken during 1990 at Site C, consideration should be given to installation of a well west of abandoned well B2 to essentially replace well B2. This well would need to be installed at the west toe of the fill rather than through the rubble of the fill to accomplish installation. This well is necessary, given the information generated by this investigation, to provide meaningful data to any future monitoring. A proposed well location is presented on the attached figure.


If you should have any questions, please do not hesitate to contact us.

Yours Very Truly,

CONESTOGA-ROVERS AND ASSOCIATES

fon L. Christofferson

JLC/kk Enc. cc: Jim Gibson, Ford John Kallaus, Ford Don Rueh, Ford





## LIST OF TABLES

|           |                              | Following<br><u>Page</u> |
|-----------|------------------------------|--------------------------|
| TABLE 3.1 | REVISED MONITORING WELL DATA | 5                        |
| TABLE 4.1 | DETECTED COMPOUNDS           | 7                        |
|           |                              |                          |

## LIST OF FIGURES

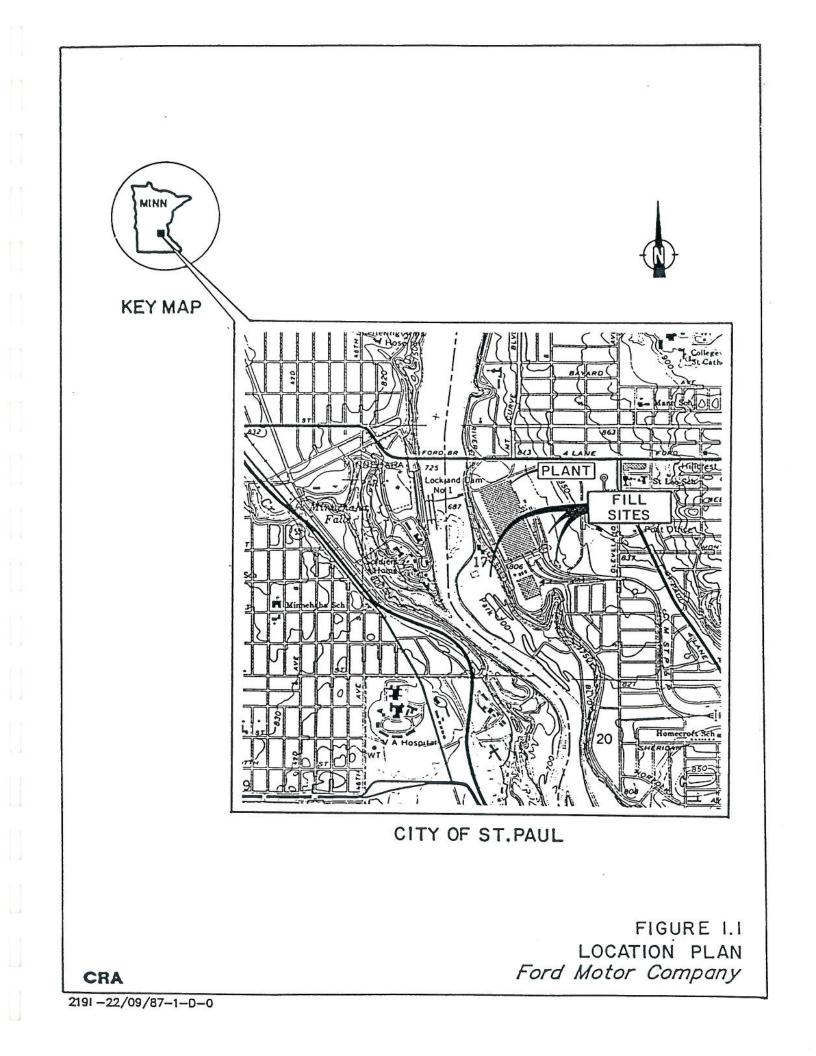
| FIGURE 1.1 | LOCATION PLAN                  | 1 |
|------------|--------------------------------|---|
| FIGURE 1.2 | LOCATION OF FILL SITES         | 1 |
| FIGURE 3.1 | GROUNDWATER CONTOURS (6/2/89)  | 5 |
| FIGURE 3.2 | GROUNDWATER CONTOURS (9/13/89) | 5 |

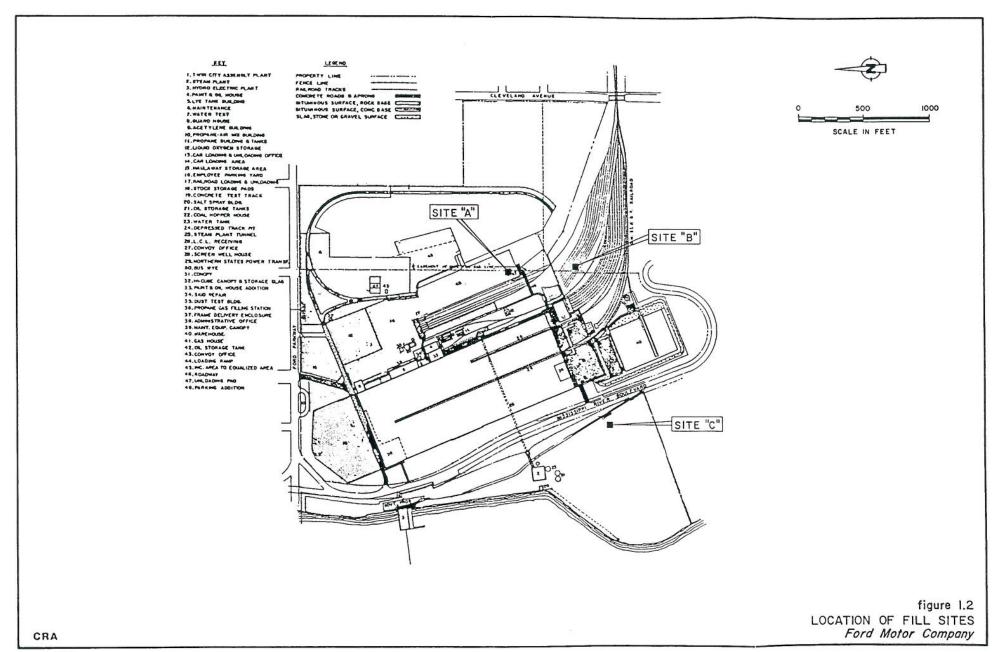
## LIST OF PLANS

PLAN 1 SITE PLAN

Enclosed

#### 1.0 INTRODUCTION


The Ford Motor Company, Twin Cities Assembly Plant (Plant) is located in St. Paul, Minnesota, at 966 South Mississippi River Boulevard. The Plant complex includes buildings on both sides of Mississippi River Boulevard. Buildings west of Mississippi River Boulevard are located above the river bluff on the adjacent sand plains. The Plant location is presented on Figure 1.1.


The Plant was originally used to manufacture glass over 50 years ago. Since then the Plant has been expanded several times and is used to assemble pick-up trucks.

At different times during the Plant's history prior to 1970, paint sludges/wastes were deposited in a relatively small area on Plant property, west of Mississippi River Boulevard (Site C). This waste deposit was identified to U.S. EPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since that investigation was completed, additional earth fill has been placed over part of the waste fill. The area is now used as a parking lot for tractor trailer truck units. Excavated materials from two other sites (Sites A and B) were subsequently moved to Site C. The locations of the fill Sites are also presented on Figure 1.1 and presented in more detail on Figure 1.2.

In an effort to address environmental issues that may be associated with past waste handling and disposal practices, Ford Motor Company (Ford) hired Conestoga-Rovers and Associates (CRA) to conduct an

1





#### 2191-21/10/88-M

assessment of the wastes deposited at these sites. This assessment consisted of a file review, hydrogeologic evaluation, test hole excavation (test pits), stadia survey and waste characterization sampling. From these tasks an assessment and evaluation of the site conditions was conducted. The results of these efforts are presented in a report titled "Assessment of Fill Areas, Ford Motor Company, Twin Cities Assembly Plant", dated October 25, 1988 by CRA.

The October 1988 report was reviewed and commented on by the MPCA in a letter dated February 7, 1989. The MPCA accepted the report and requested additional work. A work plan was submitted to MPCA to address their comments and requests on March 10, 1989, and was subsequently approved by MPCA on April 25, 1989. The scope of this additional investigation consisted primarily of three rounds of groundwater monitoring conducted over 1989. In addition, site wells were inspected, repaired and, if necessary, abandoned. Site area land features were also updated by survey.

This report represents a summary of the work completed as part of the Site C monitoring and environmental investigation.

2

#### 2.0 BACKGROUND

At different times during the Plant's history, construction rubble and paint sludges/wastes were deposited in a relatively small area (Site C - approximately four acres in size) on Plant property west of Mississippi River Boulevard between the Boulevard and the Mississippi River. The majority of this material was deposited during the years 1950 through 1965. This practice was discontinued in 1965. During the years 1965 and 1966, construction debris was deposited in large quantities on top of this fill at Site C. The United States Corps of Engineers also deposited additional rubble between the Ford disposal Site and the river during reconstruction of the Lock and Dam No. 1 near the "Ford Bridge".

This Site C waste deposit was identified to the USEPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since the investigation was completed, additional clean fill has been placed over part of the Site C waste fill. Earth fill and construction rubble including broken concrete and road excavation rubble from the construction of Mississippi River Boulevard continue to be brought to Site C. A major potion of the top of the fill has been paved with 8 inches of concrete and is now used as a parking lot for tractor-trailer truck units. The remaining top area of Site C is used as a snow dump during winter months for snow removed from local public streets and parking lots.

3

#### 3.0 FIELD ACTIVITIES

#### 3.1 WELL REPAIR AND ABANDONMENT

On April 25, 1989, a well inspection was conducted of the existing monitoring wells at Site C. Upon completion of this inspection it was determined by CRA that wells B1, B3 and B5 could be made functional again. Wells B2 and B4 were damaged beyond repair by the continual dumping and regrading of rubble and fill in these areas.

In June of 1989, GME Consultants Inc., repaired wells B1, B3 and B5 by installing locking protective casings, bumper posts and additional riser pipes where necessary. Wells B2 and B4 were abandoned in accordance with the Minnesota Department of Health (MDH) water well code. The wells were grouted with a neat cement grout and all retrievable material was removed. Well abandonment records and logs are presented in Appendix A.

#### 3.2 SITE C SURVEY

Following the repairs to wells B1, B3 and B5, a Site survey was completed to establish new top of casing elevations on these wells and to further define the top of fill area. Table 3.1 presents the new well elevation data. Plan 1 (enclosed) shows the new top of fill area. It should be noted that filling and earth moving activities are still going on in this area and this plan represents the top of fill area as surveyed in September 1989.

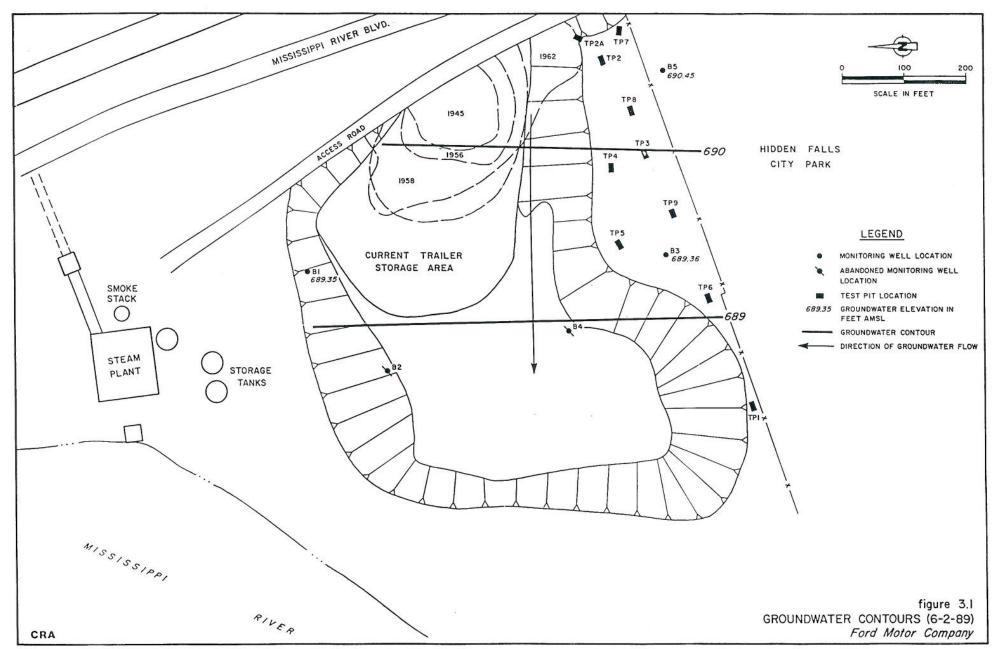
#### 3.3 GROUNDWATER SAMPLING

Three (3) rounds of groundwater and surface water sampling were completed according to the approved work plan. The samples were submitted to Pace Laboratories Inc. for chemical analysis under chain-ofcustody procedures. The monitoring wells were purged and sampled using a precleaned\* bottom filling stainless steel bailer. A minimum of three well volumes were purged prior to sampling. In the event that a well bailed dry prior to the removal of three well volumes, the well was allowed to recharge prior to sampling. The surface water samples were taken by the "Grab Sampling" method. The locations are close to, but may not be exactly the same as those previous sampled by Ford during earlier monitoring.

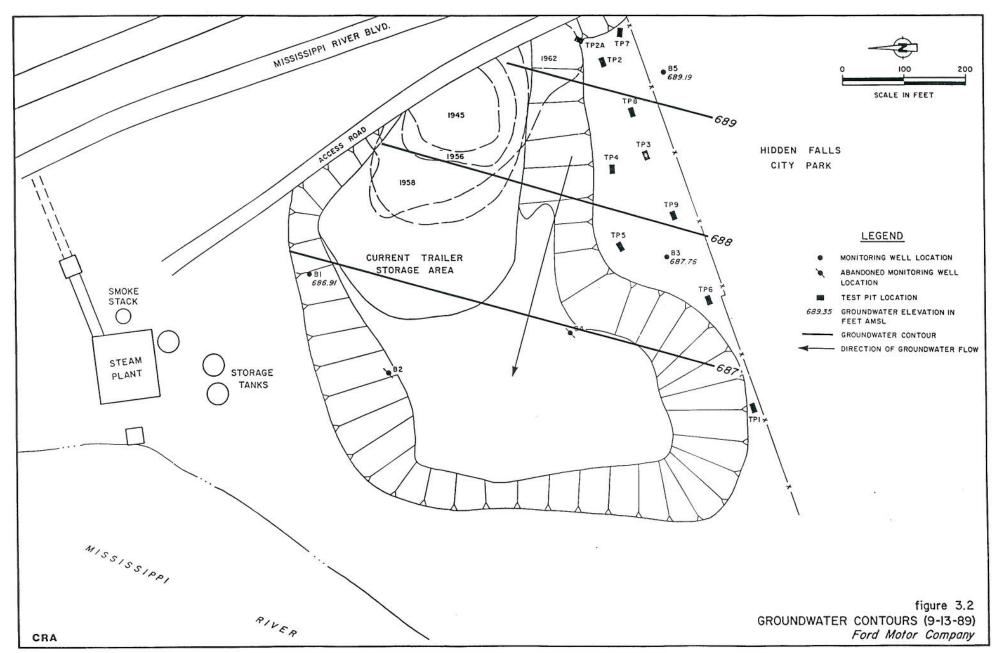
#### 3.4 GROUNDWATER FLOW DIRECTION

Groundwater elevation data was obtained on June 2, 1989 and September 13, 1989. Groundwater elevations and groundwater flow directions are presented on Figures 3.1 and 3.2.

<sup>\*</sup>Cleaning sequence consisted of: methanol-hexane-methanol rinse, air drying and distilled water rinse.


## TABLE 3.1

## FORD SITE C REVISED\* MONITORING WELL DATA


| <u>Well #</u> | Top of Casing<br>Elevation | Ground<br><u>Elevation</u> | Bottom of<br>Screen<br><u>Elevation</u> |        | dwater<br>ations<br><u>9/13/89</u> |
|---------------|----------------------------|----------------------------|-----------------------------------------|--------|------------------------------------|
| B1            | 738.06                     | 735.9                      | 681.62                                  | 689.35 | 686.91                             |
| B3            | 704.18                     | 702.9                      | 679.68                                  | 689.36 | 687.76                             |
| B5            | 703.90                     | 703.2                      | 678.50                                  | 690.45 | 689.19                             |

## Note:

All elevations are feet above mean sea level (AMSL). \*As revised due to well repairs and modifications.







Groundwater flow is predominantly to the west towards the Mississippi River. The river elevation may affect this flow direction to a minor degree. Water levels measured by CRA during 1988 had indicated a more northwesterly component of flow direction. Seasonal fluctuations in the river elevation also appear to change the gradients slightly as shown on Figures 3.1 and 3.2.

Groundwater elevations are measured in the existing monitoring wells which are screened in the fill and/or river deposits of sand and gravel. Thus, the groundwater flow directions represent a localized condition under the Site.

### 4.0 ANALYTICAL RESULTS

Results of the chemical analysis of groundwater and surface water are presented in Table 4.1. The analytical lab reports are presented in Appendix B. All water samples were analyzed for halocarbon and aromatic volatile organic compounds (VOC) by EPA methods 601 and 602. In addition to the 601/602 VOC parameters, the MPCA requested that cis-1,2-dichloroethylene and ethylacetate also be analyzed. This request was presented in their letter dated April 25, 1989. The following metals were also analyzed: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver and Zinc.

#### TABLE 4.1

#### FORD SITE "C" DETECTED COMPOUNDS

|                                |                    |      | B1   |      |        | B3   |      |        | B5   |        |      | ssissippi R<br>Up Stream |       |       | sissippi R<br>own Strea |       |
|--------------------------------|--------------------|------|------|------|--------|------|------|--------|------|--------|------|--------------------------|-------|-------|-------------------------|-------|
| Date:                          | MDL Range          | 6/89 | 8/89 | 9/89 | 6/89   | 8/89 | 9/89 | 6/89   | 8/89 | 9/89   | 6/89 | 8/89                     | 9/89  | 6/89  | 8/89                    | 9/89  |
| Compound                       |                    |      |      |      |        |      |      |        |      |        |      |                          |       |       |                         |       |
| 1,1-Dichloroethylene $\mu$ g/L | 0.3 μg/L           | 1.5  | ND   | ND   | ND     | 0.5  | ND   | ND     | 0.8  | ND     | 1.3  | ND                       | ND    | ND    | 1.1                     | ND    |
| Methylene Chloride $\mu$ g/L   | 1.0 µg/L           | ND   | ND   | ND   | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | 1.3   | ND                      | ND    |
| Trichlorofluoromethane µg/1    | L 0.4 μg/L         | ND   | ND   | ND   | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | 2.1   | ND                      | ND    |
| Dichlorodifluoromethane µg     | /L 1.5 μg/L        | ND   | 14   | ND   | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Vinyl Chloride µg/L            | 1.5 μg/L           | ND   | 5.2  | ND   | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Trichloroethylene µg/L         | 0.5 μg/L           | ND   | ND   | 2.1  | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Cadmium mg/L                   | 0.0001 mg/L        | ND   | ND   | ND   | 0.0002 | ND   | ND   | 0.0004 | ND   | 0.0002 | ND   | 0.0005                   | ND    | ND    | 0.0008                  | ND    |
| Lead mg/L                      | 0.001 - 0.005 mg/L | ND   | ND   | ND   | ND     | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | 0.001 | ND    | ND                      | 0.001 |
| Zinc mg/L                      | 0.01 mg/L          | ND   | ND   | ND   | 0.03   | ND   | 0.02 | 0.07   | ND   | 0.26   | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Copper mg/L                    | 0.01 mg/L          | ND   | 0.01 | ND   | ND     | 0.02 | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | 0.001 | ND                      | ND    |
| Nickel mg/L                    | 0.05 mg/L          | ND   | ND   | ND   | ND     | 0.05 | ND   | 0.08   | 0.05 | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Chromium mg/L                  | 0.001 mg/L         | ND   | ND   | ND   | ND     | ND   | ND   | 0.002  | ND   | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
| Barium mg/L                    | 0.2 mg/L           | ND   | ND   | ND   | 0.3    | ND   | ND   | ND     | ND   | ND     | ND   | ND                       | ND    | ND    | ND                      | ND    |
|                                |                    |      |      |      |        |      |      |        |      |        |      |                          |       |       |                         |       |

.

.

MDL - Method Detection Limit

ND - Not detected at or above method detection limit.

Site C is comprised of fill and rubble material deposited over naturally occurring sands and gravels which were deposited by the Mississippi River. Groundwater under Site C flows towards the river and is influenced to some extent by the river. The data gathered from the existing monitoring wells represents site conditions in the immediate area under Site C. It is not known at this time whether or not the "perched" water under Site C is hydraulically connected to the underlying St. Peter Sandstone aquifer. On a regional scale, the St. Peter Sandstone and the Mississippi River are hydraulically connected.

The monitoring well network (wells B1, B3 and B5) at Site C is sufficient to determine general groundwater flow direction under Site C. However, given the groundwater flow directions calculated on June 6, 1989, and September 13, 1989, there is a gap in the monitoring network due to the loss of B2 and B4.

Evaluation of the groundwater quality data for 1989 (as presented on Table 4.1) indicates the following:

 measured concentrations for all metals tested (cadmium, lead, zinc, copper, nickel, chromium and barium) were all relatively low and typically acceptable for groundwater;  low concentrations of four VOC were measured during the monitoring. The results are inconsistent from location to location and are not repeated in successive monitoring events at any one location. These inconsistent results indicate that VOC release from the Site is relatively small. APPENDIX A WELL ABANDONMENT LOGS

# 2853

GME CONSULTANTS, INC.



CONSULTING ENGINEERS 14000 21st Ave. No. / Minneapolis, MN 55447 / 612/559-1859

June 6, 1989

Mr. Steve Mockenhaupt Conestoga-Rovers & Associates 382 West County Road D St. Paul, Minnesota 55112

GME Project No. 2014

Re: Report for monitoring well abandonment and monitoring well surface protection at the Ford Plant in South St. Paul, Minnesota

Dear Mr. Mockenhaupt:

On March 3, 1989, we received authorization for the abandonment of existing monitoring wells, and the installation of surface protection at this site in Minneapolis, Minnesota. In accordance with your acceptance of our proposal, we have completed our services. This project was completed in compliance with our understanding of Minnesota Department of Health (MDH) regulations. Enclosed is our report including the MDH well abandonment logs, and a description of our services.

#### MONITORING WELL ABANDONMENT

Two existing monitoring wells (B-2 and B-4) were abandoned. Our drill crew retrieved as much down-hole 2 inch PVC riser pipe as possible by hand and with the Mobile B-24 rig. The wells were then grouted with neat cement to within two feet of the surface. Native soil was used to fill the remaining space in the boreholes.

You also requested that we upgrade the above ground protection for three existing monitoring wells at the site. Our drill crew installed three, 4 inch diameter by 8 foot long protective steel posts and one, 4 inch diameter by 5 foot long locking protective steel cap at B-1, B-3, and B-5. At B-5, the existing 2 inch PVC riser pipe was cut-off below grade and replaced with a new section. All the protective posts were cemented into place. Mr. Steve Mockenhaupt

2

The monitoring well abandonment procedures and above ground protection installation were supervised by our Minnesota Licensed Water Well Driller in accordance with MDH regulations.

#### GENERAL QUALIFICATIONS

This report is a summary of the services performed at the Ford Plant site in South St. Paul, Minnesota. No warranty, either expressed or implied, is presented in this report with respect to the soil and groundwater conditions at this site.

We appreciate the opportunity to be of service to you for this project. If you have any questions regarding this report or if we may be of further assistance to you, please do not hesitate to contact us.

Sincerely,

GME CONSULTANTS, INC. ame

James A. Nordstog Director of Drilling Operations Hydrogeologist

fromas IN Moore

Thomas H. Moore Minnesota Licensed Water Well Driller

Enclosures: MDH Monitoring Well Abandonment Logs

JAN:WCK:jan

| STATE | 0F | MINNESOTA | DEPARTMENT OF HEALTH |  |
|-------|----|-----------|----------------------|--|
|       |    | ARANDONED | HELL RECORD          |  |

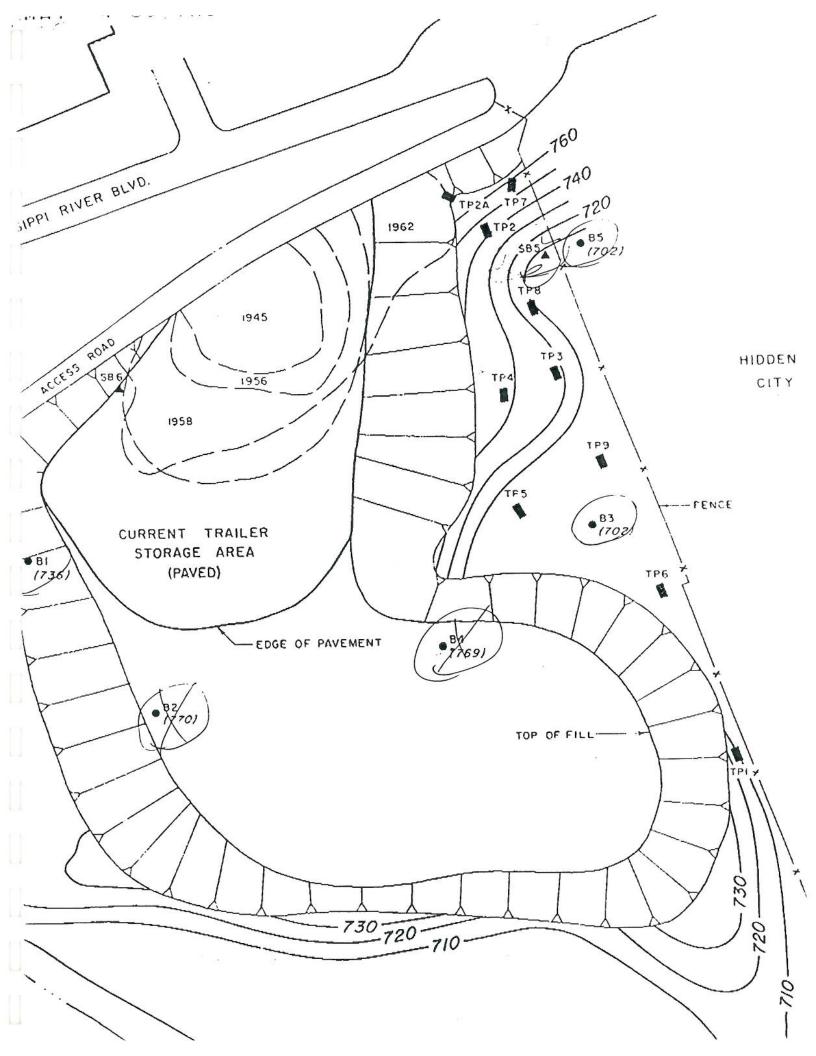
#2

ABANDONED WELL RECORD

İ

٠,

| 1. LOCATION OF WELL                                                   | ×                   |                                             | ADAID ONC              |               | MINNESOTA UNIQUE WELL NO.                                                                                                                                 |
|-----------------------------------------------------------------------|---------------------|---------------------------------------------|------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| County Name CAMSU                                                     | 1                   |                                             |                        |               |                                                                                                                                                           |
| Township Name Township M                                              | N Rang              | e Number Sect<br>E                          |                        | tion<br>tof t | 4. WELL DEPTH (completed) Date sealed                                                                                                                     |
| 28                                                                    | ) or of             | 3 0 1                                       | 7                      | NW-SE         | 44.5 th. 5-31-89                                                                                                                                          |
| Numerical Street Address and<br>Intersection                          | City of Well        | Location or Di                              | stance from Ro         | bad           | 5. DRILLING METHOD (if known)<br>1 Cable tool 4 Reverse 7 Driven 10 Dug                                                                                   |
| 500' from Miss                                                        | sissipp             | ; Blud, 5                                   | t. Paul,               | mn            | 2 Hollow Rod 5 Air 8 Bored 11                                                                                                                             |
| Show exact location of well                                           | ,,                  |                                             |                        |               | 3 Rotary 6 Jetted 9 Power Auger                                                                                                                           |
| (in section grid with "X")                                            |                     | vd Plan                                     | of well locati<br>.+   | ion           | 6. OBSTRUCTIONS<br>Well obstructed Tyes D No                                                                                                              |
| Y                                                                     | F0<br>E             | enclose                                     | l                      |               | Obstructions removed ☐∕rès ☐ No If obstructions cannot be<br>removed, contact MDH<br><u>before</u> sealing.                                               |
|                                                                       | Ţ,                  | enclose                                     | tino                   |               | 7. USE<br>1 Domestic 4 Monitoring 8 Heat Loop                                                                                                             |
|                                                                       | γ° α−ζ.<br>         |                                             | mal                    |               | 1 Domestic 4 Monitoring 8 Heat Loop<br>2 Irrigation 5 Public 9 Industry                                                                                   |
|                                                                       | 1                   |                                             |                        |               | 3 Test Well 6 Municipal 10 Commercial                                                                                                                     |
|                                                                       |                     |                                             |                        |               | 7 Air Conditioning 11                                                                                                                                     |
| 2 PROPERTY OWNER'S NAME<br>Ford Mutov Company                         | Mailing<br>property | Address if dif<br>address indica            |                        |               | 8. CASING(S)<br>1 Black 4 Threaded                                                                                                                        |
| 966 S. MISSISSIPPI                                                    | BINd.               |                                             |                        |               | 2 Galv, S Welded                                                                                                                                          |
| St. Paul, Mn                                                          |                     |                                             |                        |               | 3 Plastic 6 Stainless Steel Not Known                                                                                                                     |
| <ol> <li>FORMATION LOG</li> <li>If not known, indicate for</li> </ol> | COLOR<br>mation log | HARDNESS OF<br>FORMATION<br>from new well o | FROM<br>r nearby well. |               | in. toft.                                                                                                                                                 |
| Anthles 1 ildaus                                                      | Γ                   |                                             | 0                      | 7             | 1                                                                                                                                                         |
| Cobbles, boulders                                                     |                     |                                             | 17                     | 17            | 9. SCHEEN<br>Screened well from ft. to Wo tr. Known<br>(If known)                                                                                         |
| gravel, sand                                                          | brown               |                                             | 17                     | 13            | Open Hole from ft. to ft.                                                                                                                                 |
| Sana                                                                  | brown               |                                             | 13                     | 25            | 10. STATIC WATER LEVEL<br>                                                                                                                                |
| sand-gravel                                                           | briwn               |                                             | 25                     | 44            |                                                                                                                                                           |
|                                                                       |                     |                                             |                        |               | 11. WELLHEAD COMPLETION<br>1 Pitless Adapter                                                                                                              |
|                                                                       |                     |                                             |                        |               | 2 Basement offset 5                                                                                                                                       |
| 16. REMARKS, ELEVATION, SOURCE                                        | OF DATA - CA        | SINGS REMOVED.                              | CASINGS PERFOR         | ATED, ETC.    |                                                                                                                                                           |
| Enclosed :                                                            | site                | map.                                        |                        |               | 10 Neat Cement 2 Bentonite at <u>Clmint</u><br>Grout material <u>Clmint</u> from <u>D</u> to <u>2</u> ft. cu. yds                                         |
| Enclosed<br>Site mw #2                                                |                     |                                             |                        |               | Grout material <u>Climent</u> from <u>C</u> to <u>L</u> ft. cu. yds                                                                                       |
| Sinc min                                                              |                     |                                             |                        |               | 13. NEAREST SOURCES OF CONTAMINATION                                                                                                                      |
|                                                                       |                     |                                             |                        |               | feettype                                                                                                                                                  |
|                                                                       |                     |                                             |                        |               | Well disinfected before sealing? Yes                                                                                                                      |
|                                                                       |                     |                                             |                        |               | 14. PUMP Removed Not Present N/A<br>Type: 1 Submersible 3 L.S. Turbine 9 Reciprocating                                                                    |
|                                                                       |                     |                                             |                        |               | Type: 1 Submersible 3 L.S. Turbine 9 Reciprocating<br>2 Jet 4 Centrifugal 6                                                                               |
|                                                                       |                     |                                             |                        |               | 15. EXISTING WELLS (Please sketch locations of abandoned and                                                                                              |
|                                                                       |                     |                                             |                        |               | active wells in remarks section or on back.)<br>Other unused well(s) on property? Yes No<br>Abandoned: Permanent Temporary Not sealed                     |
|                                                                       |                     |                                             |                        |               | 17. WATER WELL CONTRACTORS CERTIFICATION<br>This well was sealed under my jurisdiction and this report<br>is true to the best of my knowledge and belief. |
|                                                                       |                     |                                             |                        |               | GIME Consultants, Inc                                                                                                                                     |
|                                                                       |                     |                                             |                        |               | Licensee Business Name License No.                                                                                                                        |
|                                                                       |                     |                                             |                        |               | Address 14000 21= AN D. MOS. MM                                                                                                                           |
|                                                                       |                     |                                             |                        |               | Tom Moore Date 6-9-87                                                                                                                                     |
| OFFICIAL ABANDONED WELL RECORD                                        | (May be use         | d for Property                              | Transfer)              |               | Name of Driller                                                                                                                                           |
| INPORTANT: PILE WITH DE                                               | BED                 |                                             |                        |               |                                                                                                                                                           |


| STATE | 0F | MINNESOTA | DEPARTMENT | 0F | HEALTH |
|-------|----|-----------|------------|----|--------|
|-------|----|-----------|------------|----|--------|

#4

ABANDONED WELL RECORD

Ń

| 1. LOCATION OF WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                      |               | MINNESOTA UNIQUE WELL NO.<br>(leave blank if not known)                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| County Name Camble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                      |               | 1                                                                                                                                                                                                     |
| Township Name Township Ny 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or 23 or /                                                                                                     | 7 '                  | tion<br>tof t | 4. WELL DEPTH (completed) Date sealed $29.5$ ft. $5-31-89$                                                                                                                                            |
| Numerical Street Address and C<br>Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S City of Well Location or Dis                                                                                 |                      | W-SE          | 5. DRILLING METHOD (if known)                                                                                                                                                                         |
| Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | sissippi Blvd,                                                                                                 | 5t. Paul             | 1. mm         | 1 Cable tool 4 Reverse 7 Driven 10 Dug<br>2 Hollow Rod 5 Air 8 Bored 11                                                                                                                               |
| Show exact location of well<br>(in section grid with "x")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | of well locati       |               | 3 Rotary 6 Jetted 9 Power Auger                                                                                                                                                                       |
| N<br>- L - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E Guelost                                                                                                      | tip                  |               | 6. OBSTRUCTIONS<br>Well obstructed Yes No If obstructions cannot be<br>Obstructions removed Yes No If obstructions cannot be<br>removed, contact MDH<br><u>before</u> sealing.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | m                    |               | 7. USE<br>1 Domestic 4 Monitoring 8 Heat Loop<br>2 Irrigation 5 Public 9 Industry<br>3 Test Well 6 Municipal 10 Commercial<br>7 Air Conditioning 11                                                   |
| 2 PROPERTY OWNER'S NAME<br>FOUD MUTOV COMPANI<br>966 S. MISSISSIPPI'<br>St. Paw, Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blud.                                                                                                          |                      |               | 8. CASING(5)<br>1 Black 4 Threaded 7<br>2 Galv. 5 Welded<br>3 Plastic 6 Stainless Steel Not Known                                                                                                     |
| <ol> <li>FORMATION LOG</li> <li>If not known, indicate form</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARDNESS OF<br>COLOR FORMATION<br>mation log from new well or                                                  | FROM<br>nearby well. | τo            | 1n. toft.                                                                                                                                                                                             |
| clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | brown                                                                                                          | 0                    | /             | 9. SCREEN<br>Screened well from ft. to Note. Known<br>(If known)                                                                                                                                      |
| nana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | brown                                                                                                          | 1                    | 2             | Open Hole from ft. to ft.                                                                                                                                                                             |
| Nand-fill<br>Nand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | brown                                                                                                          | 27                   | 29            | 10. STATIC WATER LEVEL<br><u>19.5</u> ft. below above<br>1 and surface Date Measured <u>11-19-8</u>                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | 11. WELLHEAD COMPLETION<br>1 Pitless Adapter Cound Buried N/A<br>2 Basement offset S<br>3 Well Pit                                                                                                    |
| 16. REMARKS, ELEVATION, SOURCE OF<br>Enclosed, Sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | ASINGS PERFOR        | ATED. ETC.    | 12. GROUTING INFORMATION                                                                                                                                                                              |
| Enclosed sit<br>Site MW #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                              |                      |               | Grout material from to ft. cu. yes<br>EOB fo SUVFACE                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | 13. NEAREST SOURCES OF CONTAMINATION feet direction type                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | Well disinfected before sealing?  Yes                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | 14. PUMP Removed Not Present NA<br>Type: 1 Submersible 3 L.S. Turbine 5 Reciprocation<br>2 Jet 6 Centrifugal 6                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | 15. EXISTING WELLS (Please sketch locations of abanconed and<br>active wells in remarks section or on back.)<br>Other unused well(s) on property? Yes No<br>Abandoned: Permanent Temporary Not sealed |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | 17. WATER WELL CONTRACTORS CERTIFICATION<br>This well was sealed under my jurisdiction and this report<br>is true to the best of my knowledge and belief.<br>GME CONSULTANTS, Inc                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | Address 14000 213 Address Name License No.                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |               | Signet Date                                                                                                                                                                                           |
| OFFICIAL ABANDONED WELL RECORD (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (May be used for Property T                                                                                    | ansfer)              |               | Name of Driller Date (0-9-89                                                                                                                                                                          |
| INPORTANT: FILE WITH DEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n marine a construction of the sound states of the sound states of the sound states of the sound states of the |                      |               |                                                                                                                                                                                                       |



# APPENDIX B LABORATORY REPORTS

20

.

RE JRT OF LABORATORY ANALY

MN. FILE COPY

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

August 09, 1989

pratories, inc.

# 2853 Site C June Winter

CC: Shemen Horn for D-Buse

Mr. Steven Mockenhaupt Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

Dear Mr. Mockenhaupt:

Enclosed is the report of laboratory analyses for samples received 06/05/89.

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

usan O /haze Pro

Susan D. Max Director, Sampling and Analytical Services

Enclosures

| 1 | PACC. RE JRT OF LAN<br>laboratories, inc.                                                                                                               |                                              |                                                  | [] 6. 89                                | Offices:<br>Minneapol<br>Tampa, Flo<br>Coralville,<br>Novato, Ca<br>Leawood, | lowa<br>alifornia                     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
|   | Conestoga Rovers & Associates, Inc.<br>382 West County Road D<br>St. Paul, MN 55112                                                                     | August O<br>PACE Pro                         | ject Nur                                         |                                         | 05523                                                                        |                                       |
|   | Attn: Mr. Steven Mockenhaupt                                                                                                                            |                                              |                                                  | -                                       | #28>                                                                         | 5                                     |
|   | 2853                                                                                                                                                    |                                              |                                                  |                                         | Site C                                                                       | -<br>~                                |
|   | Date Sample(s) Collected: 06/02/89<br>Date Sample(s) Received: 06/05/89                                                                                 |                                              |                                                  | Jun<br>3-5                              | # 285<br>Site C<br>e- Wista<br>B-3                                           | Dupl.<br>B-3                          |
|   | PACE Sample Number:                                                                                                                                     |                                              |                                                  | 184870<br>W-60289-                      | 184880<br>W-60289-                                                           | 184890<br>W-60289-                    |
|   | Parameter                                                                                                                                               | <u>Units</u>                                 | _MDL_                                            | <u>JM-01</u>                            | <u>JM-02</u>                                                                 | <u>JM-03</u>                          |
|   | INORGANIC ANALYSIS                                                                                                                                      |                                              |                                                  |                                         |                                                                              |                                       |
|   | INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                     | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.001 | ND<br>ND<br>0.0004<br>0.002<br>ND<br>ND | ND<br>0.3<br>0.0002<br>ND<br>ND<br>ND                                        | ND<br>0.4<br>0.0001<br>ND<br>ND<br>ND |
|   | Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.0002<br>0.05<br>0.005<br>0.04<br>0.01          | ND<br>0.08<br>ND<br>ND<br>0.07          | ND<br>ND<br>ND<br>ND<br>0.03                                                 | ND<br>ND<br>ND<br>ND<br>0.04          |
|   | ORGANIC ANALYSIS                                                                                                                                        |                                              |                                                  |                                         |                                                                              |                                       |
|   | PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>ND              | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND      |
|   | Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethylene<br>Chloroform                                        | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 0.4<br>0.3<br>0.2<br>0.3<br>0.5                  | ND<br>ND<br>ND<br>ND<br>ND              | ND<br>ND<br>ND<br>ND<br>ND                                                   | ND<br>ND<br>ND<br>ND<br>ND            |

| RE JRT O<br>laboratories, inc.<br>Mr. Steven Mockenhaupt<br>Page 2                                                                                                                      |                                              | / ANALY<br>09, 1989<br>oject Nu        |                                    | Offices:<br>Minneapol<br>Tampa, Fl<br>Coralville,<br>Novato, C<br>Leawood,<br>505523 | lowa<br>alifornia                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|
| PACE Sample Number:<br><u>Parameter</u><br>ORGANIC ANALYSIS                                                                                                                             | <u>Units</u>                                 | _MDL                                   | в-5<br>184870<br>W-60289-<br>JM-01 | В-З<br>184880<br>W-60289-<br>JM-02                                                   | В-З (Дор)<br>184890<br>W-60289-<br>JM-03 |
| PURGEABLE HALOCARBONS AND AROMATICS<br>1,2-Dichloroethane<br>1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>cis-1,3-Dichloro-1-propene | S<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L    | 0.2<br>0.5<br>0.3<br>0.2<br>0.2<br>0.5 | ND<br>ND<br>ND<br>ND<br>ND         | ND<br>ND<br>ND<br>ND<br>ND                                                           | ND<br>ND<br>ND<br>ND<br>ND               |
| l,l,2-Trichloroethylene<br>Benzene<br>Dibromochloromethane<br>l,l,2-Trichloroethane<br>trans-l,3-Dichloro-l-propene<br>2-Chloroethylvinyl ether                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.5<br>1.0<br>1.0<br>0.3<br>5.0        | ND<br>ND<br>ND<br>ND<br>ND         | ND<br>ND<br>ND<br>ND<br>ND                                                           | ND<br>ND<br>ND<br>ND<br>ND               |
| Bromoform<br>1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene                                                                      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND         | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                     | ND<br>ND<br>ND<br>ND<br>ND               |
| l,3-Dichlorobenzene<br>l,2-Dichlorobenzene<br>l,4-Dichlorobenzene                                                                                                                       | ug/L<br>ug/L<br>ug/L                         | 4.0<br>4.0<br>4.0                      | ND<br>ND<br>ND                     | ND<br>ND<br>ND                                                                       | ND<br>ND<br>ND                           |

| PACE. RE JRT OF<br>laboratories, inc. | F LABORATOR       | Y ANALY               | Ĺ                      | Offices:<br>Minneapo<br>Tampa, F<br>Coralville<br>Novato, C | , Iowa                                             |
|---------------------------------------|-------------------|-----------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------|
| Mr. Steven Mockenhaupt<br>Page 3      |                   | 09, 1989<br>oject Num | nber: 8906             | Leawood<br>05523                                            |                                                    |
|                                       |                   |                       | Rinsate                | 8-1                                                         | Miss. Liver<br>Upstream<br>Surtace Water<br>184920 |
| DACE Comple Numbers                   |                   |                       | <i>Blank</i><br>184900 |                                                             | SurtaceWater                                       |
| PACE Sample Number:                   |                   |                       | W-60289-               | 184910<br>W-60289-                                          | W-60289-                                           |
| Parameter                             | <u>Units</u>      | _MDL_                 | <u>JM-05</u>           | JM-06                                                       | <u>JM-07</u>                                       |
| INORGANIC ANALYSIS                    |                   |                       |                        |                                                             |                                                    |
| INDIVIDUAL PARAMETERS                 |                   |                       |                        |                                                             |                                                    |
| Arsenic                               | mg/L              | 0.002                 | ND                     | ND                                                          | ND                                                 |
| Barium                                | mg/L              | 0.2                   | ND                     | ND                                                          | ND                                                 |
| Cadmium                               | mg/L              | 0.0001                | ND                     | ND                                                          | ND                                                 |
| Chromium                              | mg/L              | 0.001                 | ND                     | ND                                                          | ND                                                 |
| Copper                                | mg/L              | 0.01                  | ND                     | ND                                                          | ND                                                 |
| Lead                                  | mg/L              | 0.001                 | ND                     | ND                                                          | ND                                                 |
| Mercury                               | mg/L              | 0.0002                | OD                     | ND                                                          | ND                                                 |
| Nickel                                | mg/L              | 0.05                  | ND                     | ND                                                          | ND                                                 |
| Selenium                              | mg/L              | 0.005                 | ND                     | ND                                                          | ND                                                 |
| Silver                                | mg/L              | 0.04                  | ND                     | ND                                                          | ND                                                 |
| Zinc                                  | mg/L              | 0.01                  | ND                     | ND                                                          | ND                                                 |
| ORGANIC ANALYSIS                      |                   |                       |                        |                                                             |                                                    |
| PURGEABLE HALOCARBONS AND AROMATICS   |                   |                       |                        |                                                             |                                                    |
| Chloromethane                         | ug/L              | 1.0                   | ND                     | ND                                                          | ND                                                 |
| Bromomethane                          | ug/L              | 1.5                   | ND                     | ND                                                          | ND                                                 |
| Dichlorodifluoromethane               | ug/L              | 1.5                   | ND                     | ND                                                          | ND                                                 |
| Vinyl chloride                        | ug/L              | 1.5                   | ND                     | ND                                                          | ND                                                 |
| Chloroethane                          | ug/L              | 1.0                   | ND                     | ND                                                          | ND                                                 |
| Methylene chloride                    | ug/L              | 1.0                   | ND                     | ND                                                          | ND                                                 |
| Trichlorofluoromethane                | ug/L              | 0.4                   | 1.3                    | ND                                                          | ND                                                 |
| 1,1-Dichloroethylene                  | ug/L              | 0.3                   | 2.3                    | 1.5                                                         | 1.3                                                |
| 1,1-Dichloroethane                    | ug/L              | 0.2                   | ND                     | ND                                                          | ND                                                 |
| trans-1,2-Dichloroethylene            | ug/L              | 0.3                   | ND                     | ND                                                          | ND                                                 |
| Chloroform                            | ug/L .            | 0.5                   | ND                     | ND                                                          | ND                                                 |
| 1,2-Dichloroethane                    | ug/L              | 0.2                   | ND                     | ND                                                          | ND                                                 |
| 1,1,1-Trichloroethane                 | ug/L              | 0.5                   | 2.7                    | ND                                                          | ND                                                 |
| Carbon tetrachloride                  | ug/L              | 0.3                   | ND                     | ND                                                          | ND                                                 |
| Bromodichloromethane                  | ug/L              | 0.2                   | ND                     | ND                                                          | ND                                                 |
| 1,2-Dichloropropane                   | ug/L              | 0.2                   | ND                     | ND                                                          | ND                                                 |
|                                       | anna 👻 san annsai |                       |                        |                                                             |                                                    |

1

•

| pace.<br>laboratories, inc.                | RE JRT OF L | ABORATOR     |                       |                    | Minneapo<br>Tampa, Fl<br>Coralville,<br>Novato, C<br>Leawood, | lowa<br>alifornia  |
|--------------------------------------------|-------------|--------------|-----------------------|--------------------|---------------------------------------------------------------|--------------------|
| Mr. Steven Mockenhaupt<br>Page 4           |             |              | 09, 1989<br>roject Nu |                    | 505523                                                        |                    |
|                                            |             |              |                       | Blank              | B-7                                                           | River up           |
| PACE Sample Number:                        |             |              |                       | 184900<br>W-60289- | 184910<br>W-60289-                                            | 184920<br>W-60289- |
| <u>Parameter</u>                           |             | Units        | _MDL_                 | <u>JM-05</u>       | <u>JM-06</u>                                                  | <u>JM-07</u>       |
| ORGANIC ANALYSIS                           |             |              |                       |                    |                                                               |                    |
| PURGEABLE HALOCARBONS                      |             |              | 0.5                   | ND                 | ND                                                            | NO                 |
| cis-1,3-Dichloro-1-prop                    |             | ug/L         | 0.5                   | ND<br>ND           | ND<br>ND                                                      | ND<br>ND           |
| 1,1,2-Trichloroethylen                     | \$          | ug/L<br>ug/L | 0.5                   | ND                 | ND                                                            | ND                 |
| Benzene<br>Dibromochloromethane            |             | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
| 1,1,2-Trichloroethane                      |             | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
| trans-1,3-Dichloro-1-p                     | ropene      | ug/L         | 0.3                   | ND                 | ND                                                            | ND                 |
|                                            | opene       |              |                       |                    |                                                               |                    |
| 2-Chloroethylvinyl eth                     | er          | ug/L         | 5.0                   | ND                 | ND                                                            | ND                 |
| Bromoform                                  |             | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
| 1,1,2,2-Tetrachloroeth                     | ane         | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
| 1,1,2,2-Tetrachloroeth                     | ylene       | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
| Toluene                                    |             | ug/L         | 1.0                   | 1.4                | ND                                                            | ND                 |
| Chlorobenzene                              |             | ug/L         | 1.0                   | ND                 | ND                                                            | ND                 |
|                                            |             |              | 1 0                   | ND                 | ND                                                            | ND                 |
| Ethyl benzene                              |             | ug/L         | 1.0<br>4.0            | ND<br>ND           | ND                                                            | ND                 |
| 1,3-Dichlorobenzene                        |             | ug/L<br>ug/L | 4.0                   | ND                 | ND                                                            | ND                 |
| l,2-Dichlorobenzene<br>l,4-Dichlorobenzene |             | ug/L         | 4.0                   | ND                 | ND                                                            | ND                 |
| 1,4-DICHIOIODENZENE                        |             | ugre         | 4.0                   | 10                 | 10                                                            |                    |

Offices:

ND Not detected at or above the MDL. MDL Method Detection Limit

| pace.<br>laboratories, inc.                                                                                                                 | RE JRT OF LA | BORATORY                                     | ANALY                                            |                                        | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|--------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|
| Mr. Steven Mockenhaupt<br>Page 5                                                                                                            |              | August O<br>PACE Pro                         | iect Nur                                         | mber: 890605<br>Mississipp             | Leawood, Kansas<br>5523                                                                        |
| PACE Sample Number:                                                                                                                         |              |                                              | /                                                | Mississipp<br>River Down<br>184930 Sur | Astream<br>tau Water                                                                           |
| <u>Parameter</u>                                                                                                                            |              | <u>Units</u>                                 | MDL                                              | W-60289-<br>JM-08                      |                                                                                                |
| INORGANIC_ANALYSIS                                                                                                                          |              |                                              |                                                  |                                        |                                                                                                |
| INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                         |              | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.001 | ND<br>ND<br>ND<br>ND<br>O.OO1          |                                                                                                |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                             |              | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.0002<br>0.05<br>0.005<br>0.04<br>0.01          | ND<br>ND<br>ND<br>ND                   |                                                                                                |
| ORGANIC ANALYSIS                                                                                                                            |              |                                              |                                                  |                                        |                                                                                                |
| PURGEABLE HALOCARBONS A<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride |              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>1.3            |                                                                                                |
| Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethyl<br>Chloroform<br>1,2-Dichloroethane         | ene          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.4<br>0.3<br>0.2<br>0.3<br>0.5<br>0.2           | 2.1<br>ND<br>ND<br>ND<br>ND<br>ND      |                                                                                                |
| l,l,l-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>l,2-Dichloropropane                                                |              | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 0.5<br>0.3<br>0.2<br>0.2                         | ND<br>ND<br>ND<br>ND                   |                                                                                                |
|                                                                                                                                             |              |                                              |                                                  |                                        |                                                                                                |

1

1

1

1

J

•

| PACE. RE JRT OF LA                                                                                                                                                                                                                | BORATOR                                              | Y ANALYE                               | Offices:<br>Minneapolis, I<br>Tampa, Florid<br>Coralville, Iow<br>Novato, Califo | a<br>/a |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|---------|
| Mr. Steven Mockenhaupt<br>Page 6                                                                                                                                                                                                  |                                                      | 09, 1989<br>roject Numb                | Leawood, Kar<br>er: 890605523                                                    | isas    |
|                                                                                                                                                                                                                                   |                                                      |                                        | River Down                                                                       |         |
| PACE Sample Number:                                                                                                                                                                                                               |                                                      |                                        | 84930<br>-60289-                                                                 |         |
| Parameter                                                                                                                                                                                                                         | Units                                                |                                        | M-08                                                                             |         |
| ORGANIC ANALYSIS                                                                                                                                                                                                                  |                                                      |                                        |                                                                                  |         |
| PURGEABLE HALOCARBONS AND AROMATICS<br>cis-1,3-Dichloro-1-propene<br>1,1,2-Trichloroethylene<br>Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.5<br>1.0<br>1.0<br>1.0<br>1.0<br>5.0 | ID<br>ID<br>ID<br>ID<br>ID<br>ID                                                 |         |
| 1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethylene                                                                                                                                                                          | ug/L<br>ug/L                                         | 1.0 I<br>1.0 I                         | ID<br>ID                                                                         |         |
| Toluene<br>Chlorobenzene                                                                                                                                                                                                          | ug/L<br>ug/L                                         |                                        | ID<br>ID                                                                         |         |
| Ethyl benzene<br>1,3-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                                                                                                | ug/L<br>ug/L<br>ug/L<br>ug/L                         | 4.0<br>4.0                             | 1D<br>1D<br>1D<br>1D                                                             |         |

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

Thomas L. Halverson Inorganic Chemistry Manager

: Rleeger

Dennis R. Seeger Organic Chemistry Manager

RE JRT OF LABORATORY ANALYS

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

QUALITY CONTROL DATA

Client Name <u>Conestoga Rovers & Associates</u> PACE Project Number <u>890605.523</u>

Project Name \_\_\_\_\_2853\_

pace. laboratories, inc.

SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

| <u>Parameter</u> | Date of<br><u>Analysis</u> | Mthd<br><u>Blk</u> | Check<br>Std.<br><u>% Re</u> c | True<br><u>Value</u> | Matrix<br><u>Spike</u> | %<br><u>Rec</u> | Rep.<br><u>A</u> | Rep.<br>B | <u>A-B</u> | Mean<br><u>% Rec</u> |
|------------------|----------------------------|--------------------|--------------------------------|----------------------|------------------------|-----------------|------------------|-----------|------------|----------------------|
| Arsenic          | 6-20-89                    | ND                 | 115                            | 10.59                | 9.74                   | 92              | 10.2             | 10.2      | 0          | 109                  |
| Barium           | 6-15-89                    | ND                 | 101                            | 2.66                 | 2.72                   | 102             | NA               | NA        |            | 103                  |
| Cadmium          | 6-16-89                    | ND                 | 103                            | 1.142                | 1.098                  | 96              | 1.087            | 1.087     | 0          | 98                   |
| Chromium         | 6-15-89                    | ND                 | 103                            | 5.25                 | 5.31                   | 101             | 5.51             | 5.51      | 0          | 104                  |
| Copper           | 6-6-89                     | 0.08               | 102                            | 0.80                 | 0.80                   | 100             | 1.02             | 1.00      | 0.02       | 100                  |
| Lead             | 6-9-89                     | ND                 | 114                            | 10                   | 9.73                   | 97              | NA               | NA        | _          | 100                  |
| Mercury          | 6-9-89                     | ND                 | 97                             | 5.00                 | 4.90                   | 98              | 4.37             | 4.31      | 0.06       | 97                   |
| Nickel           | 6-6-89                     | ND                 | 98                             | 1.01                 | <i>0</i> .995          | 99              | NA               | NA        | -          | 98                   |
| Selenium         | 6-39-89                    | ND                 | 108                            | 25.0                 | 27.9                   | 112             | 27.9             | 26.9      | 1.0        | 95                   |
| Silver           | 6-8-89                     | ND                 | 95                             | 2.0                  | 1.66                   | 83              | NA               | NA        | -          | 101                  |
| Zinc             | 6-6-89                     | 0.11               | 98                             | 1.6                  | 1.57                   | 98              | NA               | NA        | -          | 99                   |

### RE JRT OF LABORATORY ANALY



Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

### QUALITY CONTROL DATA

| Client Name <u>Conestoga Rovers &amp; Associates</u> | PACE Project Number890605.523 |
|------------------------------------------------------|-------------------------------|
| Project Name <u>2853</u>                             | Sample Spiked <u>18605</u>    |

Standard B

### SUMMARY OF ORGANIC ACCURACY AND PRECISION DATA

Parameter EPA Methods 601, 602 MDH 465B Date of Analysis 6-8-89

| Compound                   | MS<br>% Rec | MSD<br>% Rec | RPD  | Accuracy<br>Range | Precision<br>Limit |
|----------------------------|-------------|--------------|------|-------------------|--------------------|
| Trichlorofluoromethane     | 89          | 88           | 0.60 | 83-120            | 30%                |
| Dichlorofluoromethane      | 79          | 76           | 0.60 | 73-143            | 30%                |
| trans-1,2-Dichloroethylene | 93          | 88           | 5.52 | 72-139            | 30%                |
| 1,2-Dichloroethane         | 92          | 90           | 2.17 | 58-135            | 30%                |
| 1,1,1-Trichloroethane      | 100         | 91           | 9.42 | 87-132            | 30%                |
| Bromodichloromethane       | 101         | 101          | 0    | 85-132            | 30%                |
| 2,3-Dichloropropene        | 98          | 90           | 8.51 | 70-123            | 30%                |
| trans-1,3-Dichloropropene  | 105         | 100          | 4.82 | 54-145            | 30%                |
| cis-1,3-Dichloropropene    | 78          | 76           | 2.56 | 64-138            | 30%                |
| 1,2-Dibromomethane         | 117         | 129          | 9.76 | 66-138            | 30%                |
| Bromoform                  | 88          | 87           | 0.60 | 62-136            | 30%                |
| 1,1,2,2-Tetrachloroethane  | 86          | 77           | 11.0 | 73-153            | 30%                |
| Toluene                    | 103         | 100          | 2.91 | 54-132            | 30%                |
| Ethylbenzene               | 85          | 81           | 4.82 | 55-141            | 30%                |
| m-Xylene                   | 110         | 105          | 4.65 | 59-152            | 30%                |
| o-Xylene                   | 108         | 104          | 3.77 | 30-149            | 30%                |
| 1,2-Dichlorobenzene        | 106         | 104          | 1.90 | 40-142            | 30%                |

Comments: Method blank - no compounds of interest detected

NA Not Analyzed Not Detected at or above the method detection limit ND

| 1  |     |    |            |        |  |
|----|-----|----|------------|--------|--|
| Dr | 10T | OF | ADODATODV  | ANIAIN |  |
| RR | 181 |    | LABORATORY | ANALYS |  |

pace. laboratories, inc.

QUALITY CONTROL DATA

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

| Client Name <u>Conestoga Rovers &amp; Associates</u> | PACE Project Number <u>890605523</u> |
|------------------------------------------------------|--------------------------------------|
| Project Name2853                                     | Sample Spiked                        |

Standard A

### SUMMARY OF ORGANIC ACCURACY AND PRECISION DATA

Parameter EPA Methods 601, 602 MDH 465B Date of Analysis <u>6-9-89</u>

|                          | MS          | MSD   |      | Accuracy | Precision |
|--------------------------|-------------|-------|------|----------|-----------|
| Compound                 | % Rec       | % Rec | RPD  | Range    | Limit     |
| Methylene Chloride       | 90          | 94    | 4.26 | 49-119   | 30%       |
| 1,1-Dichloroethylene     | 140         | 137   | 2.17 | 78-123   | 30%       |
| 1,1-Dichloroethane       | 119         | 113   | 5.17 | 78-122   | 30%       |
| Chloroform               | 144         | 132   | 8.69 | 74-123   | 30%       |
| Carbon Tetrachloride     | 138         | 132   | 4.44 | 79-139   | 30%       |
| 1,2-Dichloropropane      | 112         | 104   | 7.40 | 73-126   | 30%       |
| 1,1,2-Trichloroethylene  | 97          | 92    | 5.29 | 75-126   | 30%       |
| Benzene                  | 112         | 104   | 7.41 | 59-126   | 30%       |
| Dibromochloromethane     | 115         | 103   | 11.0 | 86-121   | 30%       |
| 1,1,2-Trichloroethane    | 115         | 103   | 110  | 86-121   | 30%       |
| 2-Chloroethylvinyl ether | NA          | NA    | -    | 82-145   | 30%       |
| Tetrachloroethylene      | 100         | 92    | 8.33 | 68-119   | 30%       |
| Chlorobenzene            | 95          | 88    | 7.65 | 68-112   | 30%       |
| 1,3-Dichlorobenzene      | 99          | 91    | 8.42 | 65-146   | 30%       |
| 1,4-Dichlorobenzene      | 98          | 90    | 8.60 | 46-141   | 30%       |
| A Mathad blank           | na compound |       |      | 14       |           |

Comments: \_\_\_\_\_Method blank - no compounds of interest detected

NA Not Analyzed

ND Not Detected at or above the method detection limit

## RE JRT OF LABORATORY ANALY

pace. laboratories, inc. Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

## QUALITY CONTROL DATA

| Client Name <u>Conestoga Rovers &amp; Associates</u> | PACE Project Number890605.523 |
|------------------------------------------------------|-------------------------------|
| Project Name2853                                     | Sample Spiked <u>18845</u>    |
| Standard B                                           |                               |

### SUMMARY OF ORGANIC ACCURACY AND PRECISION DATA

Parameter EPA Methods 601, 602 MDH 465B Date of Analysis \_\_\_\_\_6-12-89

| Compound                   | MS<br>% Rec | MSD<br>% Rec | RPD | Accuracy<br>Range | Precision<br>Limit |
|----------------------------|-------------|--------------|-----|-------------------|--------------------|
|                            | -           |              |     |                   |                    |
| Trichlorofluoromethane     | 75          | 91           | 19  | 83-120            | 30%                |
| Dichlorofluoromethane      | NA          | NA           | -   | 73-143            | 30%                |
| trans-1,2-Dichloroethylene | 102         | 119          | 15  | 72-139            | 30%                |
| l,2-Dichloroethane         | 80          | 80           | 0   | 58-135            | 30%                |
| 1,1,1-Trichloroethane      | 117         | 122          | 4.2 | 87-132            | 30%                |
| Bromodichloromethane       | 102         | 124          | 19  | 85-132            | 30%                |
| 2,3-Dichloropropene        | NA          | NA           | -   | 70-123            | 30%                |
| trans-1,3-Dichloropropene  | 139         | 164          | 17  | 54-145            | 30%                |
| cis-1,3-Dichloropropene    | 79          | 105          | 28  | 64-138            | 30%                |
| 1,2-Dibromomethane         | NA          | NA           | -   | 66-138            | 30%                |
| Bromoform                  | 89          | 108          | 19  | 62-136            | 30%                |
| 1,1,2,2-Tetrachloroethane  | 99          | 117          | 17  | 73-153            | 30%                |
| Toluene                    | 83          | 86           | 3.6 | 54-132            | 30%                |
| Ethylbenzene               | 88          | 91           | 3.4 | 55-141            | 30%                |
| m-Xylene                   | 84          | 88           | 4.7 | 59-152            | 30%                |
| o-Xylene                   | NA          | NA           | -   | 30-149            | 30%                |
| l,2-Dichlorobenzene        | 85          | 96           | 12  | 40-142            | 30%                |

Comments: \_\_Method blank - no compounds of interest detected

NA Not Analyzed ND Not Detected at or above the method detection limit WPI

## RE JRT OF LABORATORY ANALY



QUALITY CONTROL DATA

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

| Client Name <u>Conestoga Rovers &amp; Associates</u> | PACE Project Number890605523 |
|------------------------------------------------------|------------------------------|
| Project Name <u>2853</u>                             | Sample Spiked 19062          |

Standard A

### SUMMARY OF ORGANIC ACCURACY AND PRECISION DATA

Parameter EPA Methods 601, 602 MDH 465B Date of Analysis \_\_\_\_\_6-12-89

| Compound                 | MS<br>% Rec | MSD<br>% Rec | RPD  | Accuracy<br>Range | Precision<br>Limit |
|--------------------------|-------------|--------------|------|-------------------|--------------------|
| •                        |             |              |      |                   |                    |
| Methylene Chloride       | 95          | 104          | 9.01 | 49-119            | 30%                |
| l,l-Dichloroethylene     | 100         | 103          | 2.90 | 78-123            | 30%                |
| 1,1-Dichloroethane       | 84          | 85           | 0.06 | 78-122            | 30%                |
| Chloroform               | 88          | 91           | 3.35 | 74-123            | 30%                |
| Carbon Tetrachloride     | 84          | 85           | 0.06 | 79-139            | 30%                |
| 1,2-Dichloropropane      | 86          | 87           | 0.60 | 73-126            | 30%                |
| 1,1,2-Trichloroethylene  | 90          | 89           | 0.60 | 75-126            | 30%                |
| Benzene                  | 103         | 101          | 0.20 | 59-126            | 30%                |
| Dibromochloromethane     | 86          | 82           | 0.60 | 86-121            | 30%                |
| 1,1,2-Trichloroethane    | 86          | 87           | 0.60 | 86-121            | 30%                |
| 2-Chloroethylvinyl ether | 203         | 210          | 3.38 | 82-145            | 30%                |
| Tetrachloroethylene      | 90          | 89           | 0.10 | 68-119            | 30%                |
| Chlorobenzene            | 87          | 90           | 3.38 | 68-112            | 30%                |
| 1,3-Dichlorobenzene      | 89          | 89           | 0    | 65-146            | 30%                |
| 1,4-Dichlorobenzene      | 85          | 83           | 2.38 | 46-141            | 30%                |

Comments: <u>1,1-Dichloroethylene detected at 1.2 ug/L - no other compounds</u> detected

NA Not Analyzed

ND Not Detected at or above the method detection limit

# RE ORT OF LABORATORY ANALY

pince. laboratories, inc. Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas

## QUALITY CONTROL DATA

| Client Name  | <u>Conestoga</u> | Rovers & Associates | PACE Project Number <u>890605.523</u> |  |
|--------------|------------------|---------------------|---------------------------------------|--|
| Project Name | 2853             |                     | Sample Spiked                         |  |

Standard B

### SUMMARY OF ORGANIC ACCURACY AND PRECISION DATA

Parameter EPA Methods 601, 602 MDH 465B Date of Analysis 6-14-89

| Compound                   | MS<br>% Rec | MSD<br>% Rec | RPD  | Accuracy<br>Range | Precision<br>Limit |
|----------------------------|-------------|--------------|------|-------------------|--------------------|
| Trichlorofluoromethane     | 81          | 83           | 2.44 | 83-120            | 30%                |
| Dichlorofluoromethane      | 73          | 75           | 2.70 | 73-143            | 30%                |
| trans-1,2-Dichloroethylene | 83          | 82           | 1.21 | 72-139            | 30%                |
| 1,2-Dichloroethane         | 80          | 81           | 1.24 | 58-135            | 30%                |
| 1,1,1-Trichloroethane      | 86          | 85           | 1.17 | 87-132            | 30%                |
| Bromodichloromethane       | 89          | 89           | 0    | 85-132            | 30%                |
| 2,3-Dichloropropene        | 86          | 85           | 1.17 | 70-123            | 30%                |
| trans-1,3-Dichloropropene  | 84          | 85           | 1.18 | 54-145            | 30%                |
| cis-1,3-Dichloropropene    | 75          | 73           | 2.68 | 64-138            | 30%                |
| 1,2-Dibromomethane         | 99          | 100          | 1.00 | 66-138            | 30%                |
| Bromoform                  | 93          | 96           | 3.17 | 62-136            | 30%                |
| 1,1,2,2-Tetrachloroethane  | 77          | 76           | 1.31 | 73-153            | 30%                |
| Toluene                    | 99          | 87           | 12.9 | 54-132            | 30%                |
| Ethylbenzene               | 82          | 71           | 14.4 | 55-141            | 30%                |
| m-Xylene                   | 105         | 92           | 13.2 | 59-152            | 30%                |
| o-Xylene                   | 104         | 94           | 10.1 | 30-149            | 30%                |
| 1,2-Dichlorobenzene        | 103         | 91           | 12.4 | 40-142            | 30%                |
|                            |             |              |      |                   |                    |

Comments: Method blank - no compounds of interest detected

NA Not Analyzed ND Not Detected at or above the method detection limit

|                                                       | I         |          | SHIP       | PED T         | 0 (Lat | porator  | y name                                                                                                          | ):         |
|-------------------------------------------------------|-----------|----------|------------|---------------|--------|----------|-----------------------------------------------------------------------------------------------------------------|------------|
| ONESTOGA-ROVERS & /<br>51 Colby Orive, Waterloo, Onta | SSOCIATES |          |            | Pa            | a i    | Lab      | ک                                                                                                               |            |
| HAIN OF CUS                                           | STODY     | PROJECT  |            | PROJE         |        |          |                                                                                                                 |            |
| RECORD                                                |           | 285      | 3          |               | for    |          |                                                                                                                 |            |
| SAMPLER'S SIGNATURE                                   |           | SION)    |            |               | SAMP   | LE b     | CONTAINERS                                                                                                      | REMARKS    |
| EQ. SAMPLE Nº OATE                                    | пме       | SAMPLE   | LOCATO     | NIN           |        | - 2      | CON                                                                                                             |            |
| N-60289-JM-01 6-7-                                    | 81 1848-  | For      |            |               | Wat    | cr s     |                                                                                                                 | lyze for   |
| <u> </u>                                              | 38        | <u> </u> | i <u>A</u> |               |        | S        |                                                                                                                 | Carbon 1   |
| 11 -05                                                | 9         | 2        |            |               |        |          | Tron                                                                                                            | natic Org. |
| 11 -06                                                | 91        |          |            |               | 1      | 5        | - ven                                                                                                           | · SPA      |
| 11-07                                                 | GA        |          |            |               |        | 5        |                                                                                                                 | hods be    |
| 11-08 V                                               | 9         | 3 V      | <i>(</i>   |               | Ý      |          |                                                                                                                 | 02.        |
|                                                       |           |          |            |               |        |          | And                                                                                                             | lyze For   |
|                                                       |           |          |            |               |        |          | 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. | lowing Me  |
|                                                       |           |          |            |               |        |          | AS                                                                                                              | , Ba,      |
|                                                       |           |          |            |               |        |          | Cr                                                                                                              | , Cu, P    |
|                                                       |           |          |            |               |        |          | Hg                                                                                                              | , Se, 1    |
|                                                       |           |          |            |               |        |          |                                                                                                                 | n, Ni.     |
|                                                       |           |          |            |               |        |          |                                                                                                                 |            |
|                                                       |           |          |            |               |        |          |                                                                                                                 |            |
|                                                       |           |          |            |               |        |          |                                                                                                                 |            |
|                                                       |           |          |            |               |        |          |                                                                                                                 |            |
| <u>a di mananana di manan</u>                         | -1        | TOTAL NU | MBER C     | F CONT        | AINERS |          |                                                                                                                 |            |
| ANTICIPATED CHEMICAL HAZA                             | RDS:      |          | -          |               |        | I        |                                                                                                                 |            |
|                                                       | 11        |          | DATE/TH    | 4F            | RECE   | IVED BY: |                                                                                                                 |            |
| IT (SIGN)                                             | /         |          | 89/5       |               |        | Q        |                                                                                                                 | ((\$IGN)   |
| RELINQUISHED BY                                       |           | (        | DATE/TH    | Æ             | RECE   | VED BY:  |                                                                                                                 |            |
| 2 (SKON)                                              |           | -        |            |               |        | (        | )                                                                                                               | (SIGN)     |
| RELINQUISHED BY:                                      |           | ī        | DATE/TH    | ИE            | RECE   | IVED BY  | :                                                                                                               |            |
| 3 (SICN)                                              |           |          |            |               |        | (        | Ð                                                                                                               | (SQN)      |
| ADDITIONAL SIGNATURE                                  | ]         |          |            |               |        |          |                                                                                                                 | (20)       |
|                                                       | T         |          |            |               |        |          |                                                                                                                 | 1          |
| METHOD OF SHIPMENT:                                   | SHIPPE    | U BY:    |            | (SIGN)        | 1 A    |          | ATORY BY                                                                                                        |            |
| CONDITION OF SEAL UPON R                              | ECEIPT:   |          |            | + <u>·</u> ·· |        | NED BY:  | ¥                                                                                                               | DATE/TI    |
| GENERAL CONDITION OF COO                              |           |          |            | (SIGN)        |        |          |                                                                                                                 | _          |
| GENERAL CONDITION OF COO                              | ER:       |          |            | (SIGN)        |        |          |                                                                                                                 | _          |

GOLDEN ROD - SHIPPERS

•

Nº 5987



### PORT OF LABORATORY ANALYS

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California

# 2853

October 05, 1989 MN. FILE COPY,

OCT 3 0. 89 Nuter Nuter Nugust 1989

Rocid C

Mr. Jon Michaels Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

RE: PACE Project No. 890808.516

Dear Mr. Michaels:

Enclosed is the report of laboratory analyses for samples received August 08, 1989.

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

Susan D. Max Director, Sampling and Analytical Services

Enclosures

| aboratories, inc.                                                         | PORT OF LA   |                        | ξ            | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California |               |  |
|---------------------------------------------------------------------------|--------------|------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Conestoga Rovers & Associ<br>382 West County Road D<br>St. Paul, MN 55112 | iates, Inc.  | October C<br>PACE Proj |              |                                                                                                                                         | 08516         |  |
| Attn: Mr. Jon Michaels                                                    |              |                        |              |                                                                                                                                         |               |  |
| 2853                                                                      |              |                        |              | B1                                                                                                                                      |               |  |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                  |              |                        |              | 279190<br>08/04/89<br>08/08/89<br>W-080489-                                                                                             |               |  |
| Parameter                                                                 |              | Units                  | _MDL_        | JM-06                                                                                                                                   | DATE ANALYZED |  |
| INORGANIC ANALYSIS                                                        |              |                        |              |                                                                                                                                         |               |  |
| INDIVIDUAL PARAMETERS                                                     |              |                        |              |                                                                                                                                         |               |  |
| Arsenic                                                                   |              | mg/L                   | 0.002        | ND                                                                                                                                      | 08/25/89      |  |
| Barium                                                                    |              | mg/L                   | 0.2          | ND                                                                                                                                      | 08/09/89      |  |
| Cadmium                                                                   |              | mg/L                   | 0.0001       |                                                                                                                                         | 09/05/89      |  |
| Chromium                                                                  |              | mg/L                   | 0.001        | ND                                                                                                                                      | 08/22/89      |  |
| Copper                                                                    |              | mg/L                   | 0.01         | 0.01                                                                                                                                    | 08/09/89      |  |
| Lead                                                                      |              | mg/L                   | 0.005        | ND                                                                                                                                      | 08/24/89      |  |
| Monoury                                                                   |              | mg/L                   | 0.0002       | ND                                                                                                                                      | 08/24/89      |  |
| Mercury<br>Nickel                                                         |              | mg/L                   | 0.05         | ND                                                                                                                                      | 08/14/89      |  |
| Selenium                                                                  |              | mg/L                   | 0.010        | ND                                                                                                                                      | 08/24/89      |  |
| Silver                                                                    |              | mg/L                   | 0.04         | ND                                                                                                                                      | 08/17/89      |  |
| Zinc                                                                      |              | mg/L                   | 0.01         | ND                                                                                                                                      | 08/24/89      |  |
| ORGANIC_ANALYSIS                                                          |              |                        |              |                                                                                                                                         |               |  |
|                                                                           |              |                        |              |                                                                                                                                         |               |  |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                    |              | ug/L                   | 20           | ND                                                                                                                                      | 09/01/89      |  |
| PURGEABLE HALOCARBONS AN                                                  | ID AROMATICS |                        |              |                                                                                                                                         |               |  |
| Chloromethane                                                             |              | ug/L                   | 1.0          | ND                                                                                                                                      | 09/01/89      |  |
| Bromomethane                                                              |              | ug/L                   | 1.5          | ND                                                                                                                                      | 09/01/89      |  |
| Dichlorodifluoromethane                                                   |              | ug/L                   | 1.5          | 14 (1)                                                                                                                                  | 09/01/89      |  |
| Vinyl chloride                                                            |              | ug/L                   | 1.5          | 5.2 (1)                                                                                                                                 | 09/01/89      |  |
| Chloroethane                                                              |              | ug/L                   | 1.0          | ND                                                                                                                                      | 09/01/89      |  |
| Methylene chloride                                                        |              | ug/L                   | 1.0          | ND                                                                                                                                      | 09/01/89      |  |
| Trichlorofluoromethane                                                    |              | ug/L                   | 0.4          | ND                                                                                                                                      | 09/01/89      |  |
| 1,1-Dichloroethylene                                                      |              | ug/L                   | 0.3          | ND                                                                                                                                      | 09/01/89      |  |
| .,                                                                        |              |                        | an an a' Tùb |                                                                                                                                         |               |  |
|                                                                           |              |                        |              |                                                                                                                                         |               |  |

| MDL | Method Detection Limit            |
|-----|-----------------------------------|
| ND  | Not detected at or above the MDL. |
| (1) | These compounds co-elute          |

| pace.<br>laboratories, inc.                       | PORT OF LABORATOR | Y ANALYS                      | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California |
|---------------------------------------------------|-------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Mr. Jon Michaels<br>Page 2                        |                   | 05, 1989<br>oject Number: 890 | 0808516                                                                                                                                 |
|                                                   |                   |                               |                                                                                                                                         |
|                                                   |                   | B-1                           |                                                                                                                                         |
| PACE Sample Number:                               |                   | 279190                        |                                                                                                                                         |
| Date Collected:                                   |                   | 08/04/89                      |                                                                                                                                         |
| Date Received:                                    |                   | 08/08/89                      |                                                                                                                                         |
|                                                   |                   | W-080489                      |                                                                                                                                         |
| Parameter                                         | Units             | _MDLJM_06                     | DATE_ANALYZED                                                                                                                           |
| ORGANIC ANALYSIS                                  |                   |                               |                                                                                                                                         |
| DUDGEADLE HALOCADDONS AND A                       | DOMATICS          |                               |                                                                                                                                         |
| PURGEABLE HALOCARBONS AND A<br>1,1-Dichloroethane | ug/L              | 0.2 ND                        | 09/01/89                                                                                                                                |
| trans-1,2-Dichloroethylene                        | ug/L              | 0.3 ND                        | 09/01/89                                                                                                                                |
| Chloroform                                        | ug/L              | 0.5 ND                        | 09/01/89                                                                                                                                |
| 1,2-Dichloroethane                                | ug/L              | 0.2 ND                        | 09/01/89                                                                                                                                |
| 1,1,1-Trichloroethane                             | ug/L              | 0.5 ND                        | 09/01/89                                                                                                                                |
| Carbon tetrachloride                              | ug/L              | 0.3 ND                        | 09/01/89                                                                                                                                |
| Bromodichloromethane                              | ug/L              | 0.2 ND                        | 09/01/89                                                                                                                                |
| 1,2-Dichloropropane                               | ug/L              | 0.2 ND                        | 09/01/89                                                                                                                                |
| cis-1,3-Dichloro-1-propene                        | ug/L              | 0.5 ND                        | 09/01/89                                                                                                                                |
| 1,1,2-Trichloroethylene                           | ug/L              | 0.5 ND                        | 09/01/89                                                                                                                                |
| Benzene                                           | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| Dibromochloromethane                              | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| 1,1,2-Trichloroethane                             | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| trans-1,3-Dichloro-1-propen                       |                   | 0.3 ND                        | 09/01/89                                                                                                                                |
| 2-Chloroethylvinyl ether                          | ug/L              | 5.0 ND                        | 09/01/89                                                                                                                                |
| Bromoform                                         | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| 1,1,2,2-Tetrachloroethane                         | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| 1,1,2,2-Tetrachloroethylene                       | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| Toluene                                           | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| Chlorobenzene                                     | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| Ethyl benzene                                     | ug/L              | 1.0 ND                        | 09/01/89                                                                                                                                |
| 1,3-Dichlorobenzene                               | ug/L              | 4.0 ND                        | 09/01/89                                                                                                                                |
| 1,2-Dichlorobenzene                               | ug/L              | 4.0 ND                        | 09/01/89                                                                                                                                |
| 1,4-Dichlorobenzene                               | ug/L              | 4.0 ND                        | 09/01/89                                                                                                                                |
| cis-1,2-Dichloroethylene                          | ug/L              | 0.5 ND                        | 09/01/89                                                                                                                                |
|                                                   |                   |                               |                                                                                                                                         |

| MDL | Method Detection Limit            |  |
|-----|-----------------------------------|--|
| ND  | Not detected at or above the MDL. |  |

| Mr. Jon Michaels<br>Page 3                                                                                                                                                                                                                       | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>PACE Project Number: 890808516 |                                                              |                                                                    |                                                             |                                                                                                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Tage 5                                                                                                                                                                                                                                           |                                                                                                                                                                           |                                                              | J                                                                  |                                                             |                                                                                                                      |  |  |
| PACE Sample Number:<br>Date Collected:<br>Date Received:<br>Parameter                                                                                                                                                                            |                                                                                                                                                                           | Units                                                        |                                                                    | B-3<br>279200<br>08/04/89<br>08/08/89<br>W-080489-<br>JM-07 | _ DATE_ANALYZED                                                                                                      |  |  |
| <u>INORGANIC ANALYSIS</u><br>INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                                                                                 |                                                                                                                                                                           | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                 | 0.2                                                                | ND<br>ND<br>ND<br>0.02<br>ND                                | 08/25/89<br>08/09/89<br>09/05/89<br>08/22/89<br>08/09/89<br>08/24/89                                                 |  |  |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                                                                                                  |                                                                                                                                                                           | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                         | 0.0002<br>0.05<br>0.010<br>0.04<br>0.01                            | ND<br>0.05<br>ND<br>ND<br>ND                                | 08/24/89<br>08/14/89<br>08/24/89<br>08/17/89<br>08/24/89                                                             |  |  |
| ORGANIC ANALYSIS                                                                                                                                                                                                                                 |                                                                                                                                                                           |                                                              |                                                                    |                                                             |                                                                                                                      |  |  |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                                                                                                                           |                                                                                                                                                                           | ug/L                                                         | 120                                                                | ND                                                          | 08/18/89                                                                                                             |  |  |
| PURGEABLE HALOCARBONS AN<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride<br>Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethyle |                                                                                                                                                                           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0<br>0.4<br>0.3<br>0.2<br>0.3 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>O.5<br>ND<br>ND         | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |  |  |
| Chloroform                                                                                                                                                                                                                                       |                                                                                                                                                                           | ug/L                                                         | 0.5                                                                | ND                                                          | 08/18/89                                                                                                             |  |  |
|                                                                                                                                                                                                                                                  |                                                                                                                                                                           |                                                              |                                                                    |                                                             |                                                                                                                      |  |  |

| PACC                                                                                                                                                                                    | October 05, 1989<br>PACE Project Number: 8908 |                                        |                                                             |                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--|
| PACE Sample Number:<br>Date Collected:<br>Date Received:<br><u>Parameter</u><br><u>ORGANIC ANALYSIS</u>                                                                                 | Units                                         | MDL                                    | в-3<br>279200<br>08/04/89<br>08/08/89<br>W-080489-<br>JM-07 | DATE_ANALYZED                                                        |  |
| PURGEABLE HALOCARBONS AND AROMATICS<br>1,2-Dichloroethane<br>1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>cis-1,3-Dichloro-1-propene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L  | 0.2<br>0.5<br>0.3<br>0.2<br>0.2<br>0.5 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                            | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |  |
| 1,1,2-Trichloroethylene<br>Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L          | 0.5<br>1.0<br>1.0<br>1.0<br>0.3<br>5.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                            | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |  |
| Bromoform<br>1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene                                                                      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L  | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                            | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |  |
| l,3-Dichlorobenzene<br>l,2-Dichlorobenzene<br>l,4-Dichlorobenzene<br>cis-l,2-Dichloroethylene                                                                                           | ug/L<br>ug/L<br>ug/L<br>ug/L                  | 4.0<br>4.0<br>4.0<br>0.5               | ND<br>ND<br>ND<br>ND                                        | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                         |  |

|     |                                                                                                                                              |             |                                              |                                                  |                                             | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P   | aboratories, inc.                                                                                                                            | 20RT (      | of laboratory                                | ANALY:                                           | ٤                                           | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Mr. Jon Michaels<br>Page 5                                                                                                                   |             | October<br>PACE Pro                          |                                                  |                                             | 1808516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                              |             |                                              |                                                  | Miss, River                                 | (<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · 1 | PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                     |             |                                              |                                                  | 279210<br>08/04/89<br>08/08/89<br>W-080489- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U j | Parameter                                                                                                                                    |             | Units                                        | _MDL_                                            | JM-08                                       | DATE ANALYZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | INORGANIC ANALYSIS                                                                                                                           |             |                                              |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                          |             | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.005 | ND<br>ND<br>ND                              | 08/25/89<br>08/09/89<br>09/05/89<br>08/22/89<br>08/09/89<br>08/24/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                              |             | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.0002<br>0.05<br>0.010<br>0.04<br>0.01          | ND<br>ND<br>ND<br>ND<br>ND                  | 08/24/89<br>08/14/89<br>08/24/89<br>08/17/89<br>08/24/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | ORGANIC ANALYSIS                                                                                                                             |             |                                              |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                       |             | ug/L                                         | 120                                              | ND                                          | 08/18/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | PURGEABLE HALOCARBONS AN<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | D AROMATICS | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethyle<br>Chloroform                               | ne          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 0.4<br>0.3<br>0.2<br>0.3<br>0.5                  | ND<br>ND<br>ND<br>ND<br>ND                  | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

-

.

| pace.<br>aboratories, inc.                               | PORT OF LABO | Dratory AI  | NALYS             | ) C                             | offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California | 12 |
|----------------------------------------------------------|--------------|-------------|-------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| Mr. Jon Michaels                                         |              | October 05, |                   |                                 |                                                                                                                                         |    |
| Page 6                                                   |              | PACE Projec |                   |                                 | 0310                                                                                                                                    |    |
|                                                          |              |             |                   | s. hiven                        |                                                                                                                                         |    |
| PACE Sample Number:<br>Date Collected:<br>Date Received: |              |             | 279<br>08/<br>08/ | 210<br>04/89<br>08/89<br>80489- |                                                                                                                                         |    |
| Parameter                                                | Lin          | uts _M      | DL JM-            | 08                              | DATE_ANALYZED                                                                                                                           |    |
| ORGANIC ANALYSIS                                         |              |             |                   |                                 |                                                                                                                                         |    |
| PURGEABLE HALOCARBONS AND AF                             | OMATICS      |             |                   |                                 |                                                                                                                                         |    |
| 1,2-Dichloroethane                                       |              | 1/L 0.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 1,1,1-Trichloroethane                                    | ug           | 1/L 0.      |                   |                                 | 08/18/89                                                                                                                                |    |
| Carbon tetrachloride                                     | ug           | 1/L 0.      | 3 ND              |                                 | 08/18/89                                                                                                                                |    |
| Bromodichloromethane                                     | uq           | 1/L 0.      | 2 ND              |                                 | 08/18/89                                                                                                                                |    |
| 1,2-Dichloropropane                                      |              | 1/L 0.      | 2 ND              |                                 | 08/18/89                                                                                                                                |    |
| cis-1,3-Dichloro-1-propene                               |              | 1/L 0.      | 5 ND              |                                 | 08/18/89                                                                                                                                |    |
| 1,1,2-Trichloroethylene                                  | 110          | 1/L 0.      | 5 ND              |                                 | 08/18/89                                                                                                                                |    |
| Benzene                                                  |              | 1/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| Dibromochloromethane                                     |              | 1/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 1,1,2-Trichloroethane                                    |              | 1/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| trans-1,3-Dichloro-1-propent                             |              | 1/L 0.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 2-Chloroethylvinyl ether                                 |              | 1/L 5.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 2-chronoethy while ther                                  | ug           | J/L J.      | 0 110             |                                 | 00/10/05                                                                                                                                |    |
| Bromoform                                                | uc           | 1/L 1.      | 0 ND              |                                 | 08/18/89                                                                                                                                |    |
| 1,1,2,2-Tetrachloroethane                                |              | j/L 1.      | O ND              |                                 | 08/18/89                                                                                                                                |    |
| 1,1,2,2-Tetrachloroethylene                              |              | j/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| Toluene                                                  |              | J/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| Chlorobenzene                                            |              | J/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| Ethyl benzene                                            |              | j/L 1.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 1.2. Nahlanaharras                                       |              | . /1 4      | 0 10              |                                 | 00/10/00                                                                                                                                |    |
| 1,3-Dichlorobenzene                                      |              | g/L 4.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 1,2-Dichlorobenzene                                      |              | g/L 4.      |                   |                                 | 08/18/89                                                                                                                                |    |
| 1,4-Dichlorobenzene                                      |              | g/L 4.      |                   |                                 | 08/18/89                                                                                                                                |    |
| cis-1,2-Dichloroethylene                                 | uç           | g/L 0.      | .5 ND             |                                 | 08/18/89                                                                                                                                |    |

| MDL | Method Detection Limit            |
|-----|-----------------------------------|
| ND  | Not detected at or above the MDL. |

| PACE.<br>laboratories, inc.<br>Mr. Jon Michaels<br>Page 7                                                                                                               | ( .ºORT OF LA | BORATORY<br>October C<br>PACE Proj                   | )5, 1989                                         | ε i                                         | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Page 7                                                                                                                                                                  |               | FACE FIUJ                                            | ect null                                         |                                             |                                                                                                                                         |
|                                                                                                                                                                         |               |                                                      |                                                  | Miss River<br>Downstree                     | .m                                                                                                                                      |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                                |               |                                                      |                                                  | 279220<br>08/04/89<br>08/08/89<br>W-080489- |                                                                                                                                         |
| Parameter                                                                                                                                                               |               | Units                                                | MDL                                              | JM-09                                       | DATE ANALYZED                                                                                                                           |
| INORGANIC ANALYSIS                                                                                                                                                      |               |                                                      |                                                  |                                             |                                                                                                                                         |
| INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                                     |               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                 | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.005 | ND<br>ND<br>0.0008<br>ND<br>ND<br>ND        | 08/25/89<br>08/09/89<br>09/05/89<br>08/22/89<br>08/09/89<br>08/24/89                                                                    |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                                         |               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                 | 0.0002<br>0.05<br>0.010<br>0.04<br>0.01          | ND<br>ND<br>ND<br>ND<br>ND                  | 08/24/89<br>08/14/89<br>08/24/89<br>08/17/89<br>08/24/89                                                                                |
| ORGANIC_ANALYSIS                                                                                                                                                        |               |                                                      |                                                  |                                             |                                                                                                                                         |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                                                  |               | ug/L                                                 | 120                                              | ND                                          | 08/18/89                                                                                                                                |
| PURGEABLE HALOCARBONS AND<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride<br>Trichlorofluoromethane | O AROMATICS   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                        |
| l,1-Dichloroethylene<br>l,1-Dichloroethane<br>trans-1,2-Dichloroethyle<br>Chloroform                                                                                    | ne            | ug/L<br>ug/L<br>ug/L<br>ug/L                         | 0.3<br>0.2<br>0.3<br>0.5                         | 1.1<br>ND<br>ND<br>ND                       | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                                                |

| Mr. Jon Michaels<br>Page 8                                                                                                                      | ORT OF LABORATORY<br>October (<br>PACE Proj  | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>890808516 |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received:<br><u>Parameter</u>                                                                    | Units                                        |                                                                                                                                                      | River<br>on stream<br>10<br>1/89<br>1/89<br>1489-                    |
| ORGANIC_ANALYSIS<br>PURGEABLE HALOCARBONS AND AROM<br>1,2-Dichloroethane                                                                        | ug/L                                         | 0.2 ND                                                                                                                                               | 08/18/89                                                             |
| l,l,l-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>l,2-Dichloropropane<br>cis-l,3-Dichloro-l-propene                      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 0.5 ND<br>0.3 ND<br>0.2 ND<br>0.2 ND<br>0.5 ND                                                                                                       | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89             |
| 1,1,2-Trichloroethylene<br>Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 0.5 ND<br>1.0 ND<br>1.0 ND<br>1.0 ND<br>0.3 ND<br>5.0 ND                                                                                             | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |
| Bromoform<br>1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene                              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0 ND<br>1.0 ND<br>1.0 ND<br>1.0 ND<br>1.0 ND<br>1.0 ND<br>1.0 ND                                                                                   | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89 |
| 1,3-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene<br>cis-1,2-Dichloroethylene                                                   | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 4.0 ND<br>4.0 ND<br>4.0 ND<br>0.5 ND                                                                                                                 | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                         |

| MDL | Method Detection Limit            |
|-----|-----------------------------------|
| ND  | Not detected at or above the MDL. |

| PAICE .<br>aboratories, inc.<br>Mr. Jon Michaels<br>Page 9                                                                                                                              | . PORT OF LAB                                                 | ORATORY AN<br>October 05,<br>PACE Project                          | 1989                                                      | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>90808516 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received:<br><u>Parameter</u>                                                                                                            | Ш                                                             | nits _M                                                            | B-5<br>279230<br>08/04/8<br>08/08/8<br>W-08048<br>DLJM-10 | 9                                                                                                                                                   |
| INORGANIC ANALYSIS<br>INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                               | mi<br>mi<br>mi<br>mi                                          | g/L 0.3<br>g/L 0.0<br>g/L 0.0<br>g/L 0.0                           | 0001 ND<br>001 ND                                         | 08/25/89<br>08/09/89<br>09/05/89<br>08/22/89<br>08/09/89<br>08/24/89                                                                                |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc<br>ORGANIC ANALYSIS                                                                                                                     | ណ<br>កា<br>កា                                                 | g/L 0.0                                                            | 010 ND<br>04 ND                                           | 08/24/89<br>08/14/89<br>08/24/89<br>08/17/89<br>08/24/89                                                                                            |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate<br>PURGEABLE HALOCARBONS ANN<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | D AROMATICS<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u | g/L 12<br>g/L 1.<br>g/L 1.<br>g/L 1.<br>g/L 1.<br>g/L 1.<br>g/L 1. | 0 ND<br>5 ND<br>5 ND<br>5 ND<br>5 ND<br>0 ND              | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                                    |
| Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethyle<br>Chloroform                                                                          | u<br>u<br>u<br>ne u                                           | g/L 0.<br>g/L 0.<br>g/L 0.<br>g/L 0.<br>g/L 0.                     | 4 ND<br>3 0.8<br>2 ND<br>3 ND                             | 08/18/89<br>08/18/89<br>08/18/89<br>08/18/89<br>08/18/89                                                                                            |

1

| Mr. Jon Michaels                                         |              | ,<br>05, 1989 | 9                                                  | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California |
|----------------------------------------------------------|--------------|---------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Page 10                                                  | PACE Pro     | oject Nur     | nber: 8908                                         | 08516                                                                                                                                   |
| PACE Sample Number:<br>Date Collected:<br>Date Received: |              |               | B-5<br>279230<br>08/04/89<br>08/08/89<br>W-080489- |                                                                                                                                         |
| Parameter                                                | Units        | _MDL_         | JM-10                                              | DATE ANALYZED                                                                                                                           |
| ORGANIC_ANALYSIS<br>PURGEABLE HALOCARBONS AND AROMATIC   | .с           |               |                                                    |                                                                                                                                         |
| 1,2-Dichloroethane                                       | ug/L         | 0.2           | ND                                                 | 08/18/89                                                                                                                                |
| 1,1,1-Trichloroethane                                    | ug/L         | 0.5           | ND                                                 | 08/18/89                                                                                                                                |
| Carbon tetrachloride                                     | ug/L         | 0.3           | ND                                                 | 08/18/89                                                                                                                                |
| Bromodichloromethane                                     | ug/L         | 0.2           | ND                                                 | 08/18/89                                                                                                                                |
| 1,2-Dichloropropane                                      | ug/L         | 0.2           | ND                                                 | 08/18/89                                                                                                                                |
| cis-1,3-Dichloro-1-propene                               | ug/L         | 0.5           | ND                                                 | 08/18/89                                                                                                                                |
| 1,1,2-Trichloroethylene                                  | ug/L         | 0.5           | ND                                                 | 08/18/89                                                                                                                                |
| Benzene                                                  | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| Dibromochloromethane                                     | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| 1,1,2-Trichloroethane                                    | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| trans-1,3-Dichloro-l-propene                             | ug/L         | 0.3           | ND                                                 | 08/18/89                                                                                                                                |
| 2-Chloroethylvinyl ether                                 | ug/L         | 5.0           | ND                                                 | 08/18/89                                                                                                                                |
| Bromoform                                                | ug/L         | 1.0<br>1.0    | ND<br>ND                                           | 08/18/89<br>08/18/89                                                                                                                    |
| 1,1,2,2-Tetrachloroethane                                | ug/L<br>ug/L | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| 1,1,2,2-Tetrachloroethylene<br>Toluene                   | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| Chlorobenzene                                            | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| Ethyl benzene                                            | ug/L         | 1.0           | ND                                                 | 08/18/89                                                                                                                                |
| Ethy i benzene                                           | ~ j          |               |                                                    |                                                                                                                                         |
| 1,3-Dichlorobenzene                                      | ug/L         | 4.0           | ND                                                 | 08/18/89                                                                                                                                |
| 1,2-Dichlorobenzene                                      | ug/L         | 4.0           | ND                                                 | 08/18/89                                                                                                                                |
| 1,4-Dichlorobenzene                                      | ug/L         | 4.0           | ND                                                 | 08/18/89                                                                                                                                |
| cis-1,2-Dichloroethylene                                 | ug/L         | 0.5           | ND                                                 | 08/18/89                                                                                                                                |
|                                                          |              |               |                                                    |                                                                                                                                         |

Offices:

1

1

| MDL | Method Detection Limit            |
|-----|-----------------------------------|
| ND  | Not detected at or above the MDL. |

iu ri

Ť

0





Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California

Mr. Jon Michaels Page 11

October 05, 1989 PACE Project Number: 890808516

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

Scott Engelmon for

Michael A. Radle Inorganic Chemistry Manager

TLH Susan O haz

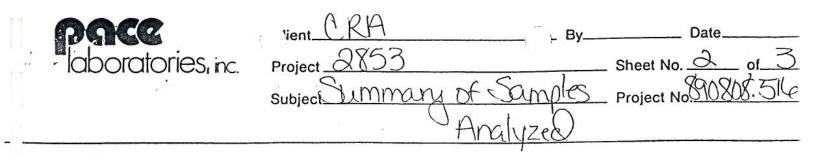
Susan D. Max Organic Chemistry Manager

| CRA Consulting Engineers<br>CONESTOGA-ROVERS & ASSOCIATE         |                  |                  |             | s         | SHIPPED TO (Laboratory name):<br>Page Labs |           |                           |       |                                       |                |
|------------------------------------------------------------------|------------------|------------------|-------------|-----------|--------------------------------------------|-----------|---------------------------|-------|---------------------------------------|----------------|
| 651 C                                                            | olby Drive, Wate | rloo, Ontario    | o Canada N2 | V 1C2     | 102 $190$ $L905$                           |           |                           |       |                                       |                |
| SAMPLER'S SIGNATURE                                              |                  |                  |             |           |                                            |           | iect NAME:<br>Drd, Site C |       |                                       |                |
|                                                                  |                  |                  |             |           |                                            |           | SAMPLE                    | Nº OF | RE                                    | MARKS          |
| SEQ. SAMPLE Nº. DATE TIME                                        |                  |                  |             |           |                                            |           |                           |       |                                       |                |
| W                                                                | 080489.JM        | -04              | 37          | 919       |                                            | и         | later_                    | 55    | Angly                                 | Nic S          |
| 11                                                               | 11               | -08              |             | 35        |                                            |           |                           | 151 1 | USIA                                  | g EPA          |
| 11 11 -09<br>11 11 -10                                           |                  |                  | 23          |           |                                            | $\forall$ | 5                         | 601;  | 60Z                                   |                |
|                                                                  |                  |                  |             |           |                                            |           |                           |       | dici                                  | 15-1, Z-       |
|                                                                  |                  |                  |             |           |                                            |           |                           |       | Dek                                   | hylalita       |
|                                                                  |                  |                  |             |           |                                            |           | -                         |       | 4) TC                                 | L Met.         |
|                                                                  |                  |                  |             |           |                                            |           |                           |       | Follo<br>AS.L                         | Wing!<br>BayCd |
|                                                                  |                  |                  |             |           |                                            |           |                           | Kr, C | SP. Ag                                |                |
|                                                                  |                  |                  |             |           |                                            |           |                           | Zn,   | Ni                                    |                |
|                                                                  |                  |                  |             |           |                                            |           |                           | 1     |                                       |                |
|                                                                  |                  |                  |             | TOTAL     | TOTAL NUMBER OF CONTAINERS                 |           |                           |       |                                       |                |
| AN.                                                              | TICIPATED CHEM   | ICAL HAZAI       | RDS:        |           |                                            |           |                           |       |                                       |                |
| REL                                                              | INQUISHED BY:    | John M<br>(SIGN) | Λ           | - 8-      | DATE/<br>8-871                             |           | RECEIVED                  | BY:   | Ell                                   | sign)          |
| RELINQUISHED BY:<br>[2] (SIGN)<br>RELINQUISHED BY:<br>[3] (SIGN) |                  |                  |             | DATE/TIME |                                            | пме       | (SGN)                     |       | · · · · · · · · · · · · · · · · · · · |                |
|                                                                  |                  |                  |             |           |                                            | ПМЕ       |                           |       |                                       |                |
| ADDITIONAL SIGNATURE<br>SHEET REQUIRED                           |                  |                  |             |           |                                            |           |                           |       |                                       |                |
|                                                                  |                  |                  | PED BY:     |           |                                            | ED FOR LA | BORA                      |       | SURGIS                                |                |
|                                                                  |                  |                  |             |           | (SIGN) -<br>COOL                           |           | COOLER OPENED BY: DAT     |       | 1 trat                                |                |

WHITE-CRA OFFICE COPYYELLOW-RECEIVING LABORATORY COPYPINK-CRA LABORATORY COPYGOLDEN RCD-SHIPPERS

П П

Nº 005134


| 1 Summary List of Samples Analyzed                       | 2853<br>Date Samples Recei                      |                                                                                                                                                                                                                                                                     | SUBMISSION                                    | Rec'd CRA<br>NOV 1 0. 89<br>Overnight<br>Regular Mail<br>Fax<br>Other |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| If no is checked please list CKA sample 105 of any one p | 4<br>5<br>6<br>7<br>8<br>9<br>All samples extra | Date of Sample Receipt<br>Date of Sample Extraction<br>Date of Sample Analysis<br>Method Blank Data for all Par<br>Matrix Spike Recoveries<br>Matrix Spike Duplicate Recov<br>QC Check Sample Data<br>Surrogate Spike Recoveries<br>cted and analyzed within specif | ameters<br>veries<br>ied holding time<br>□ No |                                                                       |

.



VRA 'ient Date. By Project 2853 sheet No. \_\_\_\_ or 3 immany of Samples Project No. 390808, 571, Analyzed Subject⊾

| · · · · · · · · · · · · · · · · · · · |                      |                       |                    |                      |                  |                     |
|---------------------------------------|----------------------|-----------------------|--------------------|----------------------|------------------|---------------------|
| F KE Sample<br>Number                 | CRA Sample<br>Number | Date of<br>Collection | Date of<br>Receipt | Dot-OF<br>Extraction | Analysis         | Date of<br>Analysis |
| (17919                                | W-080489-JM-06       | 8-4-89                | 8-8-89             | NA                   | Arsenic          | 8-25-89             |
| -, <u></u>                            |                      |                       |                    | NA                   | Barium           | 8-9-89              |
| -                                     | 1                    |                       |                    | NA                   | Codmium          | 9-5-89              |
| n                                     |                      |                       |                    | NA                   | Chromium         | 8-22-89             |
| 1                                     | -                    |                       |                    | NA                   | Copper           | 8-9-89              |
|                                       |                      |                       |                    | NA                   | Lead             | 8-24-89             |
|                                       |                      |                       |                    | NA                   | Mercuny          | 8-24-89             |
|                                       |                      |                       |                    | NA                   | Nickel           | 8-14-89             |
|                                       |                      |                       |                    | NA                   | Selenium         | 8-24-89             |
| 1                                     |                      | r <sup>r</sup>        | 11                 | NA                   | Silver           | 8-17-89             |
|                                       |                      |                       |                    | NA                   | Zinc             | 8-24-89             |
| []                                    | a -                  |                       |                    | NA                   | Ethyl<br>Acetate | 9-1-89 .            |
| 1.1                                   |                      |                       |                    | NA                   | 60/602           | 9-1-89              |
| 27920                                 | W-080489-JTh-07      | 8-4-89                | 8-8-89             | NA                   | Arsenic.         | 8-25-89             |
| <u></u>                               | -                    |                       |                    | NA                   | Benum            | 8-9-89              |
| L                                     |                      | <u> </u>              |                    | NA                   | Cadmium          | 9-5-89              |
|                                       | • 5g                 |                       |                    | NA .                 | Chromium         | 12-99-81            |
| 1.                                    |                      |                       |                    | IVA                  | Copper           | 8-9-89              |
| 4                                     |                      | ļ                     |                    | NA                   | Lead             | 8-24-89             |
| []                                    |                      |                       |                    | NA                   | Mercury          | 8-24-89             |
|                                       |                      |                       |                    | NA                   | Nickel 1         | 8-14-84             |
|                                       |                      |                       |                    | <u>AU</u>            | Selenium         | 8-24-89             |
|                                       |                      |                       |                    | NA                   | Silver           | 8-17-89             |
|                                       |                      |                       |                    | AUL                  | Zinc             | 8-24-89             |



| <del> </del>            | -                    |                       |                    |                      |                  |                     |
|-------------------------|----------------------|-----------------------|--------------------|----------------------|------------------|---------------------|
| 7 KCE. Sample<br>Number | CRA Sample<br>Number | Date of<br>Collection | Date of<br>Receipt | Dot-OF<br>Extraction | Analysis         | Date of<br>Analysis |
| -7920                   | W-080489-JM-07       | 8-4-89                | 8-8-89             | NA                   | ethyl<br>Acetate | 8-18-89             |
| 1.                      |                      |                       |                    | NA                   | 601/602          | 8-18-89             |
| 17921                   | 80-ME-P\$4080-W      | 8-4-89                | 8-8-89             | NA                   | Arsenic.         | 8-25-89             |
|                         |                      |                       |                    | NA                   | Barium           | 8-9-89              |
|                         | 3<br>2               |                       |                    | NA                   | Cadmium          | 9-5-89              |
| [1]                     |                      |                       |                    | NA                   | Chromium         | 8-22-89             |
| 1.1                     |                      |                       |                    | NA                   | Copper           | 8-9-89              |
|                         | .; A                 | 19                    |                    | NA                   | Lead             | 8-24-89             |
| <u>n</u>                |                      |                       |                    | NA                   | Mercury.         | 8-24-89             |
| 1.1                     | • 2                  |                       |                    | NA                   | Nickel           | 8-14-89             |
|                         |                      |                       |                    | NA                   | Selenium         | 8-24-89             |
| 11                      |                      |                       |                    | NA                   | Silver           | 8-17-89             |
| 11                      |                      |                       |                    | NA                   | Zinc             | 8-24-89             |
|                         |                      |                       |                    | NA                   | Ethy Acetate     | 8-18-89             |
| ( )                     |                      |                       |                    | NA                   | 601 602          | 8-18-89             |
| 27922                   | W-080489-JM-09       | 8-439                 | 8-8-89             | VA                   | Arsenic          | 8-25-89             |
|                         | 79                   |                       |                    | NA.                  | Banum            | 8-9-89              |
|                         | 1                    |                       |                    | NA                   | Cadmium          | 9-5-89              |
| 0                       | * 4                  |                       |                    | NA                   | Chromium         |                     |
| 1                       |                      |                       |                    | NA                   | Copper           | 8-9-89              |
|                         |                      |                       |                    | NA                   | 1 etil           | 8-24-89             |
|                         | 81                   |                       |                    | NA                   | Mercunt          | 8-24-89             |
|                         |                      |                       |                    | NA                   | Nickel 9         | 8-14-89             |
|                         |                      |                       |                    | NA                   | Selenium         | 8-24-89             |
|                         |                      |                       |                    |                      | •                |                     |

|     | pace               | 'ient CRA            | By      | Date                    |
|-----|--------------------|----------------------|---------|-------------------------|
| , i | laboratories, inc. | Project_2853         |         | Sheet No. 3 of 3        |
|     |                    | subject Summary of S | imples  | Project No. 810808, 514 |
|     |                    | () Ar                | alvized |                         |

| -                        |                |                       |                    | · · · · · · · · · · · · · · · · · · · |                    | a le at             |
|--------------------------|----------------|-----------------------|--------------------|---------------------------------------|--------------------|---------------------|
| F ICE Sample<br>Number   | Number         | Date of<br>Collection | Date of<br>Receipt | Dox-OF<br>Extraction                  | Analysis           | Date of<br>Analysis |
| 27922                    | W-080489-JM-09 | 8-4-89                | 8-8-89             | NA                                    | Analysis<br>Silver | 8-17-89             |
|                          |                |                       |                    | NA                                    | Zinc               | 8-24-89             |
|                          |                |                       |                    | NA                                    | Athyl pretate      | 8-18-89             |
| 13                       |                |                       |                    | NA                                    | 601/602            | 8-18-89             |
| 27923                    | W-080489-JM-10 | 8-4-89                | 8-8-89             | NA                                    | Arsenic            | 8-25-89             |
|                          |                |                       |                    | NA                                    | Banum              | 8-9-89              |
|                          |                |                       |                    | NA                                    | Cadmium            | 9-5-89              |
| · .                      |                |                       |                    | NA                                    | Chromium           | 8-22-89             |
| 11                       |                |                       |                    | NA                                    | Copper             | 8-9-89              |
| ·                        | · ·            |                       |                    | NA                                    | Lead               | 8-24-89             |
|                          |                |                       |                    | NA                                    | Morcuny            | 8-24-89             |
| 11                       |                |                       |                    | NA                                    | Nickel             | 8-14-89             |
|                          |                |                       |                    | NA                                    | Selenium           | 8-24-89             |
|                          |                |                       |                    | NA                                    | Silver             | 8-17-89             |
| t destantes and a second |                |                       |                    | NA                                    | Zinc               | 8-2,4-89            |
|                          |                |                       |                    | NA                                    | Ethyl Acetate      | 8-18-89             |
|                          |                | _                     |                    | NA.                                   | 601/602            | 8-18-89             |
|                          |                |                       |                    |                                       |                    |                     |
|                          | ·              |                       |                    |                                       |                    |                     |
| 11                       |                |                       |                    |                                       |                    |                     |
| U                        |                |                       |                    |                                       |                    |                     |
|                          |                |                       |                    |                                       |                    |                     |
|                          |                |                       |                    |                                       | 52                 |                     |
|                          |                |                       |                    |                                       |                    |                     |
|                          |                | -1                    | 1                  |                                       | 1                  |                     |

Project Name CRA

SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

- I

| Parameter    | Date of<br>Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mthd<br><u>B.1k</u> | Check<br>Std.<br><u>% Rec</u> | Spiked<br><u>Value</u> | %<br><u>Rec</u> | Acc.<br>Range | Sample<br>A | Sample<br><u>A_Dup_</u> | RP.D | RPD<br>Range |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|------------------------|-----------------|---------------|-------------|-------------------------|------|--------------|
| Arsenic.     | 8-25-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.002              | 97                            | 10.0                   | 100             | 85-115        | 13.2        | 14.6                    | 10   | <u>±30</u>   |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 30030                  |                 |               | 27392       |                         | •    |              |
| Banum        | 8-9-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.2                | 92                            | 5,45                   | 100             | 85-115        | 4.3         | 4.6                     | 7    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 27443                  |                 |               | 27391       |                         |      |              |
| Cadmium      | 9-5-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100001              | 101                           | 1.43                   | 95              | 85-115        | 1.23        | 1.26                    | 2    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 27922                  |                 |               | 28096       |                         |      |              |
| Chromium     | 8-22-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0,001              | 106                           | 5,1                    | 85              | 85-115        | 5,3         | 5,2                     | 2    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 28234                  |                 |               | 26032       |                         |      |              |
| Conper       | 8-9-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.01               | 92                            | 1.014                  | 97              | 85-115        | 0.97        | D,98                    | 1    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 27465                  | N.              |               | 27334       | 4                       |      |              |
| Lead         | 8-28-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.005              | 97                            | NA                     |                 | 85-115        | 1.0         | 1.0                     | 0    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 5                             | ,                      |                 |               | 271928      |                         |      |              |
| Mercury      | 8-27-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0,0002             | 100                           | 2.0                    | 99              | 85-115        | ND          | DU                      | -    |              |
| PACE Sample# | A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR O |                     |                               | 28836                  |                 |               |             |                         |      |              |
| Nickel       | 8-14-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.05               | 91                            | 1.05                   | 99              | 85-115        | 0,99.       | 0,99                    | 0    | 30           |
| PACE Sample# |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               | 26964                  |                 |               | 27923       |                         |      |              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |                        |                 |               |             |                         |      |              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | L                             |                        |                 | 1             |             | -                       | I    | l            |

NA Not Analyzed NO Not Detected at or above the method detection limit

,

•

page lof 2

Project Name CRA

SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

· Bo u

( )

| Parameter    | Date of<br>Analysis | Mthd<br><u>Blk</u> | Check<br>Std.<br>%_Rec | Spiked<br>Value | %<br>Rec | Acc.<br>Range | Sample<br>A | Sample<br>A_Dup_ | RPD | RPD<br>Range |
|--------------|---------------------|--------------------|------------------------|-----------------|----------|---------------|-------------|------------------|-----|--------------|
| Selenium     | 8-25-89             | KD.010             | 100                    | 16              | 93       | 85-115        | 1           | 1                | ۵   | 30           |
| PACE Sample# |                     |                    |                        | 27920           |          |               | JAIG        |                  |     |              |
| Silver       | 8-17-89             | 20.04              | 1D1                    | 0,500           | 106      | 85-115        | 0.54        | 0,54             | 0   | _30          |
| PACE Sample# |                     |                    |                        | 27446           |          |               | 26554       |                  |     |              |
| Zinc         | 8-24-89             | 0,103              | 96                     | 1.600           | 96       | 85-115        | 0.30        | 0.30             | 0   | 30           |
| PACE Sample# |                     |                    |                        | 28075           |          |               | 27574       |                  |     |              |
|              |                     |                    |                        |                 |          |               |             |                  |     |              |
| PACE Sample# | -                   |                    |                        |                 |          |               |             |                  |     |              |
|              |                     |                    |                        |                 |          |               |             |                  |     |              |
| PACE Sample# |                     |                    |                        |                 |          |               |             |                  |     |              |
|              |                     |                    |                        |                 |          | ,.            |             |                  |     |              |
| PACE Sample# |                     |                    |                        | •               |          |               |             |                  |     |              |
|              |                     | -                  |                        |                 |          | 3             |             |                  |     |              |
| PACE Sample# |                     | 6.55               |                        |                 |          |               |             | 5.<br>           |     |              |
|              |                     |                    |                        |                 |          |               |             |                  |     |              |
| PACE Sample# |                     |                    |                        |                 |          |               |             |                  |     |              |
|              |                     |                    |                        |                 |          |               |             |                  |     |              |
|              |                     | 1                  |                        |                 |          | 1             | 1           |                  | 1   | 1            |

NA

1

4

Not Analyzed Not Detected at or above the method detection limit 1:0

1

page 2 of 2

# DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY

. -

| ANALYSIS: 601, 602, 465B | FILE NUMBER:                  |                                                        |
|--------------------------|-------------------------------|--------------------------------------------------------|
| STANDARD: A              | DATE PREPED:                  | CLIENT NAME:                                           |
| SAMPLE SPIKED: 30189     | ANALYZED BY:<br>DATE ANALYZED | PROJECT NAHE:           -& P           PROJECT NUHBER: |
| SAMPLE HATRIX: WATCH     |                               |                                                        |

| Compound                | True<br>Value       | Sample<br>Result | нs    | I REC | MSD   | 1 REC       | RPD | Accuracy<br>Limits | .Precision<br>Limit | Associated<br>Samples |
|-------------------------|---------------------|------------------|-------|-------|-------|-------------|-----|--------------------|---------------------|-----------------------|
| Chloromethane           | 20.0                | ND               | 26.5. | 132   | 26.7  | 134<br>132  | .75 |                    | 30%                 | 30189                 |
| Bromomethane            | 1                   |                  | 24.5  | 123   | 25.3  | 127         | 1.4 |                    | 30%                 | 30191                 |
| Vinyl Chloride          |                     |                  | 25.2  | 126   | 26.9  | 135         | 3.4 |                    | ·30%                | 27919                 |
| Chloroethane            |                     |                  | 21.3  | 107   | 24.0  | 120         | 5.7 |                    | 30%                 | 30198                 |
| Hethylene Chtorlde      | -                   |                  | 20.9  |       | 23. 3 |             | 5.4 | 152 - 31           | 30%                 | 30199                 |
| 1,1-Dichloroethylene    | $\frac{1}{1}$       | · · · · ·        | 22.1  | . 111 | 24.0  | 120         | 3.9 | 132 - 40           | 30%                 | 30188                 |
| 1,1-Dichloroethane      |                     |                  | 21.6  | 108   | 23.7  | 119         | 4.8 | 126 - 61           | 30%                 | 30200                 |
| Chloroform              | 1.                  |                  | 22.8  | 114   | 25.5  | 1 1 1 1 1 1 | 5.8 | 122 - 67           | 30%                 | 29484                 |
| Carbon Tetrachloride    |                     |                  | 21.5  | 108   | 23. Z |             | 3.6 | 136 - 59           | 30%                 | 28171                 |
| 1,2-Dichloropropane     |                     |                  | 21.0  | 106   | 22.3  |             | 3.2 | 127 - 63           | 30%                 | 28172                 |
| 1,1,2-Trichloroethylene | $\uparrow \uparrow$ |                  | 21.7  | 109   | 24.7  | 124         | 6.4 | 117 - 72           | 30%                 | 28173                 |
| Benzene                 |                     |                  |       | 96    | 20.5  | 1           | 3.5 |                    | 30%                 |                       |
| Dibromochloro Methane   | 40.0                |                  | 40.5  | 1     | 48.7  | 122         | 9.4 | 151 - 55           | 30%                 | 2 E                   |

. . . .

Page 1 of 2

JWN

# DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY

| ANALYSIS: 601, 602, 465B<br>INSTRUMENT: C                      | • •           | PREPE            |                    |          |        | •••                 |         | <br>               | NAME:              | 4          |
|----------------------------------------------------------------|---------------|------------------|--------------------|----------|--------|---------------------|---------|--------------------|--------------------|------------|
| STANDARD:<br>SAMPLE SPIKED:<br>SAMPLE HATRIX:                  |               |                  |                    |          |        | •••••               |         | PROJECT            | NAME:              |            |
| 2 ×                                                            |               |                  |                    |          |        |                     |         |                    | Precision          | Associated |
| Compound                                                       | True<br>Value | Sample<br>Result | MS                 | % REC    | HSD    | 1 REC               | RPD     | Accuracy<br>Limits | Limit              | Samples    |
| 1,1,2-Trichloroethane                                          | 40.0          | ND               | 40.5               |          | 18.7   | 122                 | 9.4     | 151 - 55           | 30%                |            |
| 2-Chloroethylvinyl Ether                                       | 1             |                  | 13.1               | 33×      | 16.2   | 81*                 | *<br>42 | 145 - 82           | 30%                |            |
| Tetrachloroethylene                                            | 20.0          |                  | 20.2               |          | 22.7   | 114                 | 6.0     | 122 - 60           | 30%                |            |
| Chlorobenz-:ne                                                 | 1             |                  | 19.1               | 9%       | 20.7   | 104                 | -7.0    | 141 - 32           | . 30%              |            |
| 1,3-Dichlorobenzene                                            |               |                  | 15.3               | 77       | 7.7    | 89                  | 7.2     | 150 - 46           | 30%                | ·          |
| 1,4-Dichlorobenzene                                            |               |                  | 13.9               | · 70 ×   | 13.7   | 1 <sup>12</sup> 69* | .72     | 111 - 70           | 30%                |            |
| · · · · · ·                                                    |               |                  | 1                  |          | 1.14   |                     |         | 10 N N             | 1                  | -          |
|                                                                |               |                  |                    | ·        | :<br>: | 3 4 133             | •       |                    | ·                  |            |
|                                                                | 11.<br>11     |                  |                    | •        |        |                     |         | 28<br>18 - 12      |                    | а.         |
| Asterisked Value are o RPD: VOAs Recovery: VOAS Recovery: VOAS | 0<br>0        | out of           | _ outsi<br>_ outsi | de of QC | limit  | s                   | 22      | QC<br>DĂ           | Reviewed by<br>TE: | :          |
| Blank:<br>Comments:                                            | ton Th        | is compo         | t                  | n îş a   | · .    | r a trada           |         |                    |                    | 74HPPL     |

Page 2 of 2

out the second states and second states and second

ST SAME

| . The second second second second second second second second second second second second second second second | ille init still the init into part a state and | the maintain and shifting an a state bei | المناهدة والمعادمة والمعالية المناهدة | معتلطمعناهد         |                                       |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|---------------------------------------|---------------------|---------------------------------------|
|                                                                                                                |                                                | κ.                                       | 1.                                    |                     |                                       |
| · _ ·                                                                                                          |                                                |                                          | 1 7 7 7 A                             |                     |                                       |
|                                                                                                                | <b>n</b>                                       | ,                                        | 31                                    | 3 <b>4</b> 55<br>52 |                                       |
| SUSSET ASSREVIATION: 601460                                                                                    |                                                | FOR CLP USE ONLY                         | 7 1                                   |                     |                                       |
| DATE COLLECTED:                                                                                                |                                                |                                          |                                       | α.                  |                                       |
| DATE RECEIVED:                                                                                                 | <u> </u>                                       | PROJECT NAME:                            |                                       |                     | -                                     |
| DATE ANALYZED:                                                                                                 | •                                              | CLIENT NAME:<br>PROJECT NUMBER           |                                       |                     |                                       |
| ANALYST:                                                                                                       |                                                | 5-37-33172 - 32                          |                                       |                     |                                       |
| DATE EXTRACTED:                                                                                                |                                                | FILS NUMBER:<br>INSTR. 10:               |                                       |                     |                                       |
| DATA REVIEWED SY:                                                                                              |                                                |                                          | <del></del>                           |                     |                                       |
| ENTERED BY:                                                                                                    |                                                | PATRIX:                                  | ·····                                 |                     |                                       |
| 2.112.829 51:                                                                                                  |                                                |                                          | 0<br>                                 | . 11                | ~ /                                   |
|                                                                                                                |                                                | -                                        | SAMPLE HANE: 1                        | MHOD &              | SINNIC                                |
|                                                                                                                | · ·                                            |                                          | SAMPLE NO .:                          |                     | ·····                                 |
| PARAMETER NAME                                                                                                 | ASSREY.                                        | Other                                    | (C)                                   | Ŧ                   |                                       |
|                                                                                                                | •                                              | ug/1                                     | Date9/1  Date                         | ·  Resu             | lts                                   |
|                                                                                                                |                                                | 110L . 1                                 | 011.5 m/s1011:                        |                     | ort)                                  |
| CHLORONETHANE                                                                                                  | CHLOROYETH                                     | 1.0 1                                    |                                       |                     | NO I                                  |
| BROMONETHANE                                                                                                   | BROHONETH                                      | 1.5                                      | 1                                     | 1                   | 1                                     |
| DICHLORODIFLUCROMETHANE (1)                                                                                    | FREON 12                                       | 1.5                                      | <u> </u>                              | <u> </u>            |                                       |
| VINYL CHLORIDE (1)                                                                                             | YTAYLCHLOR                                     | 1.5 1                                    | 1                                     | · 1                 | 1 1                                   |
| CHLOROETHANE                                                                                                   | CHLOROETH                                      | 1.0 1                                    | 1.20 1                                | 1/                  | .z 1                                  |
| NETHYLENE CHLORIDE                                                                                             | HECL                                           | 1.0 1                                    | 1                                     | 1 1                 | N I                                   |
| TRICKLOROFLUOROMETHANE                                                                                         | FREDILIT                                       | 0.4 1                                    | 1 3                                   | 1                   | 1                                     |
| 1,1-DICHLOROETHYLENE                                                                                           | 1 IDCEENE                                      | 0.3 . 1                                  | 1                                     | 1                   | 1                                     |
| 1.1-DICHLOROETHANE                                                                                             | 110CEANE                                       | 0.2 1                                    | 1                                     | 1                   | 1                                     |
| RANS-1,2-DICHLOROETHYLENE                                                                                      | TRANS 120CE                                    | 0.3 1                                    | ·                                     | 1                   | 1                                     |
| CHLOROFORM                                                                                                     | CHLORCFORM                                     | 0.5 1                                    | 1                                     | 1                   | <u>_</u>                              |
| .2-DICHLOROETHANE                                                                                              | 120CEANE                                       | 0.2. 1                                   | 1                                     |                     | · · · · · · · · · · · · · · · · · · · |
| 1, 1, 1-TRICHLOROETHANE                                                                                        | 111TCEANE                                      | 0.5 1                                    | 1                                     |                     | <u> </u>                              |
| TARSON TETRACHLORIDE                                                                                           | CARBONTET                                      | 0.3 1                                    | · 1                                   |                     | i                                     |
| R 64100 I CHLOR GHETHANE                                                                                       | BOCIETHANE                                     | 0.2 1                                    | 1 •                                   | 1                   |                                       |
| 1.2-DICHLOROPROPANE                                                                                            | 120CPANE                                       | 0.2 1                                    | · 1                                   | · · · · ·           | <u>`</u>                              |
| IS-1, 3-DICHLORD-1-PROPENE                                                                                     | CIS130C2                                       | 0.5                                      | 1                                     |                     | <del>~~~</del>                        |
| 1,1,2-TRICHLOROETHYLENE                                                                                        | TCE                                            | 0.5 1                                    |                                       |                     | <u> </u>                              |
| JENZENE                                                                                                        | 82112516                                       | 1.0 1                                    | /                                     |                     | <u>_</u>                              |
| DIBROHOCHLOROMETHANE(2)                                                                                        | DBCIETHANE                                     | 1.0 1                                    | <u>_</u>                              |                     | · · ·                                 |
| 1, 1, 2-TR (CHLOR OETHANE (2)                                                                                  | 112TCEANE                                      | 1.0 1                                    | <u> </u>                              |                     |                                       |
| TRANS - 1 . 3 - 0 ICHL CRO- 1-PROPENE                                                                          | TRAIS 1300.9                                   | 0.3 1                                    | <br>/                                 |                     |                                       |
| Form C223W                                                                                                     | 11/213 1301,7                                  | 1                                        | I                                     |                     |                                       |

•

\*3

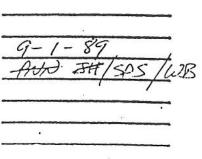
### 

# SUBSET ABOREVIATION: 6011602

| × •                         | • |            |                      | SAMPLE H<br>SAMPLE N | Concernance of | · ·                  |
|-----------------------------|---|------------|----------------------|----------------------|----------------|----------------------|
| PARAMETER NAME              |   | ABGREY.    | Other<br>ug/1<br>NDL | Data<br> 011.        | [Data<br>[D[1. | Results<br> (Report) |
| 2-CHLORDETHYLYINYL ETHER    |   | 2CEVETHER  | 5.0                  | <u> </u>             |                | 1 ~2                 |
| BRENGFERM                   |   | BRCMOFORI  | 1.0                  | 1                    | 1              | 1 (                  |
| 1.1.2.2-TETRACHLOROETHANE   |   | 1122TTEANE | 1.0                  | 1                    | 1              | 1                    |
| 1,1.2.2-TETRACHLOROETHYLENE |   | 1122TTEENE | 1.0                  | <u> </u>             | <u> </u>       | 1                    |
| TOLUENE                     |   | TOLUENE    | 1.0                  |                      | 1              | 1                    |
| CHLOROSENZENE               | • | CHLOROBENZ | 1.0                  | <u> </u>             | 1              | 1                    |
| ETHYLSENZENE                |   | ETHYLSENZ  | 1.0                  | <u> </u>             | <u> </u>       |                      |
| 1,3-DICHLOROBENZENE         |   | 130C3ENZ   | 4.0                  |                      | 1              | 1                    |
| 1,2-DICHLOROBENZENE ·       |   | 120C3ENZ   | 4.0                  |                      | 1              |                      |
| 1.4-DICHLOROBENZENE         | ÷ | 14DCSENZ   | 4.0                  | 1                    |                | 1                    |

•

## Footnota; '


1 - These compounds co-elute 2 - These compounds co-elute

Fora 0223H

### SUBSET ABBREYLATION: 4658

2.

DATE COLLECTED: DATE RECEIVED: DATE ANALYZED: ANALYST: DATE EXTRACTED: DATA REVIEWED. BY: ENTERED BY:



| FOR CLP U       | SE ava 17                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------|
| PROJECT WHE:    | - Li                                                                                                             |
| CLIEXT WHE:     | and the second second second second second second second second second second second second second second second |
| PROJECT NUMBER: |                                                                                                                  |
| FILE NUMBER:    |                                                                                                                  |
| 1.0572. 10:     | C                                                                                                                |
| MATRIX:         | WATER                                                                                                            |

SLUPLE NO .:

| PARAMETER NAME                   | ABBREY.     | Other | _ 01  | QC;         | ( Ole REC  |
|----------------------------------|-------------|-------|-------|-------------|------------|
| e Ö                              |             | vg/1  | Date  | 89<br>IDate | Results    |
|                                  |             | KOL   | [011. | 1011.       | (Recort)   |
| CHLORCHETHANE                    | CHLOROKETH  | 1.0   | 1     |             | 1 126      |
| K BROMONETHANE                   | BROKCHETH   | 1.5   | 1     | 1 .         | 1 /17      |
| DICHLORODIFLUOROHETHANE (1)      | FREON 12    | 1.5   | 1     | 1           | 1          |
| YINYL CHLORIDE (1)               | YINYLCHLOR  | 1.5   | 1     | 1           | 1 127      |
| CHLOROETHANE                     | CHLORCETH   | 1.0   | 1 .   |             | 1 90       |
| KETHYLENE CHLORIDE               | KECL        | 1.0   | 1     | 1           | 110        |
| ACETOKE                          | ACETOKE     | 40    | 1     | 1           | 1 116      |
| TRICHLORCFLUORCHETHAKE           | FRECHII     | 0.4   | 1     | 1           |            |
| ALLYL CHLORICE                   | ALLYL CAL   | 4.0   | 1     | 1           |            |
| X 1,1-DICHLORCETHYLENE           | 1 10CEENE   | 0.3   | 1     |             | 1 104      |
| TETRAHYDROFURAN                  | ፐለፍ         | 15    | 1     | 1           | 100        |
| X 1, 1-OICHLOROETHANE            | 110CENCE    | 0.2   | · 1   | 1           |            |
| TRANS-1, 2-DICHLOROETHYLENE (2)  | TRUSIZOCE   | 0.3   | 1     |             | 102        |
| CIS-1, Z-OICHLOROETHYLEKE (2)    | CISIZOCE    | 0.5   | . 1   |             |            |
| ETHYL ETHER                      | ETHALETKER  | 0.3   | 1     |             | -!         |
| X CHLORCFORM                     | CHLOROFORM  | 0.5   |       | <u> </u>    |            |
| 1, 1, 2-TRICHLOROTRIFLUOROETKAKE | FREOK113    | 0.7   |       |             | 112        |
| KETHYL ETHYL KETOHE              | KEX         | 20    | 1     |             | - <u> </u> |
| 1.2-DICHLCROETHANE               | 120CEARE    | 0.2   |       |             |            |
| DIBRCHCHETHARE                   | OISRONCHETH |       |       |             | <u> </u>   |
| 1.1, 1-TRICHLOROETHANE           | 111TOEAKE   | 0.5   |       |             |            |
| X CARBON TETRACHLORIDE           | CARBONTET   | 0.3   |       |             |            |
| Form OZINW                       |             |       |       |             | 197        |

#### SUBSET ABBREVIATION: 4658

. . . .

÷

| 26                            | •           |       | CA SID A |          |           |
|-------------------------------|-------------|-------|----------|----------|-----------|
| PARAHETER NAVE                | ABBREY.     | Other | SAMPLE   |          | COLO REC  |
|                               | •           | ug/1  | 10418    | loate    | Results   |
|                               | 1           | :#OL  | 1011.    | 1011.    | [(Record) |
| BR CHOO ICHLOR CHETHANE       | 80CHETHATE  | 0.2   |          | 1        |           |
| DICHLORCACETONITRILE          | 0020573417  | 1.0   | <u> </u> |          |           |
| 2. J-OICHLORO-1-PROPENE       | 37.3530[2]  | 0.5   |          |          | 1         |
| 1.2-DICHLOROPROPANE           | IZCODANE    | 0.2   |          |          | 1 98      |
| 1.1-01CHLCR0-1-PRCPENE        | 11002585    | 1.0   | l        |          |           |
| CIS-1.3-DICHLORD-1-2802EHE    | CISIDECE    | 0.5   | 1        | <u> </u> | 1         |
| 1,1,2-TRICHLOROETHYLENE       | 100         | 0.5   | l        |          | 94        |
| BENZENE                       | BENZENE     | 1.0   |          |          | 1 95      |
| 1, 3-DICHLOROPROPARE          | 13003446    | 0.5   |          |          | 1         |
| DIBRCHOCHLORCHETHANE (3)      | OBCYETHANE  | 1.0   |          |          | 197       |
| 1,1.2-TRICHLOROETHANE (3)     | 112TCEARE   | 1.0   | 1        |          | 1 97      |
| TRANS-1.3-0 ICHLORO-1-PROPENE | TRAXS 130CP | 0.3   | 1        | 1        |           |
| 1,2-OIBRCHOETHANE             | ED8         | 4.0   | 1        | 1        | · ·       |
| Z-CHLOROETHYLYTAYL ETHER      | 2CEYETHER   | 5.0   |          |          | 1 69      |
| BRCHCFORM                     | 8RCHOFORH   | 1.0   |          |          | 1         |
| 1,1.1.2-TETRACHLOROETHANE     | 111217548   | 0.3   | 1        | 1        | 1         |
| KETHYL ISOBUTYL KETONE        | HT BX       | 1.0   |          | 1        | 1         |
| 1.2.3-TRICHLORCPACEANE        | 381527551   | 4.0   | 1        | 1        | 1 '       |
| 1.1.2.2TETRACHLOROETHANE      | 112217241   | E 1.0 | 1        | 1        | 1         |
| 1,1.2.2-TETRACHLOROETHYLEKE   | 112277628   | ε 1.0 | 1        | 1        | 1 89      |
| PENTACHLOROETHANE             | POTACEAN    | E 2.0 | 1        | 1        | 1         |
| τοιυεχε                       | TOLUENE     | 1.0   | 1        | 1        | 1         |
| × CHLCROBENZENE               | CALCRCSE.Y  | z 1.0 | r        | 1        | 1 86      |
| ETHYLJENZENE                  | ETXTLJEXT   | 1.0   | 1 -      | 1        | 1         |
| CLAENE                        | CUPENE      | 1.0   | 1        | 1        | 1         |
| K-IYLENE                      | X-IYLENE    | 1.0   | 1        | 1        |           |
| P-TTLENE (4)                  | 1-MEYE      | 1.0   |          | 1        | 1         |
| 0-IYLENE (1)                  | 0-TTLEXE    | 1.0   | 1        |          |           |
| N1.J-D (CHLCR CBENZEHE        | 13003632    | 4.0   | 1        |          | 1 74.5    |
| 1.2-0 (CHLOROBEHZENE          | 12003632    | .4.0  | 1        | 1        | <u></u>   |
| K1.4-DICHLOROBENZENE          | 14001632    | . (.) | 1        | 1        | 1 66      |
| OLCHLORCELUCRIETHANE          | FRECHEL     | 1.0   | 1        | 1        | ×         |

Fc0:10:2:

L,

· - These compounds co-aluce 1 . These comoounds co-eluce

1 - These compounds co-eluce

1

SAMPLE NONE: CHECK STID A

í

<sup>2 -</sup> These concounds co-eluce

# DAILY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

|           | ANALYSIS: 601,602,465B<br>INSTRUMENT: D<br>STANDARD: A<br>SAMPLE SPIKED: 29532<br>SAMPLE MATRIX: Water | FILE NUMBER:         PREPPED BY:         DATE PREPPED:         ANALYZED BY:         LF         DATE ANALYZED:             ANALYZED:             CLIENT NAME:             PROJECT NAME: |            |
|-----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|           | Compound                                                                                               | True Method Check Sample Conc. <u>QC LIMITS*</u> Assoc.<br>Value Blank Std. Result MS 2 Rec. MSD % Rec. RPD UCL LCL Samples                                                            |            |
|           | [Chloromethane                                                                                         | 120.01 NTI INDIA 17.512.45112.3 35.31 130140                                                                                                                                           |            |
| 10)<br>21 | Bromomethane                                                                                           | 1 1 1 125.3127 124.6123 12.81 127.2331                                                                                                                                                 | 1          |
|           | Vinyl Chloride                                                                                         | 1 1 1 122.91,15 120.51 10 31/1.1 127570                                                                                                                                                |            |
|           | Chloroethane                                                                                           | 1 1 123.61 118 122.41 112 15.22 1275721                                                                                                                                                | ( Qut / Km |
|           | Methylene Chloride                                                                                     |                                                                                                                                                                                        | よう         |
|           | 1,1-Dichloroethylene                                                                                   |                                                                                                                                                                                        | 2          |
|           | [1,1-Dichloroethane                                                                                    | 1 1 EL ND 119,8 199,01 18,8 194,015,181 1303301/                                                                                                                                       |            |
|           | Chloroform                                                                                             | 1 1 1. 10.712118.0190.019.1195.515.931 1245321                                                                                                                                         |            |
|           | Carbon Tetrachloride                                                                                   | 1 1 ND 119.71 98.51 18.51 92.516.281 1305831                                                                                                                                           |            |
|           | 1,2-Dichloropropane                                                                                    | 1 1 17.3186.517.8189.012.841 130645                                                                                                                                                    |            |
| 1         | 1,1,2-Trichloroethylene                                                                                | 1 1 1 1 14.711 20.0100 1 16.2181.0121.01 1306461                                                                                                                                       |            |
|           | Benzene                                                                                                | 12001 1 ND 129,91149 129,7148 10.6711 1306471                                                                                                                                          |            |
| 57        | Dibromochloro Hethane 20                                                                               | 12001 1 116.61331 16.21 81.012.441                                                                                                                                                     |            |
|           | 11,1,2-Trichloroethane 20                                                                              | 1 1 1 1 1 1.6 88.0 17.1 185.512.881                                                                                                                                                    |            |
|           | 2-Chloroethylvinyl Ether                                                                               | $120:01.1101V_{1} = 13.911_{0}9.51 = 1$                                                                                                                                                |            |
|           | Tetrach loroethylene                                                                                   |                                                                                                                                                                                        |            |
| а.<br>С   | Chlorobenzene                                                                                          | 1 1 1 NO1178 89.01 17.01 85.01 4.60                                                                                                                                                    |            |
|           | 1,3-Dichlorobenzene                                                                                    | 1 19.2196.017.7138.518.13                                                                                                                                                              |            |
|           | 11,4-Dichlorobenzene                                                                                   | 1 1 1 1 1 1 19.3196.51 18.291.95.871                                                                                                                                                   |            |
|           | * Asterisked Values are out                                                                            | tside QC limits. Form Ol61X, page 1                                                                                                                                                    |            |
|           | RPD: VOAs out of                                                                                       | outside of QC limits. QC Reviewed by:                                                                                                                                                  |            |
|           | Recovery: VOAs out of<br>Comments: <u>* tetrachley</u>                                                 | ethylene & was out because of high amount in sample                                                                                                                                    | 1          |

Sec. 2. 4

# DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY

| ANALYSIS: 601-602, 465B                                                                  | FILE NUMBER:<br>PREPED BY:                    | lina                      |                                                  | 3 |
|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------------------|---|
| INSTRUMENT: (C)<br>STANDARD: A<br>SAMPLE SPIKED: 27-45-2<br>SAMPLE MATRIX: CI-20-27-45-2 | DATE PREPED:<br>ANALYZED BY:<br>DATE ANALYZED | S/11/159<br>Shin<br>Malty | CLIENT NAME:<br>PROJECT NAME:<br>PROJECT NUMBER: |   |

| Compound                | True<br>  Value | Sample<br>Result | нs   | 1 REC                                 | MSD  | % REC | RPD | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|-------------------------|-----------------|------------------|------|---------------------------------------|------|-------|-----|--------------------|--------------------|-----------------------|
| Chloromethane           | 20              | Nin              | 22.5 | 117                                   | 23.1 | 116   | 1.7 |                    | 30%                | 27987                 |
| Bromomethane            |                 | 1                | 2410 | 120                                   | 24.4 | -: [] | 1.7 |                    | 30%                | 27986                 |
| Vinyl Chloride          |                 | /                | 27.7 | 171                                   | 22.7 | 112   | 0.9 | 1                  | 30%                | 27988                 |
| Chloroethine            | 1               | 1                | 27.6 | 113                                   | 22.6 | 113   | 0   |                    | 30%                | 27989                 |
| Methylene Chloride      |                 | 2,66             | 20.8 |                                       | 70.5 | 103   | 1.0 | 152 - 31           | 30%                | 27990                 |
| 1,1-Dichloroethylene    |                 | Wh               | 22,2 | 1/1                                   | 22,3 | ,     | 2.7 | 132 - 40           | 30%                | 27558                 |
| 1,1-Dichloroethane      |                 | <u> </u>         | 21.5 | 108                                   | 22,1 | 111   | 2.7 | 126 - 61           | 30%                | 27559                 |
| Chloroform              |                 |                  | 20.6 | 103                                   | 21,2 | ونان  | 2.9 | 122 - 67           | 30%                | 27560                 |
| Carbon Tetrachloride    |                 |                  | 21.0 |                                       |      | 110   | 4.4 | 136 - 59           | 30%                | 07581                 |
| 1,2-Dichloropropane     | 20              |                  | 20,6 | 103                                   | 20,9 | 105   | 1.9 | 127 - 63           | 30%                | 27563                 |
| 1,1,2-Trichloroethylene | Ê               |                  | 20.9 |                                       | 21.0 | 109   | 3.7 | 117 - 72           | 30%                |                       |
| Benzene                 | 20              |                  | 14,2 | · · · · · · · · · · · · · · · · · · · | 248  | 109   | 9.6 | 120 - 79           | 30%                |                       |
| Dibromochloro Methane   | 40              |                  | 39,0 | 100                                   | 34,7 | 00    | 1.D | 151 - 55           | 30%                |                       |

# DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY

•

| ANALYSIS: 601, 602, 465B                   | FILE NUMBER:                  |                 |
|--------------------------------------------|-------------------------------|-----------------|
| INSTRUMENT: <u>C</u><br>STANDARD: <u>A</u> | DATE PREPED:                  | CLIENT NAME:    |
| SAMPLE SPIKED:SAMPLE HATRIX:               | ANALYZED BY:<br>DATE ANALYZED | PROJECT NUMBER: |

| Compound                 | True<br>Value | Sample<br>Result | MS    | 1 REC | MSD                                     | Z REC | RPD | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|--------------------------|---------------|------------------|-------|-------|-----------------------------------------|-------|-----|--------------------|--------------------|-----------------------|
| 1,1,2-Trichloroethane    | 7º            | Nn               | 39,0  | 2:-18 | 24.4                                    | 9.4   | 1.0 | 151 - 55           | 30%                |                       |
| 2-Chloroethylvinyl Ether | 20            | L1, -1 -1        | 11.0  | 55    | 13.2                                    | 66    | .18 | 145 - 82           | 30%                |                       |
| Tetrachloroethylene      |               | NM               | 21.9  | 110   | 21.1                                    | 100   | 3.7 | 122 - 60           | 30%                |                       |
| Chlorobenż:ne            |               |                  | (7.4  | 87    | 13.7                                    | 91    | 4.5 | 141 - 32           | . 30%              |                       |
| 1,3-Dichlorobenzene      |               |                  | 17. t | 84    | 16.2                                    | 81    | 9.4 | 150 - 46           | 30%                |                       |
| 1,4-Dichlorobenzene      |               |                  | 16,1  | 81    | 14.9                                    | 25    | 7.7 | 111 - 70           | 30%                |                       |
|                          | -1            |                  |       | · •   | - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 |       | · · |                    | 2 R -              |                       |

| * Aste            | risked | Value are outside | QC limits.         |                                         |      |                          |          |
|-------------------|--------|-------------------|--------------------|-----------------------------------------|------|--------------------------|----------|
| RPD:<br>Recovery: | VOAS   |                   | _ out of<br>out of | _ outside of QC<br>outside of QC        |      | QC Reviewed by:<br>DATE: |          |
| Blank:            | 1043   | ·····             |                    | _ 0000000000000000000000000000000000000 | <br> |                          |          |
| Comments:         |        |                   |                    |                                         |      |                          | 74HPPLAS |

. .

•

Page 2 of 2

٢

## SUBSET ABBREYLATION:

. ... '

~·'

·,·

•

4658

1

|                                  |             | FOR CL       | P USE CHOLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 11          |            |          |
|----------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------|
| DATE COLLECTED:                  |             | PROJECT NUME |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L             |            |          |
| DATE RECEIVED:                   |             | CLIENT WHE:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |          |
| DATE AVALYZED: 10-18-89          | ī           | PROJECT YUNG | Contraction of the local division of the loc |               |            |          |
| ANALYST: SPS/PNN                 |             | FILE NUMBER: | Charles and the second diversion of the second diversion of the second diversion of the second diversion of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |          |
| DATE EXTRACTED:                  |             | INSTR. 10:   | Constanting of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loc | C             |            |          |
| DATA REVIEWED BY:                | *           | MATRIX:      | Construction of the local division of the lo |               | 4.7        |          |
| ENTERED BY:                      |             |              | -1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATES /        | METHA JUC  | _        |
|                                  |             |              | SIVOLC VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEL HAG       |            |          |
|                                  |             |              | SAMPLE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ve: MET       | HOD REAVE  | 1_       |
| PARAMETER HAME                   | A85357.     | Other        | JARCE AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |            |          |
|                                  |             | vg/1         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.14         |            |          |
|                                  |             | KOL          | [Dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date<br> Dil. | Results    | 1        |
| CHLORCHETHANE                    | CHLOROKETH  | 1.0          | I < MDL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1             | [(Report)  |          |
| BROMONETHANE                     | BROHCHETH   | 1.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | 1        |
| DICHLOROOIFLUOROMETHANE (1)      | FREON 12    | 1.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>       |            |          |
| VINYL CHLORIDE (1)               | YINYLCHLOR  | 1.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <u> </u>    |            | 1        |
| CHLOROETHANE                     | CHLORCETH   | 1.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |          |
| KETHYLENE CHLORIDE               | KECL        | 1.0          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>1 .       | _ <u> </u> |          |
| ACETOKE                          | ACETOKE     | 40           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |            |          |
| TRICHLORCFLUORCHETHANE           | FRECHII     | 0.4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | _ <u>_</u> | _1       |
| ALLYL CHLORICE                   | ALLYL CAL   | 4.0          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |            | 1        |
| 1,1-DICHLORGETHYLENE             | 1 TOCEETE   | 0.3          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |            | -        |
| TETRAHYDROFURAN                  | TKF         | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |            | <u>i</u> |
| 1, 1-DICHLOROETHANE              | 11DCENE     | 0.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | <u>·</u> ] |          |
| TRANS-1, 2-DICHLOROETHYLERE (2)  | TRUSIZOCE   | 0.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |            | _        |
| CIS-1, 2-0 ICHLOROETHYLEKE (2)   | CISIZOCE    | 0.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |            | 1        |
| ETHYL ETHER                      | ETHUETKER   | 0.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |            | _        |
| CHLORCFORM                       | CHLOROFORM  | 0.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |            | 1        |
| 1, 1, 2-TRICHLOROTRIFLUOROETHUSE | FREOKIIS    | 0.7          | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>      |            | 1        |
| KETHYL ETHYL KETONE              | YEX         | 20           | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>      |            | 1        |
| 1.2-DICHLOROETHANE               | 120CEARE    | 0.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      | ·          | 1        |
| DIBRCHCHETHANE                   | OIBROHOHETH | 1.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>       |            | _        |
| 1.1,1-TRICHLOROETHANE            | 111TCEARE   | 0.5          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>      |            | :        |
| CARBON TETRACHLORIDE             | CARBONTET   | 0.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |            | 1        |
| Form O211W                       |             |              | <u>I_i</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L             |            | -        |
| `s.                              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |          |

( )

•

.

#### SUBSET ABBREVIATION: 4658

..

....

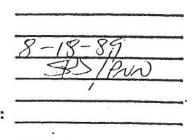
• (

•

| PARAMETER NAVE                | ABBREY.     | Other        | SAMPLE XI                          | are: <u>METT</u><br>0.: | TOD BLANK             |
|-------------------------------|-------------|--------------|------------------------------------|-------------------------|-----------------------|
|                               |             | ug/1<br>:40L | [Oate<br>[01].                     | Date<br> 011.           | [Results<br>[(Recort) |
| BRCHODICHLORCHETHANE          | BOCHETHATE  | 0.2          | 15 MAC                             | 1                       | 1                     |
| DICHLORCACETONITRILE          | 002C570817  | 1.0          | 1,                                 | 1                       | 1                     |
| 2. 3-01CHLOR0-1-29CPENE       | 23007535    | 0.5          | 1                                  | 1                       |                       |
| 1.2-DICHLOROPACPANE           | IZOCPAKE    | 0.2          | 1 1                                | 1                       |                       |
| 1.1-01CHLCR0-1-PRCPENE        | 11002585    | 1.0          | 1 1                                |                         |                       |
| CIS-1, 3-DICHLORO-1-2802EHE   | C(SI)CC2    | 0.5          | 1                                  | 1                       |                       |
| 1,1,2-TRICHLOROETHYLEHE       | TCE         | o.s          | 1                                  | 1                       | 1                     |
| BENZENE                       | BENZENE     | 1.0          | 1                                  | 1                       |                       |
| 1. J-DICHLOROPROPANE          | 13002448    | 0.5          | 1                                  | 1 .                     |                       |
| DIBRCHOCHLORCHETHANE (3)      | OBCYETHANE  | 1.0          | 1                                  | 1                       |                       |
| 1, 1.2-TRICHLOROETHANE (3)    | 112TCEARE   | 1.0          | 1 1                                | 1                       |                       |
| TRANS-1.3-0 ICHLORO-1-PROPERE | TRUNS 130CP | 0.3          | 1                                  | <br>1                   |                       |
| 1,2-01BRCHOETHANE             | ED8         | 4.0          |                                    | 1                       |                       |
| 2-CHLOROETHYLYINYL ETHER      | ZCEYETHER   | 5.0          |                                    | 1                       | ~_ <u>_</u>           |
| BRCHCFORH                     | BRCHCFORH   | 1.0          | 1                                  | 1                       | <u></u>               |
| 1,1.1.2-TETRACHLOROETHANE     | 1112TTEAKE  | 0.3          | 1                                  | 1                       | <u></u>               |
| KETHYL ISOBUTYL KETOKE        | HT 8X       | 1.0          | 1                                  | 1                       |                       |
| 1.2.3-TRICHLOROPANE           | 381527621   | 4.0          | <u></u>                            | - <u>l</u>              |                       |
| 1.1.2.2 TETRACHLOROETHANE     | 1122TTEANE  | 1.0          | 1                                  |                         |                       |
| 1,1.2.2-TETRACHLOROETHYLENE   | 1122TTEEXE  | 1.0          |                                    |                         |                       |
| PENTACHLOROETHANE             | PENTACEAKE  | 2.0          | 1                                  |                         | <u> </u>              |
| TOLUEXE                       | TOLUERE     | 1.0          |                                    | <u> </u>                | _ <u></u>             |
| CHLCROBENZENE                 | OLORCBENZ   | 1.0          |                                    | - <u></u>               |                       |
| ETHYLJENZENE                  | ETHYLBENZ   | 1.0          |                                    | <u> </u>                |                       |
| CUHENE                        | CUREXE      | 1.0          |                                    |                         | <u></u>               |
| X-XYLENE                      | K-ITLENE    | 1.0          |                                    | <u> </u>                |                       |
| P-TYLENE (4)                  | 1-m.216     | 1.0          | <u>_</u>                           | <u> </u>                |                       |
| O-IYLENE (1)                  | 0-ITLENE    | 1.0          | l                                  | <u> </u>                |                       |
| 1.3-DICHLORCBENZENE           | 13003612    | 4.0          | <u></u>                            | _ <u></u>               | _ <u>_</u>            |
| 1.2-DICHLOROBENZENE           | 12003632    | .4.0         |                                    | <u> </u>                |                       |
| 1.4-0 (CHLOROBENZENE          | 14003632    | 4.0          |                                    | - <u> </u>              | _ <u>_</u>            |
| OTCHLORCELUCRIESTHANE         | FRECHEL     | 1.0          |                                    | <u> </u>                |                       |
| Footnote: - These compounds o | s-aluce     | 2 - Thes     | e concounds con<br>a concounds con | -eluce                  | 1                     |

: . . .

.


1 )

### SUBSET ABBREYLATION: 4658

٠,

DATE COLLECTED: DATE RECEIVED: DATE ANALYZED: ANALYST: DATE EXTRACTED: DATA REVIEWED BY: ENTERED BY:

.



FOR CLP USE OKOLTT

Ļ

|                                 | 21          |       | SLUPLE XNUE: CHECK STD A |
|---------------------------------|-------------|-------|--------------------------|
|                                 |             |       | SAMPLE NO .:             |
| PARAMETER NAME                  | ABBREY.     | Other | - %REC                   |
|                                 |             | ug/l  | Oate Date Results        |
|                                 |             | KOL   | [011. [011. [(Report)    |
| X CHLORCHETHANE                 | CHLOROKETH  | 1.0   | 105 1 1                  |
| X BRONCHETHANE                  | RUHCHETH    | 1.5   | 1/03                     |
| DICHLORODIFLUOROMETHANE (1)     | FREON 12    | 1.5   | 1-102-25                 |
| × YINYL CHLORIDE (1)            | YIXYLCHLOR  | 1.5   | 102 1                    |
| K CHLOROETHANE                  | CHLOROETH   | 1.0   | 1/02 1                   |
| X KETHYLENE CHLORIDE            | KECL        | 1.0   | 1101 1                   |
| ACETOKE                         | ACETOKE     | 40    |                          |
| TRICHLORCFLUORCHETHANE          | FRECHII     | 0.4   |                          |
| ALLYL CHLORICE                  | ALLYL CAL   | 4.0   |                          |
| X1,1-DICHLORCETHYLENE           | 1 TOCEETE   | 0.3   | 108 1                    |
| TETRAHYDROFURAN                 | ፐለም         | 15    |                          |
| X 1, 1-OICHLOROETHANE           | 110CENE     | 0.2   | 106                      |
| TRANS-1, 2-DICHLOROETHYLENE (2) | TRUSIZOCE   | 0.3   |                          |
| CIS-1, 2-OICHLOROETHYLENE (2)   | CISIZOCE    | 0.5   |                          |
| ETHYL ETHER                     | ETHILETHER  | 0.3   |                          |
| XCHLORCFORM                     | CHLOROFORM  | 0.5   | 1/03                     |
| 1, 1, 2-TRICHLOROTRIFLUOROETHWE | FREORIIS    | 0.7   |                          |
| KETHYL ETHYL KETONE             | . HEX       | 20    |                          |
| 1.2-DICHLCROETHANE              | 120CELITE   | 0.2   |                          |
| DIBRCHCHETHANE                  | OLSROHOHETX |       |                          |
| 1.1, 1-TRICHLOROETHANE          | 111TCEAKE   | 0.5   |                          |
| X CARSON TETRACHLORIDE          | CARBONTET   | 0.1   | 1/07                     |
| Form OZI1W                      |             |       |                          |

#### SUBSET ABBREYTATION: 4658

| SUBSET ABBREVIATION: 4658    |                  | LBBREY.     | Other | SAMPLE X<br>SAMPLE X<br>0/0 LEC                                                                                | 0.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CK SID A |
|------------------------------|------------------|-------------|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| - ACCOUNTER THE E            | 1 (A)            |             | ug/1  | 10 LCC                                                                                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18000100 |
|                              |                  |             | :401  | 1011.                                                                                                          | 1011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Results |
| BRCHOOICHLORCHETHANE         |                  | BOCHETHANE  | 0.2   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Recort) |
| DICHLOROACETONITRILE         | ,                | DC2C575817  | 1.0   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 1      |
| 2. 3-01CHLOR0-1-29CPENE      | ī.               | 23007536    | 0.5   | 1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
| 1.2-DICHLOROPACEANE          |                  | 120CPARE    | 0.2   | 1 947                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1.1-01CHLCR0-1-28CPENE       |                  | 11002585    | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 1      |
| CIS-1.3-DICHLORO-1-2802ENE   |                  | CISIDEC?    | 0.5   | 1                                                                                                              | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.       |
| A 1, 1, 2-TRICELOROETHYLENE  |                  | TCE         | o.s   | 1 100                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| BENZENE                      | ·                | BENZENE     | 1.0   | 199                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 :      |
| 1, 3-0 (CHLOROPROPARE        | ŝ,               | 13002446    | 0.5   | 1                                                                                                              | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |
| DIBRCHOCHLORCHETHANE (3)     |                  | OBCYETHANE  | 1.0   | 196                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1,1.2-TRICHLOROETHANE (3)    |                  | 112TCEARE   | 1.0   | 1                                                                                                              | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |
| TRANS-1.3-DICHLORD-1-PROPENE | 1                | TRAKS 13002 | 0.3   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1,2-01BRCHOETHANE            |                  | ÉDS         | 4.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 . 1    |
| 2-CHLOROETHYLYINYL ETHER     | 1                | 2CEYETHER   | 5.0   |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| BRCHCFORH                    | . <sup>913</sup> | BRCHCFORH   | 1.0   |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1,1.1.2-TETRACHLOROETHAKE    | - <u>-</u>       | 1112TTEAME  | 0.3   |                                                                                                                | _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1      |
| NETHTL ISOBUTYL KETONE       | 4                | HT 8X       | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1.2.3-TRICHLORCPROPARE       |                  | 384 537551  | 4.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 ' . 1  |
| 1.1.2.2TETRACHLOROETHANE     | 4                | 1122TTEANE  | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1,1,2,2-TETRACHLOROETHYLENE  |                  | 1122TTEENE  | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1      |
| PENTACHLOROETHANE            |                  | PENTACEANE  | 2.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1      |
| TOLUENE                      |                  | TOLUETE     | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1      |
| CHLOROBENZENE                | ÷                | CALCRCBENZ  | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| ETHYLJENZENE                 |                  | ETHTLBENZ   | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| CUHENE                       |                  | CUPCHE      | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| H-IYLENE                     |                  | M-ITLEXE    | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| P-TYLENE (4)                 |                  | 1-MENE      | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 0-IYLENE (1)                 |                  | O-TYLENE    | 1.0   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
| 1.3-DICHLOROBENZENE          |                  | 13CC3EXZ    | 4.0   | 1                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 1.2-DICHLOROBENZENE          |                  | 12003632    | .4.0  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
| 1.4-DICHLOROBENZENE          |                  | 14003ENZ    | 4.0   | I                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| DICHLOROFLUCRHETHANE         | ••,              | FRECHEI     | 1.0   | 1                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 .      |
|                              |                  |             |       | the second second second second second second second second second second second second second second second s | the first of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          |

these concounds co-eluce Fcoinoie:

2 - These concounds co-eluce

1

### DAILY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

| ANALYSIS: 601/602/465B<br>INSTRUMENT:<br>STANDARD: B<br>SAMPLE SPIKED: 2759/<br>SAMPLE MATRIX: <u>U14TEP</u> | -             |                                          | AAR.<br>3-18-89 | CLIENT NAME:<br>PROJECT NAME:<br>PROJECT NUMBER: |                                      |
|--------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|-----------------|--------------------------------------------------|--------------------------------------|
| Compound                                                                                                     | True<br>Value | Method Check Sample<br>Blank Std. Result | MS % Rec.       |                                                  | QC LIMITS* Assoc.<br>UCL LCL Samples |
| Dichlorodifluoromethane                                                                                      | 120           | NO 51 NO                                 | 1/5.3 27-       | 115.1127611.31                                   | 127448                               |
| Trichlorofluoromethane                                                                                       | 1 20          | I INP I                                  | NP              | INP - 1                                          | 275471                               |
| Dichlorofluoromethane                                                                                        | 20            | /38                                      | 23.9 12         | 02.9 422 4.3                                     | 1273671                              |
| Trans-1,2-Dichloroethylene                                                                                   | 20            | 1 1071                                   | 23.0 115        | 23.3 112 2.6                                     | 27449                                |
| 1,2-Dichloroethane                                                                                           | 20            | 83                                       | 1 18.41 92      | 118.3 92 0                                       | 127451                               |
| 1,1,1-Trichloroethane                                                                                        | 120           | 1 104 1                                  | 122.6 113       | 1 22.0 110 2.7                                   | 127453                               |
| Bromodichloromethane                                                                                         | 1 20          | 1 100 1                                  | 21.5 108        | 121.4 107 0.9                                    | 127455                               |
| 2,3-Dichloro-1-propene                                                                                       | 20            | 1 1 98 1                                 | 121.3 107       | 12:01 105 1.9                                    | 127457-1                             |
| Trans-1,3-Dichloro-1-propene                                                                                 | 1 14          | 1 1 7-68-961 1                           | 14.5100         | 114.8 106 1.9                                    | 1274591                              |
| cis-1,3-Dichloro-1-propene                                                                                   | 126           | 1 85                                     | 24.01 92        | 1240 62 0                                        | 127591                               |
| 1,2-Dibromomethane                                                                                           | 1.20          | NP-1-                                    | NPIT            | NP - I                                           | 27532                                |
| Bromoform                                                                                                    | 1 20          | 1 1/071                                  | 122.11/11       | 122.11/11/0                                      | 127536                               |
| 1,1,2,2-Tetrachloroethane                                                                                    | 1 20          | 1 1551                                   | 123.5 118       | 23.1 116 11.7                                    | 1275381                              |
| Toluene                                                                                                      | 20            | 1 1/08 1                                 | 122.8/114       | 122,81114 0                                      | 12754/                               |
| Ethyl Benzene                                                                                                | 120           | 1 1091                                   | 23.3 112        | 33.2 116 0.9                                     | 27548                                |
| m-Xylene                                                                                                     | 120           | 1. 118.1.1                               | 125.1 126       | 125.0 125 0.8                                    | 275501                               |
| o-Xylene                                                                                                     | 120           | 1. 124                                   | 119.1196        | 26.6 133 32                                      | 27554                                |
| 1,2-Dichlorobenzene                                                                                          | 120           | 1 1021                                   | 120.1/10/       | 121.7 119 7.6                                    | 26429                                |

\* Asterisked Values are outside QC limits.

 RPD:
 VOAs
 out of
 outside of QC limits.

 Recovery:
 VOAs
 out of
 outside of QC limits.

 Comments:
 write
 mile of Mile Sealt

Form 0161X, page 2

QC Reviewed by: \_\_\_\_\_ DATE: \_\_\_\_\_



### REPORT OF LABORATORY ANALYSIS

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheboro, North Carolina

Rec'd CRA

NOV 2 2. 89

Site C Wuter September.

November 16, 1989

Mr. Jon Michaels Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

RE: PACE Project No. 890914.537 2853

Dear Mr. Michaels:

Enclosed is the report of laboratory analyses for samples received September 14, 1989.

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

susan O haz To

Susan D. Max Director, Sampling and Analytical Services

Enclosures

| PACC. HEPORT O                                                                                                                                          | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>Asheboro, North Carolina |                                                 |                                             |                                             |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Conestoga Rovers & Associates, Inc.<br>382 West County Road D<br>St. Paul, MN 55112                                                                     | PACE Pr                                                                                                                                                             |                                                 | 9<br>90914537                               |                                             |                                             |
| Attn: Mr. Jon Michaels                                                                                                                                  |                                                                                                                                                                     | э.                                              |                                             |                                             |                                             |
| 2853                                                                                                                                                    |                                                                                                                                                                     |                                                 | 8-1                                         | 8-3                                         | Rinsate<br>Blank                            |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                |                                                                                                                                                                     |                                                 | 331220<br>09/13/89<br>09/14/89<br>W-091389- | 331230<br>09/13/89<br>09/14/89<br>W-091389- | 331240<br>09/13/89<br>09/14/89<br>W-091389- |
| Parameter                                                                                                                                               | Units                                                                                                                                                               | MDL                                             | JM-01                                       | JM-02                                       | JM-03                                       |
| INORGANIC ANALYSIS                                                                                                                                      |                                                                                                                                                                     |                                                 |                                             |                                             |                                             |
| INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                     | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                                                                                        | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.01 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                                                                                                | 0.0002<br>0.05<br>0.005<br>0.04<br>0.01         | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>0.02                | ND<br>ND<br>ND<br>ND<br>ND                  |
| ORGANIC ANALYSIS                                                                                                                                        |                                                                                                                                                                     |                                                 |                                             |                                             |                                             |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                                  | ug/L                                                                                                                                                                | 250                                             | ND                                          | ND                                          | ND                                          |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                        | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0          | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                  |
| Trichlorofluoromethane<br>l,l-Dichloroethylene<br>l,l-Dichloroethane                                                                                    | ug/L<br>ug/L<br>ug/L                                                                                                                                                | 0.4<br>0.3<br>0.2                               | ND<br>ND<br>ND                              | ND<br>ND<br>ND                              | ND<br>ND<br>ND                              |

MDL Method Detection Limit ND Not detected at or above the MDL. pace. laboratories, inc.

### **REPORT OF LABORATORY ANALYSIS**

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheboro, North Carolina

| Mr. Jon Michaels<br>Page 2<br>2853                                                                                                                                             | PACE Pr                                      |                                        | 89<br>90914537                              |                                             |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                                       |                                              |                                        | 331220<br>09/13/89<br>09/14/89<br>W-091389- | 331230<br>09/13/89<br>09/14/89<br>W-091389- | 331240<br>09/13/89<br>09/14/89<br>W-091389- |
| Parameter                                                                                                                                                                      | Units                                        | MDL                                    | JM-01                                       | JM-02                                       | JM-03                                       |
| ORGANIC ANALYSIS                                                                                                                                                               |                                              |                                        |                                             |                                             |                                             |
| PURGEABLE HALOCARBONS AND AROMATICS<br>trans-1,2-Dichloroethylene<br>Chloroform<br>1,2-Dichloroethane<br>1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.3<br>0.5<br>0.2<br>0.5<br>0.3<br>0.2 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>0.8<br>ND<br>ND           |
| 1,2-Dichloropropane<br>cis-1,3-Dichloro-l-propene<br>1,1,2-Trichloroethylene<br>Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane                                       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.2<br>0.5<br>1.0<br>1.0<br>1.0        | ND<br>ND<br>2.1<br>ND<br>ND<br>ND           | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                  |
| trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform<br>1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethylene<br>Toluene                                   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.3<br>5.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| Chlorobenzene<br>Ethyl benzene<br>1,3-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene<br>cis-1,2-Dichloroethylene                                                | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>4.0<br>4.0<br>4.0<br>0.5 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                  |

MDL Method Detection Limit ND Not detected at or above the MDL.

> 1710 Douglas Drive North D Minneapolis, MN 55422 D Phone (612) 544-5543 an equal opportunity employer

| PACE.<br>laboratories, inc.                                                                                                                       | EPORT OF LABORATOF                                     | OF LABORATORY ANALYSIS                           |                                             |                                             | s, Minnesota<br>rida<br>owa<br>lifornia<br>Kansas<br>fornia<br>North Carolina |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|
| Mr. Jon Michaels<br>Page 3                                                                                                                        | November<br>PACE Proj                                  |                                                  | 39                                          |                                             | -                                                                             |
| 2853                                                                                                                                              | Numt                                                   |                                                  | 90914537<br><i>B-S</i>                      | Duplicati<br>B-3                            | MISS. River<br>Upstream                                                       |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                          |                                                        |                                                  | 331250<br>09/13/89<br>09/14/89<br>W-091389- | 331260<br>09/13/89<br>09/14/89<br>W-091389- | 331270<br>09/13/89<br>09/14/89<br>W-091389-                                   |
| Parameter                                                                                                                                         | Units                                                  | MDL                                              | JM-04                                       | JM-05                                       | JM-06                                                                         |
| INORGANIC ANALYSIS                                                                                                                                |                                                        |                                                  |                                             |                                             |                                                                               |
| INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                   | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.001 | ND<br>ND<br>0.0002<br>ND<br>ND<br>ND        | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>O.001                                                 |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                   | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                   | 0.0002<br>0.05<br>0.005<br>0.04<br>0.01          | ND<br>ND<br>ND<br>ND<br>0.26                | ND<br>ND<br>ND<br>ND<br>0.02                | ND<br>ND<br>ND<br>ND                                                          |
| ORGANIC ANALYSIS                                                                                                                                  |                                                        |                                                  |                                             |                                             |                                                                               |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                            | ug/L                                                   | 250                                              | ND                                          | ND                                          | ND                                                                            |
| PURGEABLE HALOCARBONS AND ARO<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | MATICS<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                              |
| Trichlorofluoromethane<br>l,l-Dichloroethylene<br>l,l-Dichloroethane<br>trans-l,2-Dichloroethylene<br>Chloroform<br>l,2-Dichloroethane            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                   | 0.4<br>0.3<br>0.2<br>0.3<br>0.5<br>0.2           | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                                                    |

MDL Method Detection Limit ND Not detected at or above the MDL.

| PACE. HEPOR                                                                                                                                                                                  | t of laborato                                | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>Asheboro, North Carolina |                                             |                                                      |                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| Mr. Jon Michaels<br>Page 4<br>2853                                                                                                                                                           | PACE Pr                                      |                                                                                                                                                                     | 89<br>90914537                              |                                                      |                                                      |  |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                                                     | llaita                                       | MDI                                                                                                                                                                 | 331250<br>09/13/89<br>09/14/89<br>W-091389- | 331260<br>09/13/89<br>09/14/89<br>W-091389-<br>JM-05 | 331270<br>09/13/89<br>09/14/89<br>W-091389-<br>JM-06 |  |
| Parameter<br>ORGANIC ANALYSIS                                                                                                                                                                | <u>Units</u>                                 | MDL                                                                                                                                                                 | JM-04                                       | <u>JM-05</u>                                         | <u>JM-06</u>                                         |  |
| PURGEABLE HALOCARBONS AND AROMATICS<br>1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>cis-1,3-Dichloro-1-propene<br>1,1,2-Trichloroethylene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.5<br>0.3<br>0.2<br>0.2<br>0.5<br>0.5                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND<br>ND                           |  |
| Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform                                                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>0.3<br>5.0<br>1.0                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND                           | ND<br>ND<br>ND<br>ND<br>ND                           |  |
| l,l,2,2-Tetrachloroethane<br>l,l,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene<br>l,3-Dichlorobenzene                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>4.0                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND                     |  |
| l,2-Dichlorobenzene<br>l,4-Dichlorobenzene<br>cis-l,2-Dichloroethylene                                                                                                                       | ug/L<br>ug/L<br>ug/L                         | 4.0<br>4.0<br>0.5                                                                                                                                                   | ND<br>ND<br>ND                              | ND<br>ND<br>ND                                       | ND<br>ND<br>ND                                       |  |

MDL Method Detection Limit ND Not detected at or above the MDL.

٩

pace. laboratories, inc.

# **REPORT OF LABORATORY ANALYSIS**

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheboro, North Carolina

| Mr. Jon Michaels<br>Page 5<br>2853<br>PACE Sample Number:<br>Date Collected:                                                                            | November<br>PACE Proj<br>Numb                | ject<br>per: 89                                  | 90914537<br>Migs. River<br>Downstream<br>331280<br>09/13/89 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|
| Date Received:<br><u>Parameter</u>                                                                                                                      | <u>Units</u>                                 | MDL                                              | 09/14/89<br>W-091389-<br>JM-07                              |
| INORGANIC ANALYSIS                                                                                                                                      |                                              |                                                  |                                                             |
| INDIVIDUAL PARAMETERS<br>Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                     | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.002<br>0.2<br>0.0001<br>0.001<br>0.01<br>0.001 | ND<br>ND<br>ND<br>ND<br>ND<br>0.001                         |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc                                                                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.0002<br>0.05<br>0.005<br>0.04<br>0.01          | ND<br>ND<br>ND<br>ND<br>ND                                  |
| ORGANIC ANALYSIS                                                                                                                                        |                                              |                                                  |                                                             |
| INDIVIDUAL PARAMETERS<br>Ethyl acetate                                                                                                                  | ug/L                                         | 250                                              | ND                                                          |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.5<br>1.5<br>1.5<br>1.0<br>1.0           | ND<br>ND<br>ND<br>ND<br>ND                                  |
| Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethylene<br>Chloroform<br>1,2-Dichloroethane                  | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.4<br>0.3<br>0.2<br>0.3<br>0.5<br>0.2           | ND<br>ND<br>ND<br>ND<br>ND                                  |

MDL Method Detection Limit ND Not detected at or above the MDL.

| PACCE. REPORT OF                                                                                                                                                                             | LABORATO                                     | ALYSIS                                 | Offices:<br>Minneapolis, Minnesota<br>Tampa, Florida<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kansas<br>Irvine, California<br>Asheboro, North Carolina |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mr. Jon Michaels<br>Page 6<br>2853                                                                                                                                                           | November<br>PACE Pro<br>Num                  | ject                                   | 89<br>90914537                                                                                                                                                      |  |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                                                     |                                              |                                        | 331280<br>09/13/89<br>09/14/89<br>W-091389-                                                                                                                         |  |
| Parameter                                                                                                                                                                                    | <u>Units</u>                                 | MDL                                    | JM-07                                                                                                                                                               |  |
| ORGANIC ANALYSIS                                                                                                                                                                             |                                              |                                        |                                                                                                                                                                     |  |
| PURGEABLE HALOCARBONS AND AROMATICS<br>1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>cis-1,3-Dichloro-1-propene<br>1,1,2-Trichloroethylene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.5<br>0.3<br>0.2<br>0.2<br>0.5<br>0.5 | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                          |  |
| Benzene<br>Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform                                                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>0.3<br>5.0<br>1.0        | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                          |  |
| l,l,2,2-Tetrachloroethane<br>l,l,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene<br>l,3-Dichlorobenzene                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>4.0 | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                          |  |
| l,2-Dichlorobenzene<br>l,4-Dichlorobenzene<br>cis-l,2-Dichloroethylene                                                                                                                       | ug/L<br>ug/L<br>ug/L                         | 4.0<br>4.0<br>0.5                      | ND<br>ND<br>ND                                                                                                                                                      |  |

MDL Method Detection Limit

ND Not detected at or above the MDL.



### REPORT OF LABORATORY ANALYSIS

Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheboro, North Carolina

Mr. Jon Michaels Page 7 November 16, 1989 PACE Project Number: 890914537

2853

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my direct supervision.

Michael A. Radle Inorganic Chemistry Manager

Alerger for

Susan D. Max Organic Chemistry Manager

# CONESTOGA-ROVERS & ASSOCIATES 382 West County Road D St. Paul, Minnesota 55416

1

# ANALYTICAL REPORT SUBMISSION CHECK LIST

| Date Samples Receiv                                                                           | ved <u>9-14-89</u>               | Method 🛛 Overnight<br>🗇 Regular Mail   |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--|--|--|--|--|
| Date Report Sent to                                                                           | CRA                              | <ul> <li>Fax</li> <li>Other</li> </ul> |  |  |  |  |  |
| Items Included                                                                                |                                  |                                        |  |  |  |  |  |
| 1                                                                                             | Summary List of Samples Analy    | vzed                                   |  |  |  |  |  |
| 2                                                                                             | Date of Sample Receipt           |                                        |  |  |  |  |  |
| 3                                                                                             | Date of Sample Extraction        |                                        |  |  |  |  |  |
| 4                                                                                             | Date of Sample Analysis          |                                        |  |  |  |  |  |
| 5                                                                                             | Method Blank Data for all Para   | neters                                 |  |  |  |  |  |
| 6                                                                                             | Matrix Spike Recoveries          |                                        |  |  |  |  |  |
| 7                                                                                             | Matrix Spike Duplicate Recover   | ries .                                 |  |  |  |  |  |
| 8                                                                                             | QC Check Sample Data             |                                        |  |  |  |  |  |
| 9. <u>NA</u>                                                                                  | Surrogate Spike Recoveries       |                                        |  |  |  |  |  |
| All samples extract                                                                           | ed and analyzed within specified | l holding times:                       |  |  |  |  |  |
|                                                                                               | 🗆 Yes                            | 🗆 No                                   |  |  |  |  |  |
| If no is checked please list CRA sample IDs of any samples that exceeded their holding times. |                                  |                                        |  |  |  |  |  |
|                                                                                               |                                  |                                        |  |  |  |  |  |
| ······································                                                        |                                  |                                        |  |  |  |  |  |
|                                                                                               |                                  |                                        |  |  |  |  |  |
| Lab                                                                                           | Check List                       | Completed by                           |  |  |  |  |  |

| CRA USE ONLY  |           |     |  |    |  |  |  |  |
|---------------|-----------|-----|--|----|--|--|--|--|
| Date Received | Complete: | Yes |  | No |  |  |  |  |
| Received by   | Copies to |     |  |    |  |  |  |  |



Clien Date\_ By\_ Project 2853 Sheet No. 1 of 4 Subject Summary of Samples Project No. 90914, 53 Analyze

| NUMBER   | CRA Sample<br>Number | Date of<br>Collection | Date of<br>Receipt | Dot OF<br>Extraction | Analysis      | Date of<br>Analysis |
|----------|----------------------|-----------------------|--------------------|----------------------|---------------|---------------------|
|          | 10-ME-9861PO-W       | A 1                   |                    | NA                   | Arsenic       | 10-4-89             |
|          |                      |                       |                    | NA                   | Barium        | 9-22-89             |
|          |                      | 1                     |                    | NA                   | Cadmium       | 9-20-89             |
|          |                      |                       |                    | NA                   | Chromium      | 10-9-89             |
|          |                      |                       |                    | NA                   | Copper        | 9-21-89             |
|          |                      |                       |                    | NA                   | Lead          | 10-4-89             |
|          |                      |                       |                    | NA                   | Mercung       | 9-28-89             |
|          |                      |                       |                    | NA                   | Nickel        | 10-2-89             |
| 1        |                      |                       |                    | NA                   | Selenium      | 10-2-89             |
|          | 1                    |                       |                    | NA                   | Silver        | 10-5-89             |
|          |                      |                       |                    | NA                   | Zinc          | 9-26-89             |
| 1.       |                      |                       |                    | NA                   | Ethyl acetate | 9-27-89             |
|          |                      |                       |                    | NA                   | 601/602       | 9-27-89             |
| 33123    | W-091389-JM-02       | 9-13-89               | 9-14-89            | NA                   | Arsenic       | 10-4-89             |
| <u> </u> |                      |                       |                    | NA                   | Barium        | 9-22-89             |
|          |                      |                       |                    | NA                   | Cadmium       | 9-20-89             |
|          |                      |                       |                    | DA.                  | Chromium      | 10-9-89             |
|          |                      |                       |                    | NA                   | Copper        | 9-21-89<br>10-4-89  |
| <u></u>  |                      |                       |                    | NA                   | Lead          | 10-4-89             |
|          |                      |                       |                    | NA                   | Mercuny       | 9-28-89             |
|          |                      |                       |                    | NA                   | Nickel 0      | 10-2-89             |
|          |                      |                       |                    | NA                   | Selenium      | 10-2-89             |
|          |                      |                       |                    | NA                   | Oliver        | 10-5-89             |
|          |                      |                       |                    | INA                  | Zinc          | 9-26-89             |

| PACE               | Client_CRA                 | Date                    |
|--------------------|----------------------------|-------------------------|
| laboratories, inc. | Project_2853               | _ Sheet No2_ of _4_     |
| <b>1</b> 0         | subject Summary of Samples | _ Project No.890914,537 |
|                    | Analyzed                   |                         |

| _ |                     |                      |                       |                    | 17                   |                           |                     |
|---|---------------------|----------------------|-----------------------|--------------------|----------------------|---------------------------|---------------------|
| P | CE Sample<br>Number | CRA Sample<br>Number | Date of<br>Collection | Date of<br>Receipt | Dot OF<br>Extraction | Analysis                  | Date of<br>Analysis |
| 1 |                     |                      |                       |                    | NA                   | Analysis<br>Ethyl acetale | 9-26-89             |
| ٦ |                     |                      |                       |                    | 1                    | 601/602                   | 9-26-89             |
|   | 33124               | W-091389-JM-03       | 9-13-89               | 9-14-89            |                      | Arsenic                   | 10-4-89             |
| 2 |                     |                      | 1                     |                    |                      | Barium                    | 9-22-89             |
|   |                     | 14                   |                       |                    |                      | Cadmium                   | 9-20-89             |
|   |                     |                      |                       |                    |                      | Chromium                  | 10-9-89             |
| _ |                     |                      |                       |                    |                      | Copper                    | 9-29-89             |
|   |                     |                      |                       |                    |                      | Lead                      | 10-4-89             |
|   | L                   |                      |                       |                    |                      | Mercury                   | 9-28-89             |
| _ |                     |                      |                       |                    |                      | Nickel                    | 10-2-89             |
|   |                     |                      |                       |                    |                      | Selenium                  | 10-2-89             |
| _ | 0                   |                      |                       |                    |                      | Silver                    | 10-5-89             |
| _ |                     |                      |                       |                    |                      | Zinc                      | 9-26-89             |
| _ |                     | 4 A                  |                       |                    |                      | Ethyl acetate             |                     |
|   |                     |                      |                       | <u> </u>           |                      | 601 602                   | 9-26-89             |
| _ | 33125               | W-091389.JM-04       | 9-13-89               | 9-14-89            |                      | Arsenic                   | 10-4-89             |
|   |                     |                      |                       |                    |                      | Barium                    | 9-22-89             |
| - |                     |                      |                       | ļ                  | <b>_</b>             | Cadmium                   | 9-20-89             |
| • |                     |                      |                       | <u> </u>           | <u> </u>             | Chromium                  | 10-9-89             |
|   |                     |                      |                       | ļ                  |                      | Copper                    | 9-21-89             |
| - | <u>//</u>           |                      | ļ                     |                    | <u> </u>             | Lead                      | 10-4-89             |
|   |                     |                      | ļ                     |                    | 1                    | Mercury                   | 19-28-89            |
| 1 |                     |                      |                       |                    |                      | Nickel                    | 10-2-89             |
|   |                     |                      |                       |                    |                      | Selenium                  | 10-2-89             |
|   |                     | 5 <b>9</b> 5         |                       |                    | 8                    |                           | et.                 |



÷

| lient_CRA       | By         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project 2853    |            | Sheet No. 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| subject Summary | of Samples | Project No.890914,537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C.              | Amplized   | inter sono de la contra c |
|                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ACE Sample                                                                                                     | CRA Sample     | Date of | Doute OF | Dot OF               |               | Date of<br>Analysis |
|----------------------------------------------------------------------------------------------------------------|----------------|---------|----------|----------------------|---------------|---------------------|
| Number                                                                                                         | Number         |         | Receipt  | Dot OF<br>Extraction | Analysis      | Analysis            |
| <u>n</u>                                                                                                       |                |         |          | NA                   | Silver        | 10-5-89             |
|                                                                                                                |                |         |          | 1                    | Zinc          | 9-26-89             |
|                                                                                                                |                |         |          |                      | Ethylacetak   | 9-26-89             |
| 1                                                                                                              |                |         |          |                      | 601/1002      | 9-26-89             |
| 33126                                                                                                          | W-091389-JM-US | 9-13-89 | 9-14-89  |                      | Arsenic       | 10-4-89             |
| [                                                                                                              |                |         |          | 3                    | Barium        | 9-22-89             |
|                                                                                                                |                |         |          |                      | Cadmium       | 9-20-89             |
|                                                                                                                |                |         |          |                      | Chromium      | 10-9-89             |
| ( · · · · · · · · · · · · · · · · · · ·                                                                        |                |         |          |                      | Copper        | 9-21-89             |
|                                                                                                                |                |         | a.       |                      | Lead          | 10-4-89             |
|                                                                                                                |                |         |          |                      | Morany        | 9-28-89             |
| 1. 1                                                                                                           |                |         |          |                      | Nickel        | 10-2-89             |
|                                                                                                                |                |         |          |                      | Selenium      | 10-2-89             |
|                                                                                                                |                |         | •        |                      | Silver        | 10-5-89             |
|                                                                                                                |                |         |          |                      | Zinc          | 9-26-89             |
|                                                                                                                |                |         |          |                      | Ethyl acetate | 9-26-89             |
|                                                                                                                | 9              | 5       |          |                      | 401/202       | 9-26-89             |
| 33127                                                                                                          | W-091389-JM-04 | 9-13-89 | 9-14-89  |                      | Arsenic       | 10-4-89             |
|                                                                                                                | -              |         |          |                      | Barium        | 9-22-89             |
| 1 <u>L</u>                                                                                                     |                |         |          |                      | Cadmium       | 9-20-89             |
| 11                                                                                                             |                |         |          |                      | Chromium      | 10-9-89             |
|                                                                                                                |                |         |          |                      | Copper        | 9-21-89             |
|                                                                                                                |                |         |          |                      | Lead          | 10-4-89             |
|                                                                                                                |                |         |          |                      | Mercury       | 9-28-89             |
| a substanti da subs |                | 1       | 1        | 1                    | 1 . ()        | 1                   |



| Client  | 1    | Ву |           | Date |     |
|---------|------|----|-----------|------|-----|
| Project | <br> |    | Sheet No. | 4    | 014 |

Subject\_

.

.

Project No.\_\_\_\_

| T KE Sample<br>Number | CRA Sample<br>Number | Date of<br>Collection | Date of<br>Receipt | Dot OF<br>Extraction | Analysis                  | Doste of<br>Analysis<br>10-2-89 |
|-----------------------|----------------------|-----------------------|--------------------|----------------------|---------------------------|---------------------------------|
| n                     |                      |                       |                    | NA                   | Nickel                    | 10-2-89                         |
| 1.1                   |                      |                       |                    |                      | Selenium                  | 10-2-89                         |
| <u>[]</u>             |                      |                       |                    |                      | Silver                    | 10-5-89                         |
|                       |                      |                       |                    |                      | Zinc                      | 9-26-89                         |
| ].                    | .a.                  |                       |                    |                      | Ethyl acetate             | 9-26-89                         |
| 1                     |                      |                       |                    |                      | 1001 1002                 | 9-26.89                         |
| 33128                 | W-091389-JM-07       | 9-13-89               | 9-14-89            |                      | Arsenic                   | 10-4-89                         |
|                       |                      |                       |                    |                      | Barium                    | 9-22-89                         |
|                       |                      |                       | 1                  |                      | Cadmium                   | 9-20-89                         |
| ¥i                    |                      |                       | (4<br>             |                      | Chromium                  | 10-9-89                         |
|                       |                      |                       |                    |                      | Copper                    | 9-21-89                         |
| . 4                   |                      |                       |                    | 2                    | Lead.                     | 10-4-89                         |
|                       |                      |                       |                    |                      | Mercury                   | 9-28-89                         |
| -                     |                      |                       | •                  |                      | Nickel '                  | 10-2-89                         |
|                       |                      |                       |                    |                      | Selenium                  | 10-2-89                         |
|                       |                      |                       |                    |                      | Silver                    | 10-5-89                         |
|                       |                      |                       |                    |                      | Zinc                      | 9-26-89                         |
|                       |                      |                       |                    |                      | Ethyl acetale<br>(0)/1002 | 9-27-89                         |
|                       |                      |                       |                    |                      | 601/1002                  | 9-27-89                         |
|                       |                      |                       |                    |                      |                           |                                 |
| 4                     |                      | _                     |                    |                      |                           |                                 |
|                       |                      |                       |                    |                      |                           |                                 |
| - kaa                 |                      |                       |                    |                      |                           |                                 |
|                       |                      |                       |                    |                      |                           |                                 |
|                       | 1                    | 1                     | l.                 | 1                    | 1                         | 1                               |

Project Name

SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

)

| •                                     |                     |                    |                               |                 |          | en <mark>t</mark> |             | 8                       |      |              |
|---------------------------------------|---------------------|--------------------|-------------------------------|-----------------|----------|-------------------|-------------|-------------------------|------|--------------|
| Parameter                             | Date of<br>Analysis | Mthd<br><u>Blk</u> | Check<br>Std.<br><u>% Rec</u> | Spiked<br>Value | %<br>Rec | Acc.<br>Range     | Sample<br>A | Sample<br><u>A_Dup_</u> | RP.Q | RPD<br>Range |
| Arsenic                               | 10-4-89             | <0.002             | 107                           | 10.2            | 103      | 85-115            | 10.2        | 10.7                    | 5    | ±30          |
| PACE Sample#                          |                     |                    |                               | 3,0642          |          |                   | 33126       |                         |      |              |
| Barium                                | 9-22-89             | 20.2               | 96                            | 5.00            | 92       | 85-115            | 4.7         | 4.8                     | 9    | 30           |
| PACE Sample#                          |                     |                    |                               | 33123           |          |                   | 31986       |                         |      |              |
| Cadmium                               | 9-20-89             | <0.000X            | 90                            | 1.D             | 96       | 85-115            | 1.42        | 1.48                    | 4    | 30           |
| PACE Sample#                          |                     |                    |                               | 337849          |          |                   | 3322F1      |                         |      |              |
| Chromium                              | 10-9-89             | (0.001             | 112                           | 5.0             | 98       | 85-115            | 8.3         | 8.0                     | 4    | 30           |
| PACE Sample#                          |                     |                    |                               | 36644           |          | ÷                 | 33126       |                         | ١.   |              |
| Cooper                                | 921-89              | 0.025              | 98                            | 1.00            | 101      | 85-115            | 1.22        | 1.20                    | 2    | 30           |
| PACE Sample#                          |                     |                    | 2                             | 32991           |          |                   | 32633       |                         |      |              |
| · · · · · · · · · · · · · · · · · · · | 9-29-89             | <0.01              | 97                            | 1.00            | 97       | 85-115            | 1.6         | 1.6                     | 0    | 30           |
| PACE Sample#                          |                     |                    |                               | 35416           |          |                   | 34279       |                         |      |              |
| Lead                                  | 10-4-89             | 100,001            | 99                            | 10.8            | 106      | 85-115            | 8.6         | 8.5                     | 1    | 30           |
| PACE Sample#                          |                     |                    |                               | 33489           |          |                   | 3322F1      |                         |      |              |
| Mercury                               | 9-28-89             | (0.000)            | 99                            | 5.00            | 112      | 85-115            | 4,03.       | 4,80                    | 17   | 30           |
| PACE Sample#                          |                     |                    |                               | 35180           |          |                   | 34253       |                         |      |              |
| -                                     |                     |                    | 3                             |                 |          |                   |             |                         |      |              |

NA

1

Not Analyzed Not Detected at or above the method detection limit 13

page lof 2

Project Name

SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

•

• •

|              |                     |                    |                               | ■ 2             |          | ••••••        |             | /                | -    |              |
|--------------|---------------------|--------------------|-------------------------------|-----------------|----------|---------------|-------------|------------------|------|--------------|
| Parameter    | Date of<br>Analysis | Mthd<br><u>Blk</u> | Check<br>Std.<br><u>% Rec</u> | Spiked<br>Value | %<br>Rec | Acc.<br>Range | Sample<br>A | Sample<br>A_Dup_ | RP.Q | RPD<br>Range |
| Nickel       | 10-2-89             | K0.05              | 100                           | 1.60            | 94       | 85-115        | 0.97        | 0.97             | 0    | 30           |
| PACE Sample# |                     |                    |                               | 35356           |          |               | 33494       |                  |      |              |
| Selenium     | 10-2-89             | <0.005             | 111                           | 25.0            |          | 85-115        | 20,2        | 21.5             | 6    | 30           |
| PACE Sample# |                     |                    |                               | 31937           |          |               | 36169       |                  |      |              |
| Silver       | 10-5-89             | 60.04              | 96                            | 0.50            | 101      | 85-115        | 0.51        | 0.50             | 2    | 30           |
| PACE Sample# |                     |                    |                               | 33229           |          |               | 33127       |                  |      |              |
| Zinc         | 9-26-89             | 0.10               | 100                           | 0.334           | 100      | 85-115        | 0.25        | 0,25             | D    | 30           |
| PACE Sample# | 1                   |                    |                               | 32991           |          |               | 33042       |                  |      |              |
|              |                     |                    |                               |                 |          |               |             |                  |      |              |
| PACE Sample# |                     |                    |                               |                 |          |               |             |                  |      |              |
|              |                     |                    |                               |                 |          |               |             |                  |      |              |
| PACE Sample# |                     |                    |                               |                 |          |               |             |                  |      |              |
| PACE Sample# |                     |                    |                               |                 |          |               |             |                  |      |              |
|              |                     |                    |                               |                 |          |               | ·           |                  |      |              |
| PACE Sample# |                     |                    |                               |                 |          |               |             |                  |      |              |
|              |                     |                    |                               |                 |          |               |             |                  |      |              |

NA

Not Analyzed Not Detected at or above the method detection limit tifi

,

page 2 of 2

# DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY .

| ANALYSIS: 601/602/465B                            | FILE NUMBER:                 |                |                 |   |
|---------------------------------------------------|------------------------------|----------------|-----------------|---|
| INSTRUMENT: C                                     | PREPED BY:                   | pm<br>912-6/09 | CLIENT NAME:    | • |
| STANDARD: <u>B</u><br>SAMPLE SPIKED: <u>37759</u> | DATE PREPED:<br>ANALYZED BY: | PNN            | PROJECT NAME:   |   |
| SAMPLE MATRIX: Wroten                             | DATE ANALYZED                | - Al 26/09 .   | PROJECT NUMBER: |   |

| Compound                     | True<br>Value | Sample<br>Result | нs    | 1 REC | HSD   | 1 REC | RPD | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|------------------------------|---------------|------------------|-------|-------|-------|-------|-----|--------------------|--------------------|-----------------------|
| Dichlorodifluoromethane      | ,2.0          | Nn               | 23,8  | 114   | 23,3  | 117   |     | 2 <u>2</u>         | 30%                | 32706                 |
| Trichlorofluoromethane       | 11            | N                | A - i | n Sta | 1     | 7     |     | 124 - 46           | 30%                | 35/71                 |
| Dichlorofluoromethane        |               |                  | 233   | 117*  | 23,1  | 116*  |     | )<br>102 - 48      | 30%                | 35172                 |
| Trans-1,2 Dichloroethylene   |               |                  | 20,4  | 102   | -20,3 | 102   |     | 121 - 59           | 30%                | 32967                 |
| 1,2-Dichloroethane           |               |                  | 19.0  | 95    | 10,6  |       | •   | 131 - 47           | 30%                | 33123                 |
| 1,1,1-Trichloroethane        |               | 1/103            | 20,0  | 100   | 19,0  | 95    |     | 119 - 63           | 30%                | 3312-1                |
| Bromodichloromethane         | 1             | Nn               | 20,1  | 161   | (0,6) | 93    |     | 116 - 73           | 30~                | 3345                  |
| 2,3-Dichloro-1-propene       | 20            | 1                | 20,9  | 105   | 20.6  | 103   |     | 118 - 61           | 30%                | 33126                 |
| Trans-1,3-Dichloro-1-propene | 14,4          |                  | 14.6  | 101   | 12.6  | 88    |     | 114 - 65           | 30%                | 33127                 |
| cis-1,3-Dichloro-1-propene   | 25,6          |                  | 29,6  |       | 28.8  | 113   |     | 124 - 46           | 30%                |                       |
| 1,2-Dibromomethane           | 20            |                  | 22,8  |       | 21.8  | 109   |     | 135 - 75           | 30%                | 6                     |
| Bromoform                    |               |                  | 20,01 | 102   | 20,3  | 162   |     | 127 - 64           | 30%                |                       |
| 1,1,2,2-Tetrachloroethane    | 11            | ·                | 20,0  | 160   | 19.4  | 97    |     | 124 - 42           | 30%                |                       |

Page 1 of 2

Scolula 17.

### DAILY HATRIX SPKIE/HATRIX SPIKE DUPLICATE RECOVERY

| ANALYSIS: 601/602/4658               | FILE NUMBER:  | វិមេណី ស ែ សា ភ្ល |
|--------------------------------------|---------------|-------------------|
| INSTRUMENT: C                        | PREPED BY:    | CLIENT NAME:      |
| STANDARD: <u>B</u><br>SAMPLE SPIKED: | ANALYZED BY:  | PROJECT NAME:     |
| SAMPLE MATRIX:                       | DATE ANALYZED | PROJECT NUMBER:   |

| Compound            | True<br>Value | Sample<br>Result | мs   | 1 REC | MSD  | 1 REC | RPD | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|---------------------|---------------|------------------|------|-------|------|-------|-----|--------------------|--------------------|-----------------------|
| Toluene             | 20            | NO               | 18,5 | 93    | 18.9 | 95    |     | 123 - 68           | 30%                |                       |
| Ethyl Benzene       | .             |                  | 18,9 | .95   | 1812 | 91    |     | 117 - 49           | 30%                |                       |
| m-Xylene            |               |                  | 19,4 | 97    | 18,5 | 93    |     | 126 - 69           | 30."               |                       |
| o-Xylene            |               |                  | [9.1 | 96    | 18.1 | 91    |     | 124 - 73           | · 30%              |                       |
| 1,2-Dichlorobenzene |               |                  | 17,9 | 90    | 16,9 | 85    |     | 126 - 78           | 30%                |                       |
|                     |               |                  |      |       |      |       |     |                    |                    |                       |
|                     |               |                  |      |       |      |       |     |                    |                    |                       |

| <ul> <li>Asterisked Valu</li> <li>RPD: VOAs</li> <li>Recovery: VOAS</li> </ul> | ue are outside QC limits.<br>out ofoutside of QC limits.<br>out ofoutside of QC limits. | QC Reviewed by: JWN/Schn<br>DATE: 10-4-89 |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|
| Blank:                                                                         | fluoromethane is high in the spike one to                                               | new spite mix. JWN                        |
| + commences                                                                    | Lingto for Dictor Sinon them DR. hord on                                                | old Mix. 74HPPLAS                         |

٠.

Page 2 of 2

| - T                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| HIRSET ABBREVIATION: 4658       | FOR CLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | USE CHOLYT       |              |
| 10951                           | MATER THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |
| A TE COLLECTED:                 | Substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substances and a substanc                                                                                                                                                                                                                                             |                  |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J.               |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
| I WE NOTETED I MAN              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c)              |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - the            |              |
|                                 | MATRIX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Conter         |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
| -XTERED 31:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLUPLE SO.: 911  | eltod Blanch |
|                                 | ABSSEV Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C)              |              |
| PARAMETER HAME                  | Aboutert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | loatel 240 Joace | Results      |
| TE RECEIVED:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INCI             | NI, I        |
| CHLORCMETHANE                   | Chestie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1            | 1            |
| RROHCHETHANE                    | UNG THE STORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 1            | 1 1          |
| DICHLORODIFLUOROHETHANE (1)     | 1 AG VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1            | 1 1          |
| VINIL CHLORIDE (1)              | Timeconcern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1              | 1 1          |
|                                 | Chevitteeth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1            | 1 1          |
| NETHYLENE CHLORIDE              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 1            | - 1 1 1      |
|                                 | ACCIONC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1              | 1. 1         |
| TRICHLORCELUORCHETHANE          | T ALL WITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1 1          |
| INTERCOMORICE                   | Acare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 1 · i        |
| T I DICH ORGETHYLENE            | THUCCHIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
| TETRANYORCEURAN                 | Theore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              |
| 7, 1-DICALOROETHOLDE (2)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
| TRANS-1, 2-STELLEONETHYLENE (2) | CISIZOCE 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
|                                 | ETATLETKER 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |              |
|                                 | CHLOROFORM O.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |              |
| CHLORCFORM                      | FRECH113 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |
| 1,1,2-TRICHLOROTRIFCOORDENING   | NEX 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              |
| NETHYL ETHYL KETONE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
|                                 | and the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second divisio |                  |              |
| DIBRCHCHETHANE                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1              | 1            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |
| Fora 02114                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |              |

### UBSET ABBREVIATION: 4658

. .

\* \*

# SAMPLE : SAMPLE NO .:

( <sup>1</sup>)

•

| ARAMETER NAME                  | ABBREY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 027er<br>ug/1<br>:01 | [Oate<br>1011. | Date<br> 011. | [Result<br>] (Reco |          |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------|--------------------|----------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                  | INC            | 1             | I N                | C        |
| BR CHOD ICHLOR CHETHANE        | BOCHETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                  | 1              | 1             |                    | 1        |
| DICHLORCACETONITRILE           | DCLESTONIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                  | 1              | 1             | 1                  |          |
| 2.3-01CHLOR0-1-29CPENE         | 23007535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                  | 1              | 1             |                    | 1        |
| 1 7-DICHLORCPROPANE            | 1200948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                  | 1              | 1             |                    | 1        |
| 1 1-01091030-1-29022312        | 11002585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                  | 1              | 1             | 1                  | <u> </u> |
| CIS-1.3-DICHLORO-1-2802EHE     | C1513022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                  | 1              | 1             |                    | l        |
| 1,1,2-TRICHLOROETHYLENE        | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                  | 1              | -             | · · ·              |          |
|                                | BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                  | 1              | 1             | 1                  | 1        |
| BENZENE<br>1.3-DICHLOROPROPANE | 13053716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                | 1             | 11                 | 1        |
| DIBRCHOCHLORCHETHANE (3)       | 08CHETHAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    |                | 1             | 1                  | 1        |
| DISECTIOLALORGICITHANE (3)     | 112TCEARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                |               | 1                  | 1        |
| 1,1.2-TRICHLOROETHANE (3)      | TRAKS 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ? 0.3                |                |               |                    |          |
| TRANS-1.3-0 ICHLORO-1-PROPENE  | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0                  |                |               |                    |          |
| 1,2-OTBRCHOETHANE              | 2CEYETHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$.0                 |                |               |                    |          |
| Z-CHLOROETHYLYTNYL ETHER       | BRCHCFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 1.0                |                |               |                    |          |
| BRCMCFORM                      | 11121.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L.0 3K               | 1              |               |                    |          |
| 1,1.1.Z-TETRACHLOROETHANE      | MISK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                  |                |               |                    |          |
| METHYL ISOBUTYL KETONE         | 12370218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LE 4.0               | 1              | 1             |                    |          |
| 1 7 1-TRICHLORCPROPARE         | 1122112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 1              |               |                    | 1        |
| 1 1 7 7 - TEIRACHLORDEINANE    | 1122116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 1              |               | .1                 | <u> </u> |
| 1,1.Z.Z-TETRICHLOROETHYLENE    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                      | 1              |               |                    | 1        |
| PENTACHLOROETHANE              | PETTACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 1              | 1 1           | 1                  | 1        |
| . TOLUEXE                      | TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                | 1             | 1                  | 1        |
| CHLCROBENZENE                  | CALCRCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                | 1 1           | 1                  | 1        |
|                                | ETXTL3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                |               | 1                  | 1        |
| ETHYLBENZENE                   | CUPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                |               |                    | 1        |
| CUNENE                         | H-ITL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                |               |                    | 1        |
| H-XYLENE                       | P-111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXE 1.0              |                | <u> </u>      |                    | 1        |
| P-TYLENE (4)                   | 0-571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENE 1.0              |                |               |                    | <u> </u> |
| O-IYLENE (1)                   | 13003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E.1 2K3              | 1              |               | <u>+</u>           |          |
| 1.3-DICHLORCBENZENE            | 12003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E.YZ .4.0            |                |               |                    |          |
| 1.2-DICHLOROSENZENE            | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | · 1            | 1 1           |                    |          |
| 1.4-01041080861126116          | FREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1              | 1 1           | 1                  |          |
| DICHLORCELUCRIETHANE           | the second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | these cook     |               | luce               |          |

TUBSET ABBREVIATION: 4658

| DATE COLLECTED:   |         |
|-------------------|---------|
| ATE RECEIVED:     |         |
| DATE ANALYZED:    | 9/26/09 |
| NALYST:           | PNN     |
| WATE EXTRACTED:   |         |
| PATA REVIEWED BY: |         |
| NTERED BY:        |         |

| FOR CLP US      | E OKLYT  |
|-----------------|----------|
| PROJECT NAME:   | <u>_</u> |
| CLIENT NAME:    |          |
| PROJECT NUMBER: |          |
| FILE NUMBER:    | ,*       |
| INSTR. ID: ·    | (C)      |
| HATRIX:         | center   |

|                                |             |       | 6          | 12400        |          |
|--------------------------------|-------------|-------|------------|--------------|----------|
|                                |             |       | SAPPLE NAM |              |          |
|                                |             |       | SAMPLE NO. | : <u>Kec</u> | K stunct |
| PARAMETER NAME                 | ABBREY.     | Other | - algurg   |              |          |
|                                |             | ug/l  | 10392909   | Date         | Results  |
|                                |             | HOL   | DiROpph    | [Dil.        | (Report) |
| CHLORCMETHANE                  | CHLOROKETH  | 1.0   |            | 1            | N.)      |
| BROMOMETHANE                   | BROHOHETH   | 1.5   |            | <u> </u>     | /        |
| DICHLORODIFLUOROMETHANE (1)    | FREON 12    | 1.5   | 125,1      | 1            | 125      |
| VINYL CHLORIDE (1)             | YINYLCHLOR  | 1.5   |            | 1            | 1 Nr     |
| CHLOROETHANE                   | CHLOROETH   | 1.0   |            | <u> </u>     | 1        |
| METHYLENE CHLORIDE             | HECL        | 1.0   |            | 1            |          |
| ACETONE                        | ACETOKE     | 40    | <u> </u>   | 1            |          |
| TRICHLOROFLUORCMETHANE         | FREONII     | 0.4   |            | 1            |          |
| ALLYL CHLORIDE                 | ALLYL CHL   | 4.0   | <u> </u>   | 1            |          |
| 1,1-DICHLOROETHYLENE           | 1 IDCEENE   | 0.3   |            | 1            | ***      |
| TETRAHYDROFURAN                | THE         | 15    |            | 1            | ·1 /     |
| I, I-DICHLOROETHANE            | 110CEAKE    | 0.2   |            | 1            | 1 1      |
| TRANS-1,2-DICHLOROETHYLEKE (2) | TRANS12DCE  | 0.3   | 121,6      | 1            | 127      |
| CIS-1,2-DICHLOROETHYLENE (2)   | CISIZDCE    | 0.5   | 1 r        | 1            | 1 100    |
| ETHYL ETHER                    | ETHYLETHER  | 0.3   | 1          | 1            | 1 /      |
| CHLOROFORM                     | CHLOROFORM  | 0.5   |            | 1            | 1 /      |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | FREON113    | 0.7   | 1          | 1            |          |
| NETHYL ETHYL KETONE            | HEK         | 20    |            | 1            | 1        |
| 1,2-DICHLOROETHANE             | 12DCEANE    | 0.2   | 120,1      | 1            | 120      |
| DIBRCMCMETHANE                 | DIBROHOHETT | H 1.5 |            | 1            | 1 100    |
| 1.1,1-TRICHLOROETHANE          | IIITCEANE   | 0.5   | 120,9      | 1            | 1 21     |
| CARBON TETRACHLORIDE           | CARBONTET   | 0.3   | 1          | 1            | 1 Nri    |
| Form 0211V                     |             |       |            |              |          |

Form 0211W

:

### SUBSET ABBREVIATION: 4658

SAMPLE NAME:

|                                                |             | SAMPLE NO .: |                                          |       |                                                                                                                  |          |
|------------------------------------------------|-------------|--------------|------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|----------|
| PARAMETER NAME                                 | ABBREY.     | Other        |                                          |       |                                                                                                                  |          |
|                                                |             | ug/1         | 10 (10 (10 (10 (10 (10 (10 (10 (10 (10 ( | Date  | Results                                                                                                          | 1        |
| BROMODICHLORCHETHANE                           | DOCUCTUANC  | HOL          | <u>l0i1.</u>                             | 1011. | (Report)                                                                                                         |          |
|                                                | BOCNETHANE  | 0.2          | 1 20,0                                   |       | <u> </u>                                                                                                         | 1        |
| DICHLOROACETONITRILE<br>2.3-DICHLORO-1-PROPENE | DCACETONIT  | 1.0          | ·                                        | 1     |                                                                                                                  |          |
| 1,2-DICHLOROPROPANE                            | 230CPENE    | 0.5          | 120,5                                    |       | 1 21                                                                                                             | 1        |
| 1,1-01CHLORO-1-PROPENE                         | 12DCPANE    | 0.2          |                                          | 1     | MIT                                                                                                              | 1        |
|                                                | 110CPENE    | 1.0          |                                          | 1     | <u>/</u>                                                                                                         | 1        |
| CIS-1,3-DICHLORO-1-2802ENE                     | C15130C2    | 0.5          | 1 28,1                                   | 1     | 198                                                                                                              | 1        |
| 1,1,2-TRICHLOROETHYLENE                        | TCE         | 0.5          |                                          | 1     | 1 pp                                                                                                             | ĺ        |
| BENZENE                                        | BENZENE     | 1.0          |                                          | 1     |                                                                                                                  | 1        |
| 1,3-DICHLOROPROPANE                            | 130CPANE    | 0.5          |                                          | 1     |                                                                                                                  | 1        |
| DIBRCHOCHLORCHETHANE (3)                       | DBCNETHANE  | 1.0          |                                          | 1     |                                                                                                                  | 1        |
| 1,1,2-TRICHLOROETHANE (3)                      | 112TCEARE   | 1.0          |                                          | 1     |                                                                                                                  | 1        |
| TRANS-1,3-DICHLORO-1-PROPENE                   | TRANS 130CP | 0.3          | 1 132                                    | 1     | 1/3                                                                                                              | 1        |
| 1,2-OIBROMOETHANE                              | ED8         | 4.0          | 12118                                    | 1     | 1.22.                                                                                                            |          |
| 2-CHLOROETHYLYINYL ETHER                       | 2CEYETHER   | 5.0          | 1                                        | 1     | INP                                                                                                              |          |
| BRCMOFORM                                      | BRCHOFORH   | 1.0          | 120,5                                    | 1.    | 121                                                                                                              |          |
| 1,1,1,2-TETRACHLOROETHANE                      | 1112TTEANE  | 0.3          | I                                        | 1     | 1 jun                                                                                                            | ÷        |
| METHYL ISOBUTYL KETONE                         | HIBK        | 1.0          | 1                                        | 1     |                                                                                                                  | ÷        |
| 1.2.3-TRICHLORCPROPANE                         | 123TCPAKE   | 4.0          | I                                        | 1     | 1                                                                                                                | ÷        |
| 1,1,2,2,-TETRACHLOROETHANE                     | 1122TTEANE  | 1.0          | 1                                        | 1     | 1                                                                                                                | ÷        |
| 1,1,2,2-TETRACHLOROETHYLENE                    | 1122TTEEKE  | 1.0          | 1/8,6                                    | 1     | 1 19                                                                                                             | <u> </u> |
| PENTACHLOROETHANE                              | PENTACEANE  | 2.0          | 1                                        | I     | 1 1013                                                                                                           | -        |
| TOLUENE                                        | TOLUENE     | 1.0          | 1 18,0                                   | 1     | 1 18                                                                                                             | ÷.       |
| CHLOROBENZENE                                  | CHLCROBENZ  | 1.0          | 1                                        | 1     | I NO                                                                                                             | <u>+</u> |
| ETHYLBENZENE                                   | ETHYLBENZ   | 1.0          | 1/8,5                                    | 1     | 1 /9                                                                                                             | -        |
| CUMENE                                         | CURENE      | 1.0          | 1                                        | 1     | and the second second second second second second second second second second second second second second second | ÷        |
| H-XYLENE                                       | H-IYLENE    | 1.0          | 1/7.3                                    | 1     | 1 NO                                                                                                             | -        |
| P-XYLENE (4)                                   | P-TTLENE    | 1.0          | INN NIP HEAT                             | L     | 1/7                                                                                                              | -        |
| O-XYLENE (4)                                   | 0-XYLENE    | 1.0          | 1/6,4                                    | l     | 1 . 100                                                                                                          | -        |
| 1, 3-DICHLOROBENZENE                           | 13003642    | 4.0          | 1                                        | L     | 1 16                                                                                                             | -        |
| 1.2-DICHLOROBENZENE                            | 120C3ENZ    | .4.0         | 1/5,4                                    | l     | IND                                                                                                              |          |
| 1,4-DICHLOROBENZENE                            | 140CSENZ    | 4.0          | <u></u>                                  | L     | 1 (5<br>1 NN                                                                                                     |          |
| DICHLOROFLUORMETHANE                           | FRECNZI     | 1.0          | 125.1                                    |       |                                                                                                                  | i.       |
| Footnote: ! - These compounds c                |             |              |                                          | !     | 1 25                                                                                                             |          |
| 3 - These compounds c                          | o-eluce     | 4 - 1        | hese compounds co-                       | eluce |                                                                                                                  |          |

- These compounds co-eluce

| SUBSET ABBREYLATION: 4658                      |                                              | USE CHOLTT                       |                                   |
|------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------|
| NATE RECEIVED:                                 | PROJECT WHE:<br>CLIENT WHE:<br>PROJECT YURBE | z:                               |                                   |
| ATE ANALYZED:                                  | FILE NUMBER:                                 | Water                            |                                   |
| DATA REVIEWED BY:                              |                                              | SAMPLE XAME:                     | retter Blank                      |
| PARAMETER NAME                                 | ABBREY. Other<br>ug/1<br>KOL                 | 10ate9/29/00ate<br>10i15/101001. | Results  <br> (Report) !<br>  N/C |
| AND OD CHETVINE                                | CHLCROKETH 1.0                               | 1 An                             |                                   |
| BROHCHETHANE                                   | BROHOVETH 1.5                                |                                  |                                   |
| DICKLORODIFLUOROHETHANE (1)                    | FREON 12 1.5                                 |                                  | 1 1                               |
| VINYL CHLORIDE (1)                             | VINICALOR 1.5                                |                                  | 1 1                               |
| CHLORCETHANE                                   | CHLCRCETH 1.0                                |                                  | 1 1                               |
| KETHYLENE CHLORIDE                             | HECL 1.0                                     |                                  |                                   |
| ACETONE                                        | ACETCHE 40                                   |                                  | 1 1                               |
| TRICHLORCFLUORCHETHANE                         | FRECHIL 0.4                                  |                                  |                                   |
| ALLYL CHLORICE                                 | ALLYL CAL 4.0                                |                                  | i                                 |
| 1, I-DICHLOROETHYLENE                          | 110CEDIE 0.3                                 |                                  | .1 1                              |
| TETRAHYDROFURAN                                | THE 15                                       |                                  |                                   |
| T, 1-DICHLOROETHANE                            | 110CENE 0.2                                  |                                  | 1 1                               |
| TRANS-1, 2-DICHLORDETHYLENE (2)                | TRUGIZOCE 0.3                                |                                  |                                   |
| CIS-1, Z-OICHLOROETHYLEKE (2)                  | CISIZOCE 0.5                                 |                                  |                                   |
| ETRYL ETHER                                    | ETATLETHER 0.1                               |                                  |                                   |
| CHLORCFORM                                     | CHLOROFORM 0.5                               |                                  |                                   |
| 1,1,2-TRICHLOROTRIFLUORDETHUE                  | FRECH113 0.7                                 |                                  |                                   |
| NETHYL ETHYL KETONE                            | YEX 20                                       |                                  |                                   |
| 1.2-DICHLOROETHANE                             | 120CELITE 0.2                                |                                  |                                   |
| 1.Z-DICKCOROLING                               | DISRONCHETH 1.5                              |                                  |                                   |
| DIBRCHCHETHANE                                 | 111TOENNE 0.5                                |                                  |                                   |
| 1.1, 1-TRICHLOROETHANE<br>CARSON TETRACHLORIDE | CARBONTET 0.3                                |                                  | ;                                 |
| Fora 0211W                                     |                                              | <u>ц</u>                         |                                   |

(\_).

÷

. .

## DAILY HATRIX SPKIE/HATRIX SPIKE DUPLICATE RECOVERY .

| ANALYSIS: 601/602/465B<br>INSTRUMENT: C | FILE NUMBER:             | CLICHT NANC.                                     |
|-----------------------------------------|--------------------------|--------------------------------------------------|
| STANDARD: <u>B</u> SAMPLE SPIKED:       | DATE PREPED:ANALYZED BY: | CLIENT NAME:<br>PROJECT NAME:<br>PROJECT NUMBER: |
| SAMPLE MATRIX:                          | DATE ANALIZED            |                                                  |

| Compound            | True<br>Value | Sample<br>Result | нs   | % REC | MSD  | 1 REC | RPD  | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|---------------------|---------------|------------------|------|-------|------|-------|------|--------------------|--------------------|-----------------------|
| Toluene             | 20            | NP               | 16.6 | 83    | 16,9 | 85    | 2,30 | 123 - 68           | 30%                |                       |
| Ethyl Benzene       | · 1           |                  | 16,5 | 83    | 18,0 | 91    | 9,7  | 117 - 49           | 30%                |                       |
| m-Xylene            |               |                  | 16,5 | 83    | 17.1 | 86    | 355  | 126 - 69           | 30%                |                       |
| o-Xylene            |               |                  | 16:3 | 82    | 16,9 | 85    | 3,59 | 124 - 73           | · 30%              |                       |
| 1,2-Dichlorobenzene |               |                  | 20;7 | 1041  | 17.3 | 87    | 17,8 | 126 - 78           | 30%                |                       |
|                     |               |                  |      | 2     | ·    |       |      |                    |                    |                       |
|                     | i l           |                  | 1    |       |      | 1     |      |                    |                    |                       |

| * Asterisked Value are outside QC limits.<br>RPD: VOAsout of outside of QC limits.<br>Recovery: VOASout of outside of QC limits. | QC Reviewed by: JWN/Sch<br>DATE: |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Blank:<br>Comments:                                                                                                              | 74WPPLAS                         |

Page 2 of 2

| •                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |              |
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| SUBSET ABBREYLATION: 4658             |            | FOR CLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | USE OXIT                                                                                                        |              |
|                                       | 91         | ROJECT WE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |              |
| JATE COLLECTED:                       | -          | LIENT WE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | € <u></u>                                                                                                       |              |
| DATE RECEIVED:                        |            | ROJECT NURBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7:                                                                                                              |              |
| DATE ANALYZED:                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |              |
| ANALYST:                              |            | NTR. 10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |              |
| DATE EXTRACTED:                       |            | ATRIX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ایند معنی برمین و امریکی ایریکی می و میرود.<br>ا                                                                |              |
| DATA REVIEWED BY:                     |            | MIN1**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |              |
| ENTERED BY:                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAUPLE MANE:                                                                                                    |              |
|                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Keck stander |
|                                       |            | A11.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c)                                                                                                             | <u></u>      |
| PARAMETER HAME                        | ABSREY.    | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - glatta                                                                                                        | Results      |
|                                       |            | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Comb Date                                                                                                  | (Report) :   |
|                                       |            | HOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                                                                                             | 1 1          |
| CHLORCHETHANE                         | CHLCROKETH | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 1 1          |
| BROMCHETHANE                          | BROHONETH  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10111                                                                                                           | 1241         |
| DICHLORODIFLUOROHETHANE (1)           | FRECH 12   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1241                                                                                                            | 1            |
| VINYL CHLORIDE (1)                    | VINTICALOR | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 1 1          |
| CHLORCETHANE                          | CHLCROETH  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
| WETHYLENE CHLORIDE                    | NECL       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
|                                       | ACETCKE    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |              |
| TRICHLORCFLUORCMETHANE                | FRECHI     | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
|                                       | ALLYL CAL  | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
| ALLYL CHLORICE                        | 110CEELE   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
| 1,1-DICHLORGETHYLENE                  | THE        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | <u> </u>     |
| TETRAHYDROFURAN<br>1,1-DICHLOROETHANE | 110CENCE   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |              |
| 1,1-DICHLOROETHANE                    | TRUGIZOCI  | ε 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119,4                                                                                                           | 1 79 1       |
| TRANS-1, 2-DICHLOROETHYLENE (2)       | CISIZOCE   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | <u> </u>     |
| - CIS-1,2-OICHLOROETHYLENE (2)        | ETHILETKE  | L.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I L                                                                                                             | 1            |
| ETHYL ETHER                           | CHLOROFOR  | UN 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                               | 1            |
| CHLORCFORM                            | FRECHIIJ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                               |              |
| 1,1,2-TRICHLOROTRIFLUORDETHURE        | XEX        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                                                                                                             | 1            |
| KETHYL ETHYL KETONE                   | 120CENTE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117,2 1                                                                                                         | 1/7.         |
| 1.2-DICHLCROETHANE                    | OLSKONCH   | Contraction of the local division of the loc | 1 1                                                                                                             |              |
| DIBRCHCHETHANE                        | 111TCEN    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 19,3 1                                                                                                        | 1 79         |
| 1.1, 1-TRICHLORDETHANE                | CARBONTE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>1 1                                                                                                         | 1            |
| CARSON TETRACHLORIDE                  | CARBOAT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | territoria de la construcción de la construcción de la construcción de la construcción de la construcción de la |              |
| · 5000 02114                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |              |

Fora 02114

.

| BSET ABBREVIATION: 4658       | 2            |          | SAMPLE .W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                       |               |
|-------------------------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|---------------|
| WANETER NAME                  | ABBREY.      | 027er    | 520915 X0<br>-<br>[Oate<br>1011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date<br> Date<br> D(1. | [Results<br>[(Resort) | 1             |
|                               |              | :#01     | 1 19,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                      | 1 19                  | 1             |
| RCHODICHLORCHETHANE           | BOCHETHANE   | 0.2      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     | 1             |
| ICHLOROACETONITRILE           | DCICSTONIT   | 0.5      | 120,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                      | 120                   | 1             |
| - 3-OICHLORD-1-PROPENE        | 23007536     | 0.2      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                       | 1             |
| 1.2-DICHLOROPARE              | 120CPARE     | 1.0      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                       | <u> </u>      |
| 1 1-0 (CYLCRO-1-29CPENE       | 11002585     | 0.5      | 127.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                      | 121                   | :             |
| CIS-1.3-DICHLORO-1-2802EHE    | CISIDEC?     | 0.5      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                       |               |
| 1.1.2-TRICHLOROETHYLENE       | 100          | 1.0      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     | 1             |
| BENZERE                       | BENZENE      | 0.5      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     | 1             |
| 1.3-DICHLOROPROPANE           | 13002748     |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     |               |
| DIBRCHOCHLORCHETHANE (3)      | OBCYETHAN    |          | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                      | 1                     |               |
| 1,1.2-TRICHLOROETHANE (3)     | 112TCEARE    |          | 1 13,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                      | 114                   |               |
| TRANS-1.3-0 ICHLORO-1-PROPEKE | TRAKS 1300   |          | 1 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 I                    | 123                   |               |
| 1,2-OIBRCHOETHANE             | EDS          | 4.0      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     |               |
| Z-CHLOROETHYLYTNYL ETHER      | 2CEVETHE:    |          | 1 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 120                   | 12            |
| BRCHCFORM                     | BRCHCFOR     |          | 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                      | 1                     |               |
| 1,1.1.Z-TETRACHLOROETHANE     | 11121 124    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      | 1                     |               |
| NETHYL ISOBUTYL KETONE        | MISK         | 1.0      | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1                      | 1                     |               |
| 1.2.1-TRICYLORCPROPARE        | 12310718     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      | t                     |               |
| 1.1.2.2TETRACHLOROETHANE      | 1122112      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 116                   |               |
| 1,1.2.2-TETRACHLOROETHYLENE   | 1122116      | EXE 1.0  | 115.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                       |               |
| 1,1.2.2-1EINCHE               | PERTACE      | LKE 2.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1/7                   |               |
| PENTACHLOROETHANE             | TOLUENE      | 1.0      | 116.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ->                     |                       |               |
| . TOLUENE                     | CLORCE       | IENZ 1.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               |
| CHLCROBENZENE                 | ETATL        | ENZ 1.0  | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-1                    | 1.1.1                 |               |
| ETHYLBENZENE                  | CUPENE       | 1.0      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | land the second second |                       |               |
| CUHENE                        | X-ITLE       | NE 1.0   | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1 1                   | 117                   | -             |
| K-IYLENE                      | P-M          | NE 1.0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                       | _             |
| P-TYLENE (4)                  | 0-171        | ENE 1.0  | 1/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151                    | 1 17                  |               |
| O-ITLENE (1)                  | 13003        |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                       |               |
| 1.J-JICHLCRCBENZENE           | 12003        | ENZ .4.0 | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                     | 117.                  |               |
| 1.2-DICHLOROBENZENE           | 1400         |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      | 1                     | <del>سر</del> |
| 1.1-01040208612216            | FREC         |          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.9 1                  | 1 3                   | <u>(</u> ,    |
| PROTOCOLOR CELUCANETHANE      | nds co-aluce | 2 •      | These condor<br>These condor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inds co-eluci          |                       | ).<br>(1      |

#### DAILY MATRIX SPKIE/MATRIX SPIKE DUPLICATE RECOVERY .

| ANALYSIS: 601  | /602/465B              |                                                                                                                |
|----------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| INSTRUMENT: C  |                        | The second second second second second second second second second second second second second second second s |
| STANDARD: B    |                        |                                                                                                                |
| SAMPLE SPIKED: | darter millionen india |                                                                                                                |
| SAMPLE MATRIX: |                        |                                                                                                                |

| FILE NUMBER:  |         |
|---------------|---------|
| PREPED BY:    | prin    |
| DATE PREPED:  | 0/27/19 |
| ANALYZED BY:  | pin     |
| DATE ANALYZED | 96 7119 |

CLIENT NAME: \_\_\_\_\_ PROJECT NAME: \_\_\_\_\_ PROJECT NUMBER: \_\_\_\_\_

| Compound                     | True<br>Value | Sample<br>Result | MS    | 1 REC | MSD   | 1 REC | RPD  | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|------------------------------|---------------|------------------|-------|-------|-------|-------|------|--------------------|--------------------|-----------------------|
| Dichlorodifluoromethane      | 20            | No               | 20,41 | 107   | 534   | 27    | 146  |                    | 30%                | 34034                 |
| Trichlorofluoromethane       | 1             |                  |       | k     |       |       |      | 124 - 46           | 30%                | 32969                 |
| Dichlorofluoromethane        |               |                  | 21.6  | 108   | 22.6  | (13)  | 4,52 | 102 - 48           | 30%                | 33122                 |
| Trans-1,2 Dichloroethylene   |               |                  | 177   | 89    | 17.8  | 89    | B    | 121 - 59           | . 30%              | 33.25                 |
| 1,2-Dichloroethane           |               |                  | 16,1  | 81    | 16,1  | 81    | Ö    | 131 - 47           | 30%                | 33044                 |
| 1,1,1-Trichloroethane        |               |                  | 16,3  | 82    | 16,-1 | 82    | A    | 119 - 63           | 30%                | 3-1033                |
| Bromodichloromethane         |               |                  | 16,4  | 82    | 16,1  | 81    | 1,22 | 116 - 73           | 30%                | 34035                 |
| 2,3-Dichloro-1-propene       | 20            | ×                | 16,8  | 84    | 16.0  | 84    | G    | 118 - 61           | 30%                | 34036                 |
| Trans-1,3-Dichloro-1-propene | 14,4          |                  | 11.4  | 79    | 11.0  | 76    | 3,07 | 114 - 65           | 30%                | 32968                 |
| cis-1,3-Dichloro-1-propene   | 25.6          | 1.               | 26,1  | 102   | 25.9  | (02-  | 10   | 124 - 46           | 30%                |                       |
| 1,2-Dibromomethane           | 20            |                  | 19,0  | 9.5   | 19,3  | 97    | 1,07 | 135 - 75           | 30%                | 1-4                   |
| Bromoform                    |               |                  | 16.0  | 50    | 16,2  | 81    | 1124 | 127 - 64           | 30%                |                       |
| 1,1,2,2-Tetrachloroethane    |               |                  | 13,0  | 65    | /3,1  | 40    | 1,50 | 124 - 42           | 30%                |                       |

Page 1 of 2

A the sporter cup to accuracy limbs were from utor the chor work inche by Supelier mentiones and thereford the limb of the second weeks low with the Supelier mittices Sup the limb of the second weeks low of the with the Supelier mit the of the limb of the second weeks low of the with the Supelier mit the of the limb of the second weeks low of the supelier mit the of the limb of the second weeks low of the supelier mit the supelier super Super the the second weeks the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

| 118827 | ABBREVIATION: | 4658 |
|--------|---------------|------|
| UDJEI  | ADG           |      |

().

SAMPLE THE: SAMPLE NO .:

) j

|                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE RO.:    |               |                       |        |  |  |
|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-----------------------|--------|--|--|
| ARAMETER NAME                          | ABBREY.    | 0tter<br>ug/1<br>:10t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [Oate<br>1011. | Date<br> 011. | [Results<br>[(Resort) | 1<br>1 |  |  |
|                                        | BOCHETHATE | 0.2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INO            |               | 1 410                 |        |  |  |
| R CHOD ICHLOR CHETHANE                 | OC:CSTONIT | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              | 1             |                       | 1      |  |  |
| ICHLOROACETCHITRILE                    | 23007536   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |               |                       |        |  |  |
| 3-0ICHLORD-1-PROPENE                   | 120CPANE   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |               |                       |        |  |  |
| 2-0ICHLORCPACPANE                      | 11002535   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1            |               |                       |        |  |  |
| 1-0104030-1-2902515                    | C(\$13002  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              | 1             |                       |        |  |  |
| 15-1.3-DICHLORD-1-2802132              | TCE        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1             |                       |        |  |  |
| 1.1.2-TRICHLOROETHYLENE                | BENZENE    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |               |                       |        |  |  |
| BENZENE                                |            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              | 1             | 1                     |        |  |  |
| 1.3-DICHLOROPROPANE                    | 13002238   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             |                       |        |  |  |
| DIBRCHOCHLORCHETHANE (J)               | OBCYETHANE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             | 1                     |        |  |  |
| 1,1.2-TRICHLOROETHANE (3)              | 112702288  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             | 11                    |        |  |  |
| TRANS-1.3-0 ICHLORO-1-PROPENE          | TRUKS 130C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1             | 11                    |        |  |  |
| 1,2-OLBRCHOETHANE                      | EDS        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1             | 11                    |        |  |  |
| 2-CHLOROETHYLYTNYL ETHER               | 2CEVETHER  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <u>I</u>      | 1                     |        |  |  |
|                                        | BRCHCFORH  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +              |               | 1                     |        |  |  |
| BRCHCFORM<br>1,1.1.2-TETRACHLOROETHANE | 11121722   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                       |        |  |  |
| 1,1.1.2-TETRACING                      | HT 8X      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |                       |        |  |  |
| METHYL ISOBUTYL KETONE                 | 12370218   | ٤ ٤.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |               |                       | _      |  |  |
| 1.2.3-TRICHLORCPACPANE                 | 11221722   | NE 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |               |                       | -      |  |  |
| 1.1.2.2TETRACHLOROETHANE               | 11221162   | I.0 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |                       |        |  |  |
| 1,1.2.2-TETRACHLOROETHYLENE            | PERTACES   | UKE 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |                       |        |  |  |
| PENTACHLOROETHANE                      | TOLUETE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |               |                       |        |  |  |
| TOLUENE                                | OLCRCS     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |               | 1                     | _      |  |  |
| CHLCROBENZENE                          | ETXTL3E    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |               |                       |        |  |  |
| ETHYLBENZENE                           | CUREXE     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              | 1 1           | 1                     |        |  |  |
| CURENE                                 | H-ITLE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1 1           | 1                     |        |  |  |
| H-XYLENE                               | P-ME       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             | ·                     |        |  |  |
| P-TYLENE (4)                           | 0-1712     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             | 1                     | _      |  |  |
| 0-IYLENE (1)                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1             | 1                     |        |  |  |
| 1.3-DICHLORCBENZENE                    | 13038      | Contraction of the local division of the loc | 1              | / 1           | 1                     |        |  |  |
| 1.2-DICHLOROBENZENE                    | 120038     | No. of Concession, Name of Street, or other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>_</u>       | 1 1           | 1                     |        |  |  |
| 1.4-DICHLOROBENZENE                    | 14001      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | i . 1         | 1                     |        |  |  |
| 1                                      | FRECH      | 21 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |               |                       |        |  |  |

DICHLORCELUCRIETHANE these compounds co-eluce Feotocet ---- remoounds co-eluce

2 - These concounds ca-eluce 1 - These compounds co-eluce

Sign

### TABLE OF CONTENTS

| 1.0 | INTRODUCTION                               | Page<br>1 |
|-----|--------------------------------------------|-----------|
| 2.0 | BACKGROUND                                 | 2         |
| 3.0 | FIELD ACTIVITIES                           | 3         |
|     | 3.1 MONITORING WELL INSTALLATION           | 3         |
|     | 3.2 GROUNDWATER AND SURFACE WATER SAMPLING | 4         |
|     | 3.3 GROUNDWATER FLOW DIRECTION             | 5         |
| 4.0 | ANALYTICAL RESULTS                         | . 7       |
| 5.0 | EVALUATION                                 | 8         |

### LIST OF APPENDICES

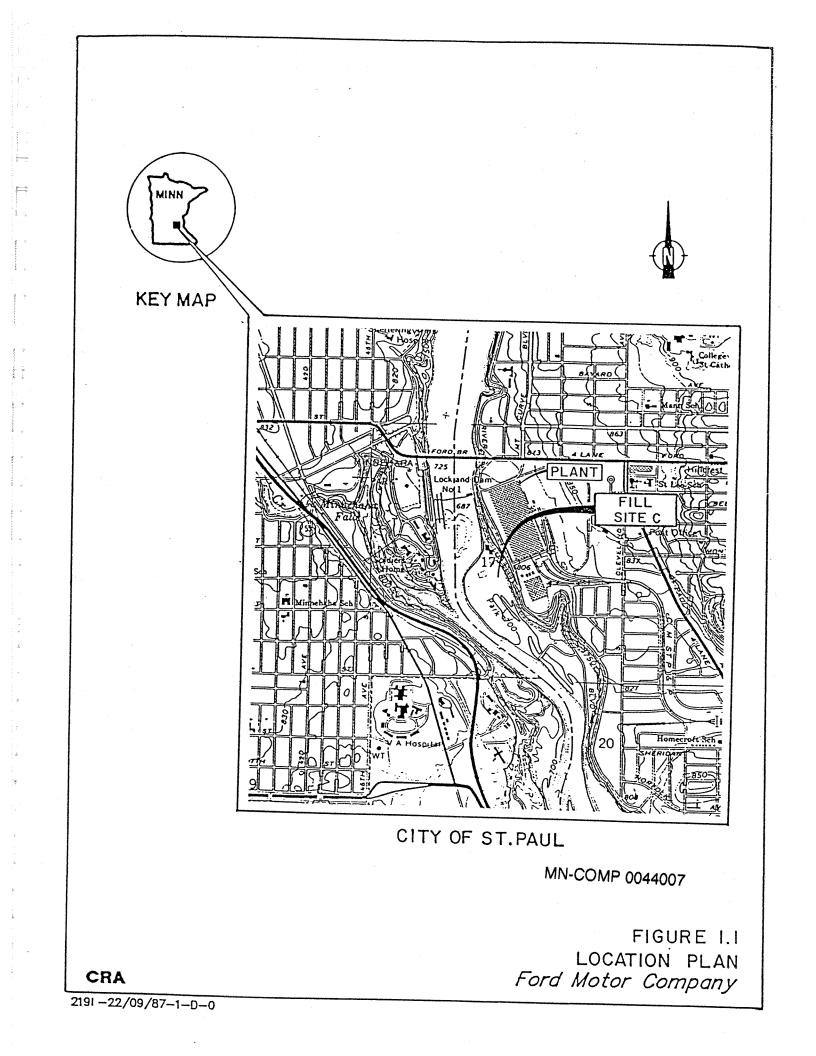
# APPENDIX A WELL INSTRUMENTATION LOGS APPENDIX B ANALYTICAL REPORTS AND VALIDATION

<u>\_\_\_</u>

.

### LIST OF TABLES

|           |                              | Following<br>Page |
|-----------|------------------------------|-------------------|
| TABLE 3.1 | REVISED MONITORING WELL DATA | 4                 |
| TABLE 4.1 | DETECTED COMPOUNDS           | . 7               |


### LIST OF FIGURES

| FIGURE 1.1 | LOCATION PLAN                  |   | 1 |
|------------|--------------------------------|---|---|
| FIGURE 3.1 | GROUNDWATER CONTOURS (4/19/90) | ъ | 3 |
| FIGURE 3.2 | GROUNDWATER CONTOURS (6/6/90)  |   | 3 |
| FIGURE 3.3 | GROUNDWATER CONTOURS (8/3/90)  |   | 3 |

### 1.0 INTRODUCTION

The Ford Motor Company, Twin Cities Assembly Plant (Plant) is located in St. Paul, Minnesota, at 966 South Mississippi River Boulevard. The Plant complex includes buildings on both sides of Mississippi River Boulevard. The Plant location is presented on Figure 1.1.

A more detailed chronology of the Plant's history is outlined in a report entitled "Groundwater Monitoring Report and Evaluation -Site C" dated January 24, 1990.



### 2.0 BACKGROUND

The Site C waste disposal area was reported to the USEPA by Ford during the Superfund notification process. The location of Site C is provided on Figure 1.1. Several hydrogeologic investigations were completed. The most recent investigation was presented in the report titled "Groundwater Monitoring Report and Evaluation - Site C". This report was submitted to the Minnesota Pollution Control Agency (MPCA) on January 24, 1990.

On January 31, 1990, a meeting was held with the MPCA to discuss the results of this report. The MPCA requested additional field work to be completed at Site C. On March 2, 1990, a work plan for supplemental groundwater monitoring was submitted to the MPCA. This work plan included the installation of an additional monitoring well and two rounds of groundwater and surface water sampling.

This monitoring report summarizes the data and evaluation results from these field activities.

MN-COMP 0044008

### 3.0 FIELD ACTIVITIES

#### 3.1 MONITORING WELL INSTALLATION

CRA contracted GME Consultants Inc. to install the new monitoring well (MW-6). Work commenced on April 9, 1990, and was completed on April 10, 1990. The location of the new monitoring well (MW6) is shown on Figures 3.1, 3.2 and 3.3.

A CME 55 drill rig, using 4-1/4-inch inside diameter, hollow stem augers advanced the well boring. Split spoon samples were collected continuously to the bottom of the boring.

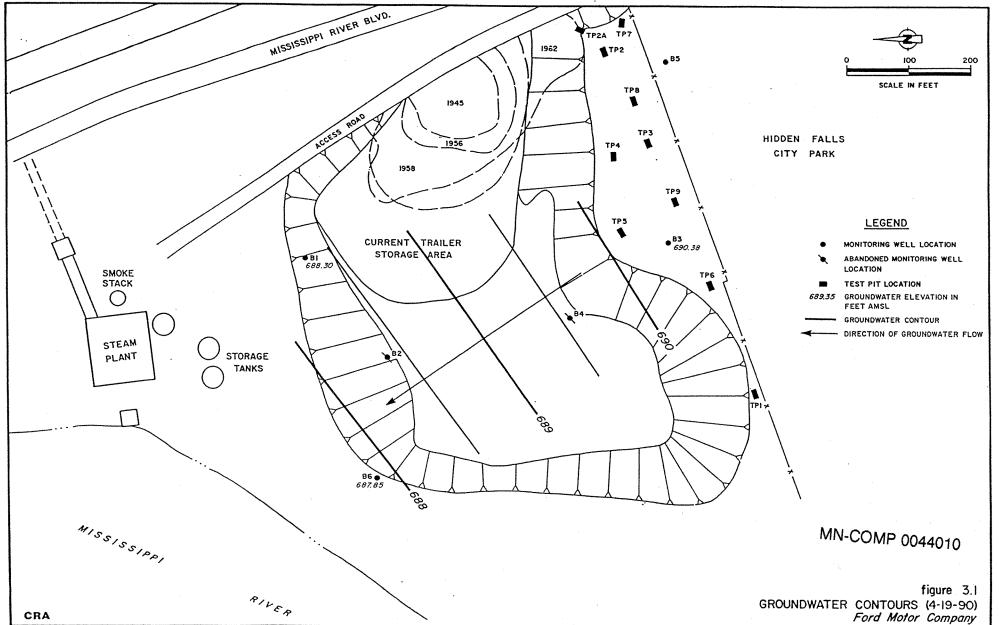
The monitoring well was completed using the following materials:

- 10-foot, 2.0-inch diameter, .10 slot stainless steel screen;

- 40-foot, 2.0-inch, low carbon steel riser;

- #10 silica sand pack;

- Bentonite slurry seal;


- Bentonite (approximately 3 percent) cement grout;

- 4.0-inch diameter locking protective casing;

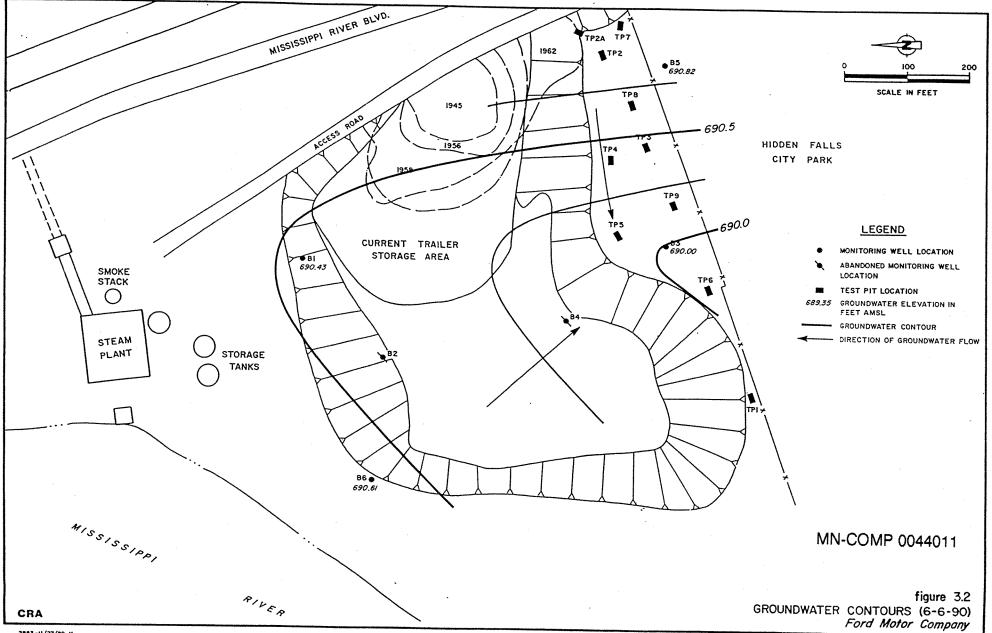
- three 4.0-inch steel protective posts.

#### MN-COMP 0044009

The monitoring well was installed inside the auger annulus by backing the augers form the boring while simultaneously installing the sand pack. The sand pack was installed from the bottom to approximately 8 feet



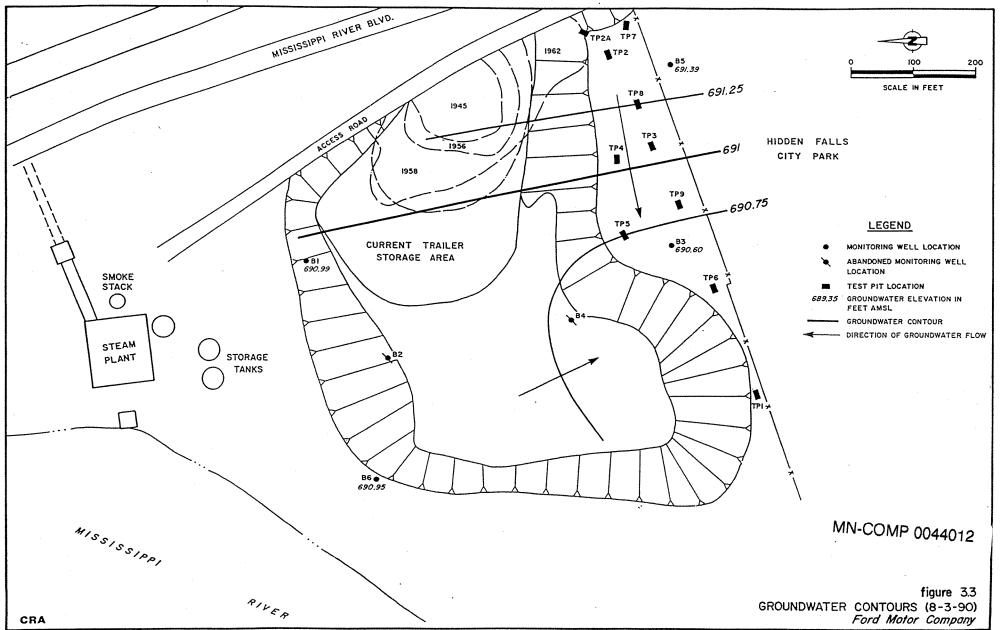
 $g_{1}(x) = (x,y) = ($ 




•

8.21 9

15


. . .



.

 $(s+g) \in$ 

412853-11/27/89-M



.



.

above the top of the screen. Natural sand and gravel filled the annulus to approximately 26 feet BGS. A bentonite slurry seal approximately 3 feet thick was emplaced above the sand pack. The remaining auger annulus was backfilled by the tremie grout method using a mixture of bentonite and cement. Surface protection consisted of a 4.0-inch diameter locking protective casing and three steel bumper posts. The well completion log is presented in Appendix A.

The drill rig, augers, well materials and additional associated equipment were decontaminated using a high temperature, hot water steam rinse.

Well MW-6 was developed and stabilized following installation using a 2-inch stainless steel and teflon, bottom filling bailer. A minimum of five standing well volumes was purged. Field parameters of pH, conductivity and temperature were noted after each well volume. The well was considered stabilized after three consecutive volumes with readings of less than 5 percent variability were purged. In total, 44 well volumes were removed during development.

Table 3.1 presents the new well elevation data.

### 3.2 GROUNDWATER AND SURFACE WATER SAMPLING

Two (2) rounds of groundwater and surface water sampling were completed according to the approved work plan and the MPCA guidance manual "Procedures for Groundwater Monitoring; MPCA Guidelines" MN-COMP 0044013

CO

HATES

#### TABLE 3.1

#### Groundwater Bottom of Elevations Top of Casing Screen Ground 12/1/82(2) 3/3/82(3) 1/5/82(3) 3/24/88(1) 8/3/90 6/6/90 4/19/90 <u>9/13/89</u> 6/2/89 Well # Elevation Elevation Elevation 688.35 688.62 688.24 691.85 688.30 686.91 689.35 738.06 735.9 681.62 690.99 690.43 B1 688.65 688.50 691.42 688.27 704.18 702.9 679.68 690.66 690.00 690.38 687.76 689.36 B3 \_(4) 690.45 689.61 691.96 NI NI 689.19 703.90 703.2 678.50 691.39 690.82 B5 NI NI NI NI NI NI 687.85 730.85 728.4 681.90 690.95 690.61 B6 Staff Gauge 691.4 691.5 688.2 Lock & Dam #1

#### FORD SITE C REVISED\* MONITORING WELL ELEVATION DATA

#### Note:

All elevations are feet above mean sea level (AMSL).

\*As revised due to well repairs and modifications.

(1) From report "Assessment of Fill Areas, Ford Motor Company, Twin Cities Assembly Plant," CRA, October 1988.

(2) From report "Twin Cities Assembly Facility, Groundwater Monitoring Wells Survey," Ford Motor Company, December 1, 1982.

(3) From report "Twin Cities Assembly Facility, Groundwater Monitoring Wells Survey," Ford Motor Company, March 3, 1982.

(4) This water level omitted by error on this date, therefore, an additional water level round taken 8/3/90.

NI Not Installed

December 1986. The samples were submitted to Pace Laboratories Inc. for chemical analysis under chain-of-custody procedures. The monitoring wells were purged and sampled using a precleaned\* bottom filling stainless steel bailer. A minimum of three well volumes were purged prior to each sampling.

The surface water samples were taken by the "Grab Sampling" method. On the two sampling events, samples were obtained from both an upstream and downstream locations. These surface water locations are the same as the 1989 surface water sampling locations.

#### 3.3 <u>GROUNDWATER FLOW DIRECTION</u>

Groundwater elevation data was obtained on April 19, 1990, June 6, 1990, and August 3, 1990. Groundwater elevations and groundwater flow directions are presented on Figures 3.1, 3.2 and 3.3.

Groundwater flow is predominantly to the west towards the Mississippi River. Seasonal control of the river elevation may affect this flow direction to some degree. Water levels measured by CRA during 1988, also presented on Table 3.1, had indicated a more northwesterly component of flow direction. A similar westerly flow pattern was also provided by data presented by Ford in December 1982 as also indicated on Table 3.1. Early groundwater elevations by Ford do not include well B5, as it was not installed until later in

\*Cleaning sequence consisted of: methanol-hexane-methanol rinse, air drying and distilled water rinse.

CONEST MN-COMP 0044015

S

1982. Only the 1990 data includes the new well B6. Seasonal fluctuations in the river elevation also appear to change the gradients as shown on Figures 3.1, 3.2 and 3.3.

Figures 3.2 and 3.3 show a flow direction to the south for the western edge of Site C. These flow directions indicated that the river was recharging this portion of Site C. The Army Corp of Engineers maintain a staff gauge in the lower pool of Lock and Dam #1. The elevations of the river were approximately 3 feet higher during the June and August water level rounds when compared to the river elevation in April. The change in river elevation explains why groundwater flow for June and August are different than the flow direction for April.

Groundwater elevations are measured in the existing monitoring wells which are screened in the fill and/or river deposits of sand and gravel. Thus, the groundwater flow directions represent a localized condition under Site C.

### MN-COMP 0044016

### 4.0 ANALYTICAL RESULTS

Results of the chemical analysis of groundwater and surface water are presented in Table 4.1. The analytical lab reports and the data validation memorandums are presented in Appendix B. All water samples were analyzed for halocarbon and aromatic volatile organic compounds (VOC) by EPA methods 601 and 602. In addition to the 601/602 VOC parameters, the MPCA requested that *cis*-1,2-dichloroethylene and ethylacetate also be analyzed. This request was presented in MPCA's letter dated April 25, 1989. The following metals were also analyzed: arsenic, selenium and mercury by Atomic Absorption Method and barium, cadmium, chromium, copper, lead, silver, zinc and nickel by inductively coupled plasma analysis (EPA Method 6010).

### MN-COMP 0044017

#### TABLE 4.1

FORD SITE "C" DETECTED COMPOUNDS

|                                       | B1          |                    |             |             | B3          |        |      |             | B5                  |             |             | B6          |        |        |                      |
|---------------------------------------|-------------|--------------------|-------------|-------------|-------------|--------|------|-------------|---------------------|-------------|-------------|-------------|--------|--------|----------------------|
|                                       | <u>6/89</u> | <u>8/89</u>        | <u>9/89</u> | <u>4/90</u> | <u>6/90</u> | 6/89   | 8/89 | <u>9/89</u> | <u>4/90</u>         | <u>6/90</u> | <u>6/89</u> | <u>8/89</u> | 9/89   | 4/90   | <u>6/90</u>          |
| <i>cis</i> -1,2-Dichloroethylene µg/L | ND          | ND                 | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | 5.5                  |
| 1,1-Dichloroethylene µg/L             | 1.5         | ND <sup>(R)</sup>  | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | 0.8(J)      | ND     | ND     | ND                   |
| Methylene Chloride µg/L               | ND          | ND <sup>(R)</sup>  | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | 1.4(U) | ND                   |
| Trichlorofluoromethane $\mu g/L$      | ND          | ND <sup>(R)</sup>  | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | ND                   |
| Dichlorodifluoromethane µg/L          | ND          | 14(J)              | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | ND                   |
| Vinyl Chloride µg/L                   | ND          | 5.2 <sup>(J)</sup> | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | ND                   |
| Trichloroethylene µg/L                | ND          | ND <sup>(R)</sup>  | 2.1         | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | 0.5                  |
| Chloroform µg/L                       | ND          | ND                 | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | 3.9    | ND                   |
| Cadmium mg/L                          | ND          | ND                 | ND          | ND          | ND          | 0.0002 | ND   | ND          | ND                  | ND          | 0.0004      | ND          | 0.0002 | ND     | ND                   |
| Lead mg/L                             | ND          | ND                 | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | ND          | ND          | ND     | ND     | ND                   |
| Zinc mg/L                             | ND          | ND                 | ND          | ND          | ND          | 0.03   | ND   | 0.02        | ND                  | ND          | 0.07        | ND          | 0.26   | ND     | 0.007 <sup>(U)</sup> |
| Copper mg/L                           | ND          | 0.01               | ND          | ND          | ND          | ND     | 0.02 | ND          | <sub>0.01</sub> (U) | ND          | ND          | ND          | ND     | ND     | ND                   |
| Nickel mg/L                           | ND          | ND                 | ND          | ND          | ND          | ND     | 0.05 | ND          | ND                  | ND          | 0.08        | 0.05        | ND     | ND     | ND                   |
| Chromium mg/L                         | ND          | ND                 | ND          | ND          | ND          | ND     | ND   | ND          | ND                  | ND          | 0.002       | ND          | ND     | ND     | ND                   |
| Barium mg/L                           | ND          | ND                 | ND          | ND          | 0.06        | 0.3    | ND   | ND          | 0.2                 | 0.18        | ND          | ND          | ND     | ND     | 0.073                |

MN-COMP 0044018

BETOGA ROVERS & ASSOCIATES

#### TABLE 4.1 (CONT'D)

#### FORD SITE "C" DETECTED COMPOUNDS

|                                       | Mississippi River<br>Up Stream |        |       | Mississippi River<br>Down Stream |          |        |        |             |             |             |
|---------------------------------------|--------------------------------|--------|-------|----------------------------------|----------|--------|--------|-------------|-------------|-------------|
| м<br>С                                | 6/89                           | 8/89   | 9/89  | 4/90                             | 6/90     | 6/89   | 8/89   | <u>9/89</u> | <u>4/90</u> | <u>6/90</u> |
| <i>cis</i> -1,2-Dichloroethylene µg/L | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| 1,1-Dichloroethylene µg/L             | 1.3                            | ND     | ND    | ND                               | ND       | ND     | 1.1(J) | ND          | ND          | ND          |
| Methylene Chloride µg/L               | ND                             | ND     | ND    | 1.3(U)                           | 1.0      | 1.3    | ND     | ND          | ND          | ND          |
| Trichlorofluoromethane $\mu g/L$      | ND                             | ND     | ND    | ND                               | ND       | 2.1(J) | ND     | ND          | ND          | ND          |
| Dichlorodifluoromethane $\mu g/L$     | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Vinyl Chloride µg/L                   | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Trichloroethylene µg/L                | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Chloroform µg/L                       | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Cadmium mg/L                          | ND                             | 0.0005 | ND    | ND                               | ND       | ND     | 0.0008 | ND          | ND          | ND          |
| Lead mg/L                             | ND                             | ND     | 0.001 | ND                               | ND       | ND     | ND     | 0.001       | ND          | ND          |
| Zinc mg/L                             | ND                             | ND     | ND    | ND                               | 0.009(U) | ND     | ND     | ND          | ND          | ND          |
| Copper mg/L                           | ND                             | ND     | ND    | ND                               | ND       | 0.001  | ND     | ND          | ND          | ND          |
| Nickel mg/L                           | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Chromium mg/L                         | ND                             | ND     | ND    | ND                               | ND       | ND     | ND     | ND          | ND          | ND          |
| Barium mg/L                           | ND                             | ND     | ND    | ND                               | 0.058    | ND     | ND     | ND          | ND          | 0.055       |

MN-COMP 0044019

MDL - Method Detection Limit

ND - Not detected at or above method detection limit.

 $(\mathbf{D})^{(2)}$  - Value estimated based on holding time exceedence.

(R) - Value unusable based on holding time exceedence.

• Value qualified as non-detect based on method blank.

BOCIATES

#### 5.0 EVALUATION

The data gathered for the report on the existing monitoring well network at Site C indicate the following:

- A data quality assessment was conducted of the samples collected during the two sampling rounds. With minor exceptions, the data was found to be acceptable to assess analyte concentrations within groundwater and surface water at the Site (see footnotes to Table 4.1 and lab report validation, Appendix B).
- Groundwater flow direction under Site C flows predominantly west towards the Mississippi River.
- Groundwater chemical data gathered from this monitoring represents Site conditions in the immediate area under Site C.

Chemical data from samples taken at the river indicate that Site C has had no impact on the river.

- Barium was the only analyte found above method detection limits in the river samples taken and was found at equal concentrations upstream and downstream of the Site.
- Results for June sampling for zinc and April sampling for copper were qualified as non-detect due to the presence of the analyte in the method blank.

- Chemical data from the two rounds of sampling on wells B1, B3 and B6 indicate that wells B1 and B3 had no VOCs present during either sampling event.
- Well B6 had methylene chloride detected at  $1.4 \,\mu g/l$  during the April sampling. This value was qualified as non-detect due to the presence of this analyte in the method blank.
- Chloroform was detected at well B6 during the April sampling event at a concentration of  $3.9 \,\mu\text{g}/l$  but was not detected during the June event. Well B6 was downgradient of the Site during the April sampling event. Well B6 was not downgradient during the June sampling event, however, well B3 was. No VOCs were present in well B3 in either sampling event.
- During the June sampling, two analytes, *cis*-1,2-dichloroethylene and trichloroethylene, were detected at well B6 at concentrations of 5.5 and 0.5  $\mu g/l$ , respectively. However, neither compound was detected during the earlier April event when B6 was more downgradient of the Site.
- The metals concentrations at all sampling locations are either not detected or at levels well below any concentrations of concern.
- The groundwater results from both 1989 and 1990 are inconsistent from location to location and are not repeated in successive monitoring events at any one location. These inconsistent results indicate that any VOC release

MN-COMP 0044021

q

associated with the Site is insignificant. These results are similar in terms of their low levels to those found by Ford during 1982 monitoring at these wells.

Review of all 1990 sampling data from both rounds indicates no analyte concentration at or near any applicable standards often used for comparison of water quality and purity (e.g. MCLs and RALs). All results for this supplemental 1990 monitoring were found well below RALs and MCLs.

Based on site history and the prior results obtained, no further Site C monitoring is warranted.

#### CONESTOGA-ROVERS & ASSOCIATES

MN-COMP 0044022

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

aVan Norma

Alan W. Van Norman, P. Eng.

Jon Christofferson

### APPENDIX A

# WELL INSTRUMENTATION LOGS

|                 | STRATIGRAPHIC AND IN<br>(OVERBU                                              |            | NTATION LOG              |                    | Nomes datas  |
|-----------------|------------------------------------------------------------------------------|------------|--------------------------|--------------------|--------------|
| PROJEC          | CT NAME: FORD SITE C                                                         |            | HOLE DESIGNATION:        | MW-6               |              |
| PROJEC          | CT NO.: 2853                                                                 |            | DATE COMPLETED:          | (Page 1<br>APRIL 1 | of<br>0,     |
| CLIENT          | FORD                                                                         |            | DRILLING METHOD:         |                    | -            |
| LOCATI          | ON: ST. PAUL, MINNEAPOLIS                                                    |            | CRA SUPERVISOR:          | J. MICH            | ELS          |
| DEPTH<br>ft BGS | STRATIGRAPHIC DESCRIPTION & REMARKS                                          | ELEVATION  |                          | SA                 | MP           |
| 11 005          |                                                                              | ft AMSL    |                          | N U M              |              |
|                 | ML(SILT)FILL, 10-40% clay, green, dry                                        |            |                          | B<br>E<br>R        | E            |
|                 | and one of the total city, green, ary                                        |            | CONCRETE SEAL            |                    |              |
| 2.5             |                                                                              |            |                          |                    |              |
|                 | ML(SILT)FILL, brick, red-brown, dry                                          |            |                          |                    |              |
| 5.0             |                                                                              |            |                          | 155                | K            |
|                 |                                                                              |            |                          |                    | K            |
| 7.5             |                                                                              |            | 6°<br>BOREHOLE           | 255                | $ \rangle$   |
|                 | GC(GRAVEL)FILL, coarse, dry                                                  | 8.0        |                          |                    | K            |
| 10.0            | CL(CLAY)FILL, 10-30% silt, 10-30% sand and                                   | 10.0       |                          | 355                | V            |
|                 | coarse gravel, well graded                                                   |            |                          | 455                | $\mathbb{N}$ |
| 12.5            | No recovery                                                                  |            |                          |                    | ¥            |
|                 |                                                                              |            | CEMENT/<br>BENTONITE     | 555                |              |
| 15.0            |                                                                              |            | GROUT                    | 655                | K            |
|                 |                                                                              |            |                          |                    | K            |
| 17.5            |                                                                              |            | 2*•                      | 755                |              |
|                 |                                                                              |            | STEEL CASING             |                    | K            |
| 20.0            |                                                                              |            |                          | 855                | Ľ            |
|                 | •                                                                            |            |                          | 955                | Ŋ            |
| 22.5            |                                                                              |            |                          |                    | K            |
|                 |                                                                              |            |                          | 1055               | V            |
| 25.0            |                                                                              |            |                          | 1155               | N            |
|                 | SW(SAND), 20-50% gravel, brown, dry,<br>ALLUVIUM and GC(GRAVEL), 20-50% sand | 26.0       | BENTONITE<br>PELLET SEAL |                    | K            |
| 27.5            | ALLUVIUM and GC(GRAVEL), 20-50% sand                                         |            | 3 8                      | 1255               | $ \rangle$   |
|                 |                                                                              |            |                          | 1700               | K            |
| 30.0            | MN COMP 0044007                                                              |            |                          | 1355               | Ľ            |
|                 | MN-COMP 0044025                                                              |            | SAND PACK                |                    |              |
| 32.5            | · ·                                                                          |            |                          |                    |              |
|                 |                                                                              |            |                          |                    |              |
|                 |                                                                              |            |                          |                    | L            |
| NOT             | ES: MEASURING POINT ELEVATIONS MAY CHAN                                      | IGE; REFER | TO CURRENT ELEVATION T   | ABLE               |              |
|                 | GRAIN SIZE ANALYSIS WATER                                                    | FOUND 🔽    | Z STATIC WATER LEVEL     | -                  |              |

n arts

------

## APPENDIX B

# ANALYTICAL REPORTS AND VALIDATION

|        | STRATIGRAPHIC AND IN<br>(OVERBU                                              |           | NTATION LOG              |                     | (L-                     | -06)             |
|--------|------------------------------------------------------------------------------|-----------|--------------------------|---------------------|-------------------------|------------------|
| PROJE  | CT NAME: FORD SITE C                                                         |           | HOLE DESIGNATION:        |                     |                         |                  |
| PROJE  | CT NO.: 2853                                                                 |           | DATE COMPLETED:          | (Page 1<br>APRIL 10 | of 2                    | :)<br>90         |
| CLIENT | FORD                                                                         |           | DRILLING METHOD:         |                     |                         |                  |
| LOCATI | ION: ST. PAUL, MINNEAPOLIS                                                   |           | CRA SUPERVISOR:          |                     | LS                      |                  |
| DEPTH  | STRATIGRAPHIC DESCRIPTION & REMARKS                                          | ELEVATION |                          | SAN                 | IPLE                    |                  |
| ft BGS |                                                                              | ft AMSL   | INSTALLATION             | - U                 | SI                      | 'N'<br>V         |
|        |                                                                              |           | ا ا                      | N U M B L R         | A<br>T<br>E             | ▲<br>L<br>U<br>E |
|        | ML(SILT)FILL, 10-40% clay, green, dry                                        |           |                          | R                   |                         | <u> </u>         |
|        |                                                                              |           | CONCRETE SEAL            | L                   |                         |                  |
| - 2.5  |                                                                              |           |                          |                     |                         |                  |
|        | ML(SILT)FILL, brick, red-brown, dry                                          |           |                          |                     |                         |                  |
| - 5.0  |                                                                              |           |                          | 155                 | $\bigvee$               | 28               |
|        |                                                                              |           |                          |                     | $\Delta$                | 20               |
| - 7.5  |                                                                              |           | 6 •<br>BOREHOLE          | 255                 | Хŀ                      | 25               |
| 1.5    | GC(GRAVEL)FILL, coarse, dry                                                  | -8.0      |                          | K                   | $\rightarrow$           |                  |
|        |                                                                              |           |                          | 355                 | XE                      | 22               |
| - 10.0 | CL(CLAY)FILL, 10-30% silt, 10-30% sand and coarse gravel, well graded        | -10.0     |                          | 455                 | $\overline{\mathbf{A}}$ | 40               |
| - 12.5 | No recovery                                                                  |           |                          | I K                 |                         |                  |
| 12.0   |                                                                              |           | CEMENT/<br>BENTONITE     | 555                 | A                       | 100              |
| 15.0   |                                                                              |           | GROUT                    | I K                 |                         |                  |
| - 15.0 |                                                                              |           |                          | 6SS                 | Χľ                      | 40               |
|        |                                                                              |           |                          | 755                 | $\overline{\mathbf{A}}$ |                  |
| - 17.5 |                                                                              |           | 2 STEEL CASING           | 1 / 35              | $\square$               | 17               |
|        |                                                                              |           |                          | 855                 | $\Lambda$               | 23               |
| - 20.0 |                                                                              |           |                          | K                   | $\Delta$                | 20               |
|        | •                                                                            |           |                          | 955                 | $\mathbf{X}$            | 41               |
| - 22.5 |                                                                              |           |                          | l K                 | $\rightarrow$           |                  |
|        |                                                                              |           |                          | 1055                | ХL                      | 8                |
| - 25.0 |                                                                              |           | 2                        | l k                 | T.                      |                  |
| 23.0   |                                                                              | -26.0     | BENTONITE<br>PELLET SEAL | 1155                | X)                      | 19               |
|        | SW(SAND), 20-50% gravel, brown, dry,<br>ALLUVIUM and GC(GRAVEL), 20-50% sand | -20.0     | PELLET SEAL              | 1255                | $\overline{\mathbf{A}}$ | 15               |
| - 27.5 |                                                                              |           | 83333                    | 1235                | $\Delta$                | 15               |
|        |                                                                              |           |                          | 1355                | $\Lambda$               | 18               |
| - 30.0 | MN-COMP 0044025                                                              |           |                          | K                   | $\Delta$                | -                |
|        | 10114-CO101F 0044025                                                         |           | SAND PACK                |                     | ľ                       |                  |
| - 32.5 |                                                                              |           |                          |                     |                         |                  |
|        |                                                                              |           |                          |                     |                         |                  |
|        |                                                                              |           |                          |                     |                         |                  |
| NOTE   | S: MEASURING POINT ELEVATIONS MAY CHANC                                      | E; REFER  | TO CURRENT ELEVATION T   | ABLE                |                         |                  |
|        |                                                                              |           |                          |                     |                         |                  |
| L      |                                                                              |           |                          |                     |                         |                  |

|        | (OVERBU                                 | RDENJ      |                                        |                             |
|--------|-----------------------------------------|------------|----------------------------------------|-----------------------------|
|        | CT NAME: FORD SITE C                    |            | HOLE DESIGNATION: 1                    | Page 2 of 2)                |
|        | CT NO.: 2853                            |            | DATE COMPLETED.                        | APRIL 10, 1990              |
| CLIENT | FORD                                    |            | DRILLING METHOD: H                     | ISA                         |
| LOCATI | ON: ST. PAUL, MINNEAPOLIS               |            | CRA SUPERMSOR:                         | I. MICHELS                  |
|        | STRATIGRAPHIC DESCRIPTION & REMARKS     | ELEVATION  |                                        | SAMPLE                      |
| ft BGS |                                         | ft AMSL    | INSTALLATION                           | N S N<br>U T V<br>M A A     |
|        |                                         |            |                                        | N S N<br>U X A L<br>B E E E |
|        |                                         |            | 6* <b>•</b>                            |                             |
| 75.0   |                                         |            | BOREHOLE                               |                             |
| 35.0   |                                         |            | STEEL CASING                           | 14SS 14                     |
| 77.6   |                                         | х<br>и     | SAND PACK                              |                             |
| 37.5   |                                         |            |                                        |                             |
|        |                                         |            |                                        | 15SS X 18                   |
| 40.0   |                                         |            |                                        |                             |
|        |                                         |            | WELL SCREEN                            |                             |
| 42.5   | No recovery                             |            |                                        | 16SS 25                     |
|        |                                         |            |                                        |                             |
| 45.0   |                                         |            |                                        | AC X                        |
|        |                                         |            |                                        |                             |
| 47.5   | END OF HOLE @ 48.0 FT. BGS              | - 48.0     |                                        |                             |
|        |                                         |            | SCREEN DETAILS:                        |                             |
| 50.0   |                                         |            | Screened Interval:<br>37.0 to 47.0 BGS |                             |
| ·      |                                         |            | Length —10.0°<br>Diameter —2.0"        |                             |
| 52.5   |                                         |            | Slot # 10<br>Material —Stainless Steel |                             |
|        |                                         |            | Sand pack interval:                    |                             |
| 55.0   |                                         |            | 27.0 to 48.0' BGS<br>Material —Natural |                             |
|        |                                         |            |                                        |                             |
| 57.5   |                                         |            |                                        |                             |
|        |                                         |            |                                        |                             |
| 60.0   |                                         |            |                                        |                             |
|        |                                         |            |                                        |                             |
| 62.5   |                                         |            |                                        |                             |
|        |                                         |            |                                        |                             |
| 65.0   |                                         |            |                                        |                             |
|        |                                         |            |                                        |                             |
|        |                                         |            | L                                      | <u> </u>                    |
| NOT    | ES: MEASURING POINT ELEVATIONS MAY CHAN | IGE; REFER | TO CURRENT ELEVATION T                 | ABLE                        |
|        | GRAIN SIZE ANALYSIS 🔵 WATER             |            | STATIC WATER LEVEL                     | •                           |



May 14, 1990

MAY 17. 90

**REPORT OF LABORATORY ANALYSIS** 

Mr. Jon Michaels Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

RE: PACE Project No. 900419.524 2853 Ford Site C

Dear Mr. Michaels:

Enclosed is the report of laboratory analyses for samples received April 19, 1990.

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

addie

Helen L.S. Addie Project Manager

Enclosures

۰.

# MN-COMP 0044028

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina An Equal Opportunity Employer



**REPORT OF LABORATORY ANALYSIS** 

| Conestoga Rovers & Associates, Inc.<br>382 West County Road D<br>St. Paul, MN 55112                                                                     | May 14,<br>PACE Pr<br>Nu                     | oject                                  | 900419524                                   |                                             |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Attn: Mr. Jon Michaels                                                                                                                                  |                                              |                                        |                                             |                                             |                                             |
| 2853 Ford Site C                                                                                                                                        |                                              |                                        | B-6                                         | Miss.R.<br>Upstri                           | Rinsche<br>Blank                            |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                |                                              |                                        | 146860<br>04/19/90<br>04/19/90<br>W-011990- | 146870<br>04/19/90<br>04/19/90<br>W-011990- | 146880<br>04/19/90<br>04/19/90<br>W-011990- |
| Parameter                                                                                                                                               | Units                                        | MDL                                    | JM-01                                       | JM-02                                       |                                             |
| SUBCONTRACT_ANALYSIS                                                                                                                                    |                                              |                                        |                                             |                                             |                                             |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>1.4           | ND<br>ND<br>ND<br>ND<br>ND<br>1.3           | ND<br>ND<br>ND<br>ND<br>1.1                 |
| Trichlorofluoromethane<br>1,1-Dichloroethylene<br>1,1-Dichloroethane<br>trans-1,2-Dichloroethylene<br>Chloroform<br>1,2-Dichloroethane                  | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>3.9<br>ND                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| l,l,l-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>l,2-Dichloropropane<br>trans-l,3-Dichloro-l-propene<br>l,l,2-Trichloroethylene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND                  |
| Dibromochloromethane<br>1,1,2-Trichloroethane<br>cis-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform<br>1,1,2,2-Tetrachloroethane       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| 1,1,2,2-Tetrachloroethylene                                                                                                                             | ug/L                                         | 1.0                                    | ND                                          | ND                                          | ND                                          |
| ,                                                                                                                                                       |                                              |                                        |                                             |                                             |                                             |

MDL Method Detection Limit ND Not detected at or above the MDL.

MN-COMP 0044029

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina An Equal Opportunity Employer



# **REPORT OF LABORATORY ANALYSIS**

| Mr. Jon Michaels<br>Page 2                               |       | 14, 1990<br>Project | π.                             |                                           |                                |
|----------------------------------------------------------|-------|---------------------|--------------------------------|-------------------------------------------|--------------------------------|
| 2853 Ford Site C                                         |       |                     | 100419524<br>B-6               | Mass.R.                                   | Rinste<br>Blank                |
| PACE Sample Number:<br>Date Collected:<br>Date Received: |       |                     | 146860<br>04/19/90<br>04/19/90 | ur ≤+r.<br>146870<br>04/19/90<br>04/19/90 | 146880<br>04/19/90<br>04/19/90 |
| Parameter                                                | Units | MDL                 | W-011990-<br>JM-01             |                                           | W-011990-                      |
| SUBCONTRACT ANALYSIS                                     |       |                     |                                |                                           |                                |
| PURGEABLE HALOCARBONS AND AROMATICS                      |       |                     |                                |                                           |                                |
| Benzene                                                  | ug/L  | 1.0                 | ND                             | ND                                        | ŇD                             |
| Toluene                                                  | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| Chlorobenzene                                            | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| Ethyl benzene                                            | ug/L  | 1.0                 | ND                             | ND ,                                      | ND                             |
| Xylenes                                                  | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| 1,3-Dichlorobenzene                                      | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| 1,4-Dichlorobenzene                                      | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| 1,2-Dichlorobenzene                                      | ug/L  | 1.0                 | ND                             | ND                                        | ND                             |
| INORGANIC ANALYSIS                                       |       |                     |                                |                                           |                                |
| INDIVIDUAL PARAMETERS                                    |       |                     |                                |                                           |                                |
| Arsenic                                                  | mg/L  | 0.002               | ND                             | ND                                        | ND                             |
| Barium                                                   | mg/L  | 0.20                | ND                             | ND                                        | ND                             |
| Cadmium                                                  | mg/L  | 0.010               | ND                             | ND                                        | ND                             |
| Chromium                                                 | mg/L  | 0.1                 | ND                             | ND                                        |                                |
| Copper                                                   | mg/L  | 0.010               | ND                             | ND                                        | ND                             |
| Lead                                                     | mg/L  | 0.10                | ND                             | ND                                        | ND<br>ND                       |
| Manager                                                  | •     |                     |                                | ND                                        | ND                             |
| Mercury                                                  | mg/L  | 0.0002              | ND                             | ND                                        | ND                             |
| Nickel                                                   | mg/L  | 0.05                | ND                             | ND                                        | ND                             |
| Selenium ·                                               | mg/L  | 0.005               | ND                             | ND                                        | ND                             |
| Silver                                                   | mg/L  | 0.04                | ND                             | ND                                        | ND                             |
| Zinc                                                     | mg/L  | 0.01                | ND                             | ND                                        | ND                             |
| ORGANIC ANALYSIS                                         |       |                     |                                |                                           | н.<br>С. 1                     |
| INDIVIDUAL PARAMETERS                                    |       |                     |                                |                                           |                                |
| Ethyl acetate                                            | ug/L  | 1                   | ND                             | ND                                        | ND                             |
|                                                          |       |                     |                                |                                           |                                |

MDL Method Detection Limit ND

Not detected at or above the MDL.

MN-COMP 0044030

Offices: Minneapolis, Minnesota Tampa, Florida lowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina

An Equal Opportunity Employer



### **REPORT OF LABORATORY ANALYSIS**

| 2853 Ford Site C       B-1       B-1       B-2       B-3         PACE Sample Number:       146890       146900       146910       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90       04/19/90 </th <th>Mr. Jon Michaels<br/>Page 3</th> <th>May 14<br/>PACE P</th> <th>roject</th> <th>900419524</th> <th></th> <th>۲</th> | Mr. Jon Michaels<br>Page 3 | May 14<br>PACE P | roject | 900419524            |                      | ۲                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|--------|----------------------|----------------------|----------------------|
| Date Collected:         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90         04/19/90                                                  | 2853 Ford Site C           |                  | umber. |                      |                      | B-3                  |
| Parameter         Linits         MDL         JM=04         JM=05         JM=06           SUBCONTRACT ANALYSIS           PURGEABLE HALOCARBONS AND AROMATICS           Chloromethane         ug/L         1.0         ND         ND         ND           Bromomethane         ug/L         1.0         ND         ND         ND         ND           Dichlorodifluoromethane         ug/L         1.0         ND         ND         ND         ND           Methylene chloride         ug/L         1.0         ND         ND         ND         ND           Trichlorofluoromethane         ug/L         1.0         ND         ND         ND         ND           Trichlorofluoromethane         ug/L         1.0         ND         ND         ND         ND           I,1-Dichloroethylene         ug/L         1.0         ND         ND         ND         ND           I,1-Dichloroethane         ug/L         1.0         ND         ND         ND         ND           I,1-Dichloroethane         ug/L         1.0         ND         ND         ND         ND           I,2-Dichloroethane         ug/L         1.0         ND         ND         ND         ND                                                                                                                                                                                                                                                      | Date Collected:            |                  |        | 04/19/90<br>04/19/90 | 04/19/90<br>04/19/90 | 04/19/90<br>04/19/90 |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethaneug/L1.0NDNDNDBromomethaneug/L1.0NDNDNDNDDichlorodifluoromethaneug/L1.0NDNDNDDichlorodifluoromethaneug/L1.0NDNDNDChloroethaneug/L1.0NDNDNDChloroethaneug/L1.0NDNDNDMethylene chlorideug/L1.0NDNDNDTrichlorofluoromethaneug/L1.0NDNDND1,1-Dichloroethyleneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDNDChloroffuoromethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Z-Trichloroethaneug/L1.0NDNDND1,2-Z-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                  | Units            | MDL    |                      |                      |                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUBCONTRACT ANALYSIS       |                  |        |                      |                      | . 4 4<br>j           |
| Bromomethaneug/L1.0NDNDNDDichlorodifluoromethaneug/L1.0NDNDNDVinyl chlorideug/L1.0NDNDNDChloroethaneug/L1.0NDNDNDMethylene chlorideug/L1.0NDNDNDTrichlorofluoromethaneug/L1.0NDNDND1,1-Dichloroethyleneug/L1.0NDNDND1,1-Dichloroethyleneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                  | 1.0    | ND                   | ND                   | NO                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                  |        |                      |                      |                      |
| Vinyl chloride       ug/L       1.0       ND                                                                                                                                                                                                                                                                                                                                                                      |                            | •                |        |                      |                      |                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                  |        |                      |                      | 4 2                  |
| Methylene chlorideug/L1.0NDNDNDTrichlorofluoromethaneug/L1.0NDNDND1,1-Dichloroethyleneug/L1.0NDNDND1,1-Dichloroethaneug/L1.0NDNDNDtrans-1,2-Dichloroethyleneug/L1.0NDNDNDtrans-1,2-Dichloroethaneug/L1.0NDNDNDtrans-1,2-Dichloroethaneug/L1.0NDNDND1,1-Trichloroethaneug/L1.0NDNDND1,1-Trichloroethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDtibromochloromethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                  |        |                      | •                    |                      |
| Trichlorofluoromethaneug/L1.0NDNDND1,1-Dichloroethyleneug/L1.0NDNDND1,1-Dichloroethaneug/L1.0NDNDNDtrans-1,2-Dichloroethyleneug/L1.0NDNDNDtrans-1,2-Dichloroethyleneug/L1.0NDNDNDtrans-1,2-Dichloroethaneug/L1.0NDNDNDt,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDNDtrans-1,3-Dichlorophaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDNDt,1,2-Trichloroethaneug/L1.0NDNDNDt,1,2-Trichloroethaneug/L1.0NDNDNDt,1,2,2-Tetrachloroethaneug/L1.0NDNDNDt,1,2,2-Tetrachloroethaneug/L1.0NDNDNDt,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDt,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDt,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDt,1,2,2-Tetrachloroethylen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                  |        |                      |                      |                      |
| 1,1-Dichloroethyleneug/L1.0NDNDND1,1-Dichloroethaneug/L1.0NDNDNDNDtrans-1,2-Dichloroethyleneug/L1.0NDNDNDChloroformug/L1.0NDNDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDND1,1,2-Trichloroethyleneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND <td></td> <td>ug/L</td> <td>1.0</td> <td>ND</td> <td>NU</td> <td>NU .</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | ug/L             | 1.0    | ND                   | NU                   | NU .                 |
| 1,1-Dichloroethaneug/L1.0NDNDNDtrans-1,2-Dichloroethyleneug/L1.0NDNDNDchloroformug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,2-Dichloropethaneug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloroppaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND2-Chloroethyleneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND2-Chloroethyleineug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | ug/L             | 1.0    | ND                   | ND                   | ND                   |
| trans-1,2-Dichloroethyleneug/L1.0NDNDNDNDChloroformug/L1.0NDNDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDNDCarbon tetrachlorideug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDcis-1,3-Dichloro-1-propeneug/L1.0NDNDND2-Chloroethyleneug/L1.0NDNDND1,1,2,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L <td>1,1-Dichloroethylene</td> <td>ug/L</td> <td>1.0</td> <td>ND</td> <td>ND</td> <td>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-Dichloroethylene       | ug/L             | 1.0    | ND                   | ND                   | ND                   |
| trans-1,2-Dichloroethyleneug/L1.0NDNDNDNDChloroformug/L1.0NDNDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDNDCarbon tetrachlorideug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethane         | ug/L             | 1.0    | ND                   | ND                   | ND                   |
| Chloroformug/L1.0NDNDND1,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDNDCarbon tetrachlorideug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDND1,2-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,0NDNDNDNDNDN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trans-1,2-Dichloroethylene |                  | 1.0    | ND                   | ND                   | ND                   |
| 1,2-Dichloroethaneug/L1.0NDNDND1,1,1-Trichloroethaneug/L1.0NDNDNDCarbon tetrachlorideug/L1.0NDNDNDBromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDND1,2-Dichlorop-1-propeneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDBenzeneug/L1.0NDNDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,0NDNDNDNDNDND1,1,0NDNDNDNDNDND <tr<< td=""><td>Chloroform</td><td>ug/L</td><td>1.0</td><td>ND</td><td>ND</td><td></td></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloroform                 | ug/L             | 1.0    | ND                   | ND                   |                      |
| 1,1,1-rrichloroethaneug/L1.0NDNDNDCarbon tetrachlorideug/L1.0NDNDNDNDBromodichloromethaneug/L1.0NDNDNDND1,2-Dichloropropaneug/L1.0NDNDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethyleneug/L1.0NDNDNDDibromochloromethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloro-1-propeneug/L1.0NDNDND2-Chloroethylvinyl etherug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,0NDNDNDNDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDND1,1,0NDNDNDNDNDND1,1,0NDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloroethane         | ug/L             | 1.0    | ND                   | ND                   |                      |
| Bromodichloromethaneug/L1.0NDNDND1,2-Dichloropropaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethyleneug/L1.0NDNDNDDibromochloromethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDcis-1,3-Dichloro-1-propeneug/L1.0NDNDND2-Chloroethylvinyl etherug/L1.0NDNDNDBromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDIolueneug/L1.0NDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                  |        |                      |                      | ND                   |
| 1,2-Dichloropropaneug/L1.0NDNDNDtrans-1,3-Dichloro-1-propeneug/L1.0NDNDNDND1,1,2-Trichloroethyleneug/L1.0NDNDNDNDDibromochloromethaneug/L1.0NDNDNDND1,1,2-Trichloroethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDcis-1,3-Dichloro-1-propeneug/L1.0NDNDND2-Chloroethylvinyl etherug/L1.0NDNDNDBromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDIolueneug/L1.0NDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                  |        |                      |                      | 2.1                  |
| trans-1,3-Dichloro-1-propeneug/L1.0NDNDND1,1,2-Trichloroethyleneug/L1.0NDNDNDDibromochloromethaneug/L1.0NDNDND1,1,2-Trichloroethaneug/L1.0NDNDNDcis-1,3-Dichloro-1-propeneug/L1.0NDNDND2-Chloroethylvinyl etherug/L1.0NDNDNDBromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDBenzeneug/L1.0NDNDNDTolueneug/L1.0NDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                  |        |                      |                      | 4                    |
| 1,1,2-Trichloroethylene $ug/L$ $1.0$ NDNDNDDibromochloromethane $ug/L$ $1.0$ NDNDND $1,1,2-Trichloroethane$ $ug/L$ $1.0$ NDNDND $cis-1,3-Dichloro-1-propene$ $ug/L$ $1.0$ NDNDND $2-Chloroethylvinyl ether$ $ug/L$ $1.0$ NDNDNDBromoform $ug/L$ $1.0$ NDNDND $1,1,2,2-Tetrachloroethaneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDBenzeneug/L1.0NDNDNDTolueneug/L1.0NDNDND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                  |        |                      |                      |                      |
| Dibromochloromethaneug/L1.0NDND1,1,2-Trichloroethaneug/L1.0NDNDcis-1,3-Dichloro-1-propeneug/L1.0NDND2-Chloroethylvinyl etherug/L1.0NDNDBromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDUg/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,11.0NDNDND1,1,2,21.0NDNDND1,1,2,11.0NDNDND1,1,2,21.0NDNDND1,1,2,11.0NDNDND1,1,2,21.0NDNDND1,1,2,11.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21.0NDNDND1,1,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                  |        |                      | ND                   | ND                   |
| 1,1,2-Trichloroethane $ug/L$ $1.0$ NDND $cis-1,3-Dichloro-l-propene$ $ug/L$ $1.0$ NDNDND $2-Chloroethylvinyl ether$ $ug/L$ $1.0$ NDNDNDBromoform $ug/L$ $1.0$ NDNDND $1,1,2,2-Tetrachloroethane$ $ug/L$ $1.0$ NDND $1,1,2,2-Tetrachloroethylene$ /L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l,l,2-Trichloroethylene    | ug/L             | 1.0    | ND                   | ND                   | ND                   |
| 1,1,2-Trichloroethane $ug/L$ $1.0$ NDND $cis-1,3-Dichloro-l-propene$ $ug/L$ $1.0$ NDNDND $2-Chloroethylvinyl ether$ $ug/L$ $1.0$ NDNDNDBromoform $ug/L$ $1.0$ NDNDND $1,1,2,2-Tetrachloroethane$ $ug/L$ $1.0$ NDND $1,1,2,2-Tetrachloroethylene$ /L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dibromochloromethane       | ua/L             | 1.0    | ND                   | ND                   | ND                   |
| cis-1,3-Dichloro-1-propeneug/L1.0NDND2-Chloroethylvinyl etherug/L1.0NDNDNDBromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDIolueneug/L1.0NDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | •                |        |                      |                      | NID                  |
| 2-Chloroethylvinyl etherug/L1.0NDNDNDBromoformug/L1.0NDNDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDBenzeneug/L1.0NDNDNDTolueneug/L1.0NDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                  |        |                      |                      | ND                   |
| Bromoformug/L1.0NDNDND1,1,2,2-Tetrachloroethaneug/L1.0NDNDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDNDBenzeneug/L1.0NDNDNDTolueneug/L1.0NDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                  |        |                      |                      |                      |
| 1,1,2,2-Tetrachloroethaneug/L1.0NDND1,1,2,2-Tetrachloroethyleneug/L1.0NDNDBenzeneug/L1.0NDNDNDTolueneug/L1.0NDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                  |        |                      |                      |                      |
| 1,1,2,2-Tetrachloroethylene ug/L 1.0 ND ND<br>Benzene ug/L 1.0 ND ND ND<br>Toluene ug/L 1.0 ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                  |        |                      |                      |                      |
| Benzeneug/L1.0NDNDTolueneug/L1.0NDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | uyrt             | 1.0    | NU                   | ND                   |                      |
| Benzeneug/L1.0NDNDTolueneug/L1.0NDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | ug/L             | 1.0    | ND                   | ND                   | ND                   |
| Toluene ug/L 1.0 ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | ug/L             | 1.0    | ND                   |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                  | 1.0    |                      |                      | ND                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorobenzene              | ug/L             | 1.0    | ND                   | ND                   | ND                   |

MDLMethod Detection LimitNDNot detected at or above the MDL.

#### MN-COMP 0044031

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377 Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina



ş. - }

## **REPORT OF LABORATORY ANALYSIS**

| Mr. Jon Michaels<br>Page 4                 | PACE  | 4, 1990<br>Project | 00410504                       |                                |                                |
|--------------------------------------------|-------|--------------------|--------------------------------|--------------------------------|--------------------------------|
| 2853 Ford Site C                           |       | Number: 9          | 100419524<br>B-1               | B-1<br>Dup!                    | B-3                            |
| PACE Sample Number:                        |       |                    | 146890                         | 146900                         | 146910                         |
| Date Collected:<br>Date Received:          |       |                    | 04/19/90                       | 04/19/90                       | 04/19/90                       |
| <u>Parameter</u>                           | Units | MDL                | 04/19/90<br>W-011990-<br>JM-04 | 04/19/90<br>W-011990-<br>JM-05 | 04/19/90<br>W-011990-<br>JM-06 |
| SUBCONTRACT ANALYSIS                       |       |                    |                                |                                |                                |
| PURGEABLE HALOCARBONS AND AROMATICS        |       |                    |                                |                                |                                |
| Ethyl benzene                              | ug/L  | 1.0                | ND                             | ND                             | ND                             |
| Xylenes                                    | ug/L  | 1.0                | ND                             | ND                             | ND                             |
| l,3-Dichlorobenzene<br>l,4-Dichlorobenzene | ug/L  | 1.0                | ND                             | ND                             | ND                             |
| 1,2–Dichlorobenzene                        | ug/L  | 1.0                | ND                             | ND ,                           | ND                             |
| 1,2-Dichtorobenzene                        | ug/L  | 1.0                | ND                             | ND                             | ND                             |
| INORGANIC ANALYSIS                         |       |                    |                                |                                |                                |
| INDIVIDUAL PARAMETERS                      |       |                    |                                |                                | ,<br>,                         |
| Arsenic                                    | mg/L  | 0.002              | ND                             | ND                             | ND                             |
| Barium                                     | mg/L  | 0.20               | ND                             | ND                             | 0.2                            |
| Cadmium                                    | mg/L  | 0.010              | ND                             | ND                             | ND                             |
| Chromium                                   | mg/L  | 0.1                | ND                             | ND                             | ND                             |
| Copper<br>Lead                             | mg/L  | 0.010              | ND                             | ND                             | 0.01                           |
| Leau                                       | mg/L  | 0.10               | ND                             | ND                             | ND                             |
| Mercury                                    | mg/L  | 0.0002             | ND                             | ND                             | ND                             |
| Nickel                                     | mg/L  | 0.05               | ND                             | ND                             | ND<br>ND                       |
| Selenium                                   | mg/L  | 0.005              | ND                             | ND                             | ND                             |
| Silver                                     | mg/L  | 0.04               | ND                             | ND                             | ND                             |
| Zinc                                       | mg/L  | 0.01               | ND                             | ND                             | ND                             |
| ORGANIC ANALYSIS                           |       |                    |                                |                                |                                |
| INDIVIDUAL PARAMETERS                      |       |                    | •-                             |                                |                                |
| Ethyl acetate                              | ug/L  | 1                  | ND                             | ND                             | ND                             |
|                                            |       |                    |                                |                                |                                |

MDL Method Detection Limit

ND Not detected at or above the MDL.

# MN-COMP 0044032

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina



:-

### **REPORT OF LABORATORY ANALYSIS**

- 12

- 4

Branc, Jacky

| Mr. Jon Michaels<br>Page 5<br>2853 Ford Site C                                                                                                          | May 14<br>PACE P<br>N                        |                                        | 900419524<br>Miss.R.<br>DN.STK.             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                |                                              |                                        | 146920<br>04/19/90<br>04/19/90<br>W-011990- |
| Parameter                                                                                                                                               | Units                                        | MDL                                    | JM07                                        |
| SUBCONTRACT_ANALYSIS                                                                                                                                    |                                              |                                        |                                             |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane<br>Methylene chloride | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| Trichlorofluoromethane<br>l,l-Dichloroethylene<br>l,l-Dichloroethane<br>trans-l,2-Dichloroethylene<br>Chloroform<br>l,2-Dichloroethane                  | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0        | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| 1,1,1-Trichloroethane<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>trans-1,3-Dichloro-1-propene<br>1,1,2-Trichloroethylene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0        | ND<br>ND<br>ND<br>ND<br>ND<br>ND            |
| Dibromochloromethane<br>1,1,2-Trichloroethane<br>cis-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform<br>1,1,2,2-Tetrachloroethane       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>1.0<br>1.0        | ND<br>ND<br>ND<br>ND<br>ND                  |
| l,l,2,2-Tetrachloroethylene<br>Benzene<br>Toluene<br>Chlorobenzene                                                                                      | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 1.0<br>1.0<br>1.0<br>1.0               | ND<br>ND<br>ND<br>ND                        |

| MDL | Method Detection Limit           |
|-----|----------------------------------|
| ND  | Not detected at or above the MDL |

## MN-COMP 0044033

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina



### **REPORT OF LABORATORY ANALYSIS**

| Mr. Jon Michaels<br>Page 6                               |               | PACE F | 4, 1990<br>Project |                                                        |
|----------------------------------------------------------|---------------|--------|--------------------|--------------------------------------------------------|
| 2853 Ford Site C                                         |               | 1      | Number: 9          | 00419524<br>Miss. R.                                   |
| PACE Sample Number:<br>Date Collected:<br>Date Received: |               |        |                    | DN.57K.<br>146920<br>04/19/90<br>04/19/90<br>W-011990- |
| Parameter                                                |               | Units  | MDL                | JM-07                                                  |
| SUBCONTRACT_ANALYSIS                                     |               |        |                    |                                                        |
| PURGEABLE HALOCARBONS                                    | AND AROMATICS |        |                    |                                                        |
| Ethyl benzene                                            |               | ug/L   | 1.0                | ND                                                     |
| Xylenes                                                  |               | ug/L   | 1.0                | ND                                                     |
| 1,3-Dichlorobenzene                                      | ·             | ug/L   | 1.0                | ND                                                     |
| 1,4-Dichlorobenzene                                      |               | ug/L   | 1.0                | ND                                                     |
| 1,2-Dichlorobenzene                                      |               | ug/L   | 1.0                | ND                                                     |
| INORGANIC ANALYSIS                                       |               |        |                    |                                                        |
| INDIVIDUAL PARAMETERS                                    |               |        |                    |                                                        |
| Arsenic                                                  |               | mg/L   | 0.002              | ND                                                     |
| Barium                                                   |               | mg/L   | 0.20               | ND                                                     |
| Cadmium                                                  |               | mg/L   | 0.010              | ND                                                     |
| Chromium                                                 |               | mg/L   | 0.1                | ND                                                     |
| Copper                                                   |               | mg/L   | 0.010              | ND                                                     |
| Lead                                                     |               | mg/L   | 0.10               | ND                                                     |
| Mercury                                                  |               | mg/L   | 0.0002             | ND                                                     |
| Nickel                                                   |               | mg/L   | 0.05               | ND                                                     |
| Selenium                                                 |               | mg/L   | 0.005              | ND                                                     |
| Silver                                                   | 1             | mg/L   | 0.003              | ND                                                     |
| Zinc                                                     |               | mg/L   | 0.04               | ND                                                     |
| ORGANIC ANALYSIS                                         |               | -      |                    |                                                        |
| INDIVIDUAL PARAMETERS                                    |               |        |                    |                                                        |
| Ethyl acetate                                            |               | ug/L   | 1                  | ND                                                     |
|                                                          |               |        |                    |                                                        |

MDL Method Detection Limit

ND Not detected at or above the MDL.

## MN-COMP 0044034

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina



Mr. Jon Michaels Page 7

2853 Ford Site C

**REPORT OF LABORATORY ANALYSIS** 

May 14, 1990 PACE Project Number: 900419524

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my supervision.

nga

Starla Enger Inorganic Chemistry Manager

esa Shanahan for

Susan D. Max Organic Chemistry Manager

### MN-COMP 0044035

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377 Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina



### **REPORT OF LABORATORY ANALYSIS**

LDH

Project # 900419.524 CRA (QC is attached)

April 30, 1990

PACE INCORPORATED 1710 Douglas Drive North Minneapolis, MN 55422

Re: Your samples received on 04/24/90

Enclosed are results of analysis performed upon your samples referenced above. If you have any questions or comments pertaining to this data package, please refer to Invoice #30487.

Yours truly,

Norway T. Miller

Rodnéy T. Miller Regional Director

enc

MN-COMP 0044036

Robinson Lane, RD 6 Wappingers Falls, NY 12590 TEL: 914-227-2811 FAX: 914-227-6134

Offices: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California

Kansas City, Missouri Los Angeles, California Charlotte, North Carolina Asheville, North Carolina

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, KN 55422

Date Received: 04/24/90 Date Reported: 04/27/90 -------

| CAS COMPOUN<br>#<br>71432 BENZENE<br>75274 BROMODIN<br>75252 BROMOFOU<br>74839 BROMOME<br>56235 CARBON<br>108907 CHLOROB<br>75003 CHLOROE<br>110758 2-CHLORO<br>75003 CHLOROF<br>74873 CHLOROF<br>74873 CHLOROF<br>74873 CHLOROF<br>74873 CHLOROM<br>124481 DIBROMO<br>95501 1,2-DIC<br>541731 1,3-DIC<br>106467 1,4-DIC<br>75718 DICHLOR<br>75353 1,1-DIC<br>106467 1,2-DIC<br>75354 1,1-DIC<br>107062 1,2-DIC<br>75354 1,1-DIC<br>10061015 CIS-1,3<br>10061026 TRANS-1<br>100414 ETHYLE<br>75092 METHYLE<br>79345 1,1,2,2<br>127184 TETRACH<br>10883 TOLUENE<br>71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                            |      |              |                        |               |                                |                        |                                                        |                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|------|--------------|------------------------|---------------|--------------------------------|------------------------|--------------------------------------------------------|-----------------------------|--|
| #           1432         BENZENE           5274         BROMODI           5252         BROMOFO           4839         BROMOME           6235         CARBON           08907         CHLOROB           5003         CHLOROB           5003         CHLOROB           5003         CHLOROB           7663         CHLOROF           74873         CHLOROF           74873         CHLOROF           74873         CHLOROF           75501         1,2-DIC           75718         DICHLOR           75535         1,1-DIC           107662         1,2-DIC           75353         1,1-DIC           107662         1,2-DIC           107651         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           100803         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                  | E Sample ID: PO-6W 049                     | 8                          |      |              | Customer               | Sample ID :   | 14686                          | ********               | 187 989 989 989 989 989 989 989 986 985 985 985 985 98 |                             |  |
| #           1432         BENZENE           5274         BROMODI           5252         BROMOFO           4839         BROMOME           6235         CARBON           08907         CHLOROB           5003         CHLOROB           5003         CHLOROB           5003         CHLOROB           7663         CHLOROF           74873         CHLOROF           74873         CHLOROF           74873         CHLOROF           75501         1,2-DIC           75718         DICHLOR           75535         1,1-DIC           107662         1,2-DIC           75353         1,1-DIC           107662         1,2-DIC           107651         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           100803         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                  |                                            | RES                        | ULTS | 10.C. BL     | ANK & SPIK             | ED BLANK      | . O.C. MATRIX SPIKE PO-GW-0500 |                        |                                                        |                             |  |
| 75274         BROMODIN           75252         BROMOFON           75252         BROMOFON           74839         BROMOME           56235         CARBON           108907         CHLOROB           75003         CHLOROE           110758         2-CHLOR           57663         CHLOROF           74873         CHLOROF           75663         I,1-DIC           1064667         1,4-DIC           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           10883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T            | 1POUNDS                                    | I SAMP<br>I CONC<br>I UG/L |      |              | CONC.<br>Added<br>UG/L | %<br>Recovery | IUNSPIKED<br>SAMPLE<br>UG/L    | CONC.<br>ADDED<br>UG/L | SPIKE<br>7<br>Recovery                                 | SPIKE DUP.<br>7<br>Recovery |  |
| 75274         BROMODIN           75252         BROMOFON           75252         BROMOFON           74839         BROMOME           56235         CARBON           108907         CHLOROB           75003         CHLOROE           110758         2-CHLOR           57663         CHLOROF           74873         CHLOROF           75663         I,1-DIC           1064667         1,4-DIC           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           10883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T            | IZENE                                      | IND                        | 1.0  | -:<br>: ND   |                        |               | - <br>  ND                     |                        |                                                        |                             |  |
| 75252         BROMOFO           74839         BROMOME           56235         CARBON           108907         CHLOROB           75003         CHLOROE           110758         2-CHLOROE           110758         2-CHLOROE           57663         CHLOROF           574873         CHLOROF           574873         CHLOROF           574873         CHLOROF           574873         CHLOROF           574873         CHLOROF           574873         CHLOROF           57501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           10883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T | MODICHLOROMETHANE                          | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 74839         BROMOME           56235         CARBON           108907         CHLOROB           75003         CHLOROE           110758         2-CHLOR           57663         CHLOROF           5711         1,3-DIC           106467         1,4-DIC           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71  |                                            | IND                        | 1.0  |              |                        |               | I ND                           |                        | ÷                                                      |                             |  |
| 56235         CARBON           108907         CHLOROB           75003         CHLOROE           110758         2-CHLOR           67663         CHLOROF           67673         CHLOROF           74873         CHLOROF           74873         CHLOROF           74873         CHLOROF           7501         1,2-DIC           5501         1,2-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           156605         TRANS-1           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLBE           7592         METHYLE           79345         1,1,2,2           127184         TETRACH           108803         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                              | INOMETHANE                                 | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 108907         CHLOROB           75003         CHLOROB           75003         CHLOROE           110758         2-CHLOR           57663         CHLOROF           574873         CHLOROM           124481         DIBROMO           95501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                     | RON TETRACHLORIDE                          | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 75003         CHLOROE           110758         2-CHLOR           57663         CHLOROF           574873         CHLOROF           74873         CHLOROF           74873         CHLOROF           124481         DIBROMO           95501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           156605         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                        | OROBENZENE                                 | IND                        | 1.0  |              | 50                     | 91            | I ND                           | 50                     | 96                                                     | 103                         |  |
| 110758         2-CHLOR           57663         CHLOROF           574873         CHLOROF           74873         CHLOROF           124481         DIBROMO           95501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           156605         TRANS-1           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                           | OROETHANE                                  | IND                        | 1.0  |              |                        |               | I ND                           |                        | /U<br>                                                 | 149                         |  |
| 57663         CHLOROF           74873         CHLOROM           124481         DIBROMO           95501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75353         1,1-DIC           156605         TRANS-1           76875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                         |                                            | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 74873         CHLOROM           124481         DIBROMO           95501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           156605         TRANS-1           76875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           100414         ETHYLBE           75392         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                         |                                            | 1 3.                       |      | •            |                        |               | I ND                           |                        |                                                        |                             |  |
| 124481         DIBROMO           75501         1,2-DIC           541731         1,3-DIC           106467         1,4-DIC           75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75354         1,1-DIC           156605         TRANS-1           76875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLBE           75972         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                            | LOROMETHANE                                | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 75501       1,2-DIC         541731       1,3-DIC         106467       1,4-DIC         75718       DICHLOR         755353       1,1-DIC         107062       1,2-DIC         155605       TRANS-1         156605       TRANS-1         10061015       CIS-1,3         10061026       TRANS-1         10061026       TRANS-1         100414       ETHYLBE         75092       METHYLE         79345       1,1,2,2         106883       TOLUENE         71556       1,1,1-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BROMOCHLOROMETHANE                         | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 541731       1,3-DIC         106467       1,4-DIC         75718       DICHLOR         75353       1,1-DIC         107062       1,2-DIC         15353       1,1-DIC         15708       T,1-DIC         15708       1,2-DIC         156605       TRANS-1         16061015       CIS-1,3         10061026       TRANS-1         10061026       TRANS-1         100414       ETHYLE         75092       METHYLE         79345       1,1,2,2         127184       TETRACH         108883       TOLUENE         71556       1,1,1-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-DICHLOROBENZENE                          | IND                        | 1.0  |              | 50                     | 90            | l ND                           | 50                     | 90                                                     |                             |  |
| 106467       1,4-DIC         75718       DICHLOR         75353       1,1-DIC         107062       1,2-DIC         75353       1,1-DIC         15708       1,1-DIC         156605       TRANS-1         16061015       CIS-1,3         10061026       TRANS-1         10061026       TRANS-1         100414       ETHYLE         75092       METHYLE         79345       1,1,2,2         127184       TETRACH         108883       TOLUENE         71556       1,1,1-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-DICHLOROBENZENE                          | IND                        | 1.0  |              |                        |               | I ND                           | JV<br>                 | 79                                                     | 71                          |  |
| 75718         DICHLOR           75353         1,1-DIC           107062         1,2-DIC           75353         1,1-DIC           156605         TRANS-1           156605         TRANS-1           78875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-DICHLOROBENZENE                          | IND                        | 1.0  |              | 50                     | 90            | I ND                           | 50                     | 93                                                     |                             |  |
| 75353       1,1-DIC         107062       1,2-DIC         75354       1,1-DIC         156605       TRANS-1         78875       1,2-DIC         10061015       CIS-1,3         10061026       TRANS-1         10061026       TRANS-1         100414       ETHYLBE         75992       METHYLE         79345       1,1,2,2         127184       TETRACH         108883       TOLUENE         71556       1,1,1-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHLORODIFLUOROMETHANE                      | IND                        | 1.0  |              |                        |               |                                |                        |                                                        | 91                          |  |
| 107062       1,2-DIC         75354       1,1-DIC         156605       TRANS-1         78875       1,2-DIC         10061015       CIS-1,3         10061026       TRANS-1         100414       ETHYLBE         75972       METHYLE         79345       1,1,2,2         127184       TETRACH         108883       TOLUENE         71556       1,1,1-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-DICHLOROETHANE                           | IND                        | 1.0  |              | 50                     |               | I ND                           |                        |                                                        |                             |  |
| 75354       1,1-DIC         156605       TRANS-1         78075       1,2-DIC         10061015       CIS-1,3         10061026       TRANS-1         100414       ETHYLBE         75092       METHYLE         79345       1,1,2,2         127184       TETRACH         108803       TOLUENE         71556       1,1,2-T         79005       1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-DICHLOROETHANE                           | IND                        | 1.0  |              | 50<br>50               |               |                                | 50<br>50               | 102                                                    | 100                         |  |
| 156605         TRANS-1           78875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           10061026         TRANS-1           10041026         TRANS-1           100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-DICHLOROETHENE                           | IND                        | 1.0  |              |                        | 99            | I ND                           | 50                     | 91                                                     | 103                         |  |
| 78875         1,2-DIC           10061015         CIS-1,3           10061026         TRANS-1           100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANS-1,2-DICHLOROETHENE                     |                            | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 10061015 CIS-1,3<br>10061026 TRANS-1<br>100414 ETHYLBE<br>75092 METHYLE<br>79345 1,1,2,2<br>127184 TETRACH<br>108883 TOLUENE<br>71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-DICHLOROPROPANE                          | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 10061026 TRANS-1<br>100414 ETHYLBE<br>75092 METHYLE<br>79345 1,1,2,2<br>127184 TETRACH<br>108803 TOLUENE<br>71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | ND                         |      |              |                        | ****          | I ND                           |                        |                                                        |                             |  |
| 100414         ETHYLBE           75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                            | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 75092         METHYLE           79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | IND                        | 1.0  |              | ÷ = = =                |               | l ND                           |                        |                                                        |                             |  |
| 79345         1,1,2,2           127184         TETRACH           108883         TOLUENE           71556         1,1,1-T           79005         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THYLENE CHLORIDE                           |                            | 1.0  |              | <br>7                  | -             | I ND                           |                        |                                                        |                             |  |
| 127184 TETRACH<br>108883 TOLUENE<br>71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 1.4                        |      |              | 2                      |               | I ND                           |                        |                                                        |                             |  |
| 108883 TOLUENE<br>71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,2-TETRACHLOROETHANE<br>TRACHLOROETHENE |                            | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
| 71556 1,1,1-T<br>79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | IND<br>IND                 | 1.0  |              |                        | ~~~~          | i ND                           |                        |                                                        |                             |  |
| 79005 1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1-TRICHLORDETHANE                        | IND                        | 1.0  |              | 50                     | 96            | I ND                           | 50                     | 101                                                    | 90                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | IND                        | 1.0  |              |                        | ****          | I ND                           |                        |                                                        |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-TRICHLOROETHANE                        | IND                        | 1.0  |              |                        |               | I ND                           |                        |                                                        |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICHLOROETHENE                              | :ND                        | 1.0  |              |                        |               | i ND                           |                        |                                                        |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICHLOROFLUORONETHANE                       | IND                        | 1.0  |              |                        |               | I ND                           | 1.441 -                |                                                        |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NYL CHLORIDE                               | IND                        | 1.0  |              |                        |               | I ND                           | IVIN-C                 | COMP 00                                                | 44037                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAL XYLENES<br>Hylacetate                  | :ND<br>:ND                 | 1.0  | : ND<br>I ND |                        |               | : ND<br>I ND                   |                        |                                                        |                             |  |

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, MN 55422

- fried

2.

s n

10 F 15

Date Received: 04/24/90 Date Reported: 04/27/90

|                  | PACE Sample ID: PO-GW 04                        | 19                           | _     |                        | Customer               | Sample ID :   | 14687                       |                        |                        |                           |
|------------------|-------------------------------------------------|------------------------------|-------|------------------------|------------------------|---------------|-----------------------------|------------------------|------------------------|---------------------------|
|                  |                                                 | I RESU                       | LTS   | 10.C. BL/              | INK & SPIN             | (ED BLANK     | 1 Q.C. M                    | ATRIX SPIK             | <br>E P0-G             | W-050(                    |
| 2AS<br>#         | COMPOUNDS                                       | I SAMP.<br>I CONC.<br>I UG/L |       | i blank<br>i<br>i ug/l | CONC.<br>ADDED<br>UG/L | Z<br>RECOVERY | IUNSPIKED<br>SAMPLE<br>UG/L | CONC.<br>ADDED<br>UG/L | SPIKE<br>X<br>RECOVERY | SPIKE DUP<br>%<br>RECOVER |
| 1432             | BENZENE                                         | IND                          | 1.0   | •                      |                        |               | <br>I ND                    |                        |                        |                           |
| 75274            | BROMODICHLOROMETHANE                            | IND                          | 1.0   | -                      | ·                      |               | I ND                        |                        |                        |                           |
| 5252             | BROMOFORM                                       | i ND                         | 1.0   |                        |                        |               | t ND                        |                        |                        |                           |
| 4839             | BROMOMETHANE                                    | IND                          | 1.0   | l ND                   |                        |               | I ND                        |                        |                        |                           |
| 6235             | 010 0000503500                                  | IND                          | 1.0   | I ND                   | ****                   |               | I ND                        |                        |                        |                           |
| .08907<br>'5003  |                                                 | IND                          | 1.0   |                        | 50                     | 91            | I ND                        | 50                     | 96                     | 103                       |
| 10758            | CHLOROETHANE                                    | IND                          | 1.0   |                        |                        |               | I. ND                       |                        |                        |                           |
| 7663             | 2-CHLOROETHYLVINYL ETHER<br>Chloroform          |                              | 1.0   | -                      |                        |               | i nd                        |                        |                        |                           |
| 4873             | OTH ODOLOGY LAND                                | I ND                         | 1.0   |                        |                        |               | l ND                        |                        |                        |                           |
| 24481            | BIRCOMODUL DE CHEMIN                            | : ND<br>: ND                 | 1.0   |                        |                        |               | ! ND                        |                        |                        |                           |
| 5501             |                                                 | IND                          | 1.0   |                        |                        |               | I ND                        |                        |                        |                           |
| 41731            | 1 7 81000 000000000000000                       | IND                          | 1.0   |                        | 50                     |               | l ND                        | 50                     | 90                     | 91                        |
| 06467            |                                                 | ND                           | 1.0   |                        | 50                     |               | ND                          | ****                   |                        |                           |
| 5718             | DICHLORODIFLUOROMETHANE                         | ND                           | 1.0   |                        |                        |               | I ND                        | 50                     | 93                     | 91                        |
| 5353             | 1,1-DICHLOROETHANE                              | ND                           | 1.0   |                        | 50                     | 1             |                             |                        |                        |                           |
| 07062            | 1,2-DICHLOROETHANE                              | ND                           | 1.0   |                        | 50                     | 70<br>99      |                             | 50                     | 102                    | 100                       |
| 5354             | 1,1-DICHLOROETHENE                              | ND                           | 1.0   |                        |                        |               | ND                          | 50                     | 91                     | 103                       |
| 56605            | TRANS-1,2-DICHLOROETHENE                        | ND                           | 1.0 ; | ND                     |                        |               |                             |                        |                        |                           |
| 875              | 1,2-DICHLOROPROPANE                             | ND                           | 1.0   | ND                     |                        | !             |                             |                        |                        |                           |
| 061015           | CIS-1, 3-DICHLOROPROPENE                        | ND                           | 1.0 1 | ND                     |                        | !             | ND                          |                        |                        |                           |
| /061026<br>10414 | TRANS-1, 3-DICHLOROPROPENE                      | ND                           | 1.0 ; | ND                     |                        | }             | ND                          |                        |                        |                           |
| 1092             | WETHING OVER DUE DOWN                           | ND                           | 1.0 : | ND                     |                        | }             | ND                          |                        |                        |                           |
| 345              | METHYLENE CHLORIDE                              | 1.3                          | 1.0 ; | 1.42                   |                        |               | ND                          |                        |                        |                           |
| 7184             | 1,1,2,2-TETRACHLORDETHANE:<br>TETRACHLOROETHENE |                              | 1.0 : | ND                     | '                      | {             | ND                          |                        |                        |                           |
| 8883             | TAL DEVE                                        | ND                           | 1.0 ; | ND                     |                        | {             | ND                          |                        |                        |                           |
| 556              | 4 4 4 TRININAL                                  | ND                           | 1.0 1 | ND                     | 50                     | 96 I          | ND                          | 50                     | 101                    | 90                        |
| 005              | f f O TETELL ANALY                              | ND<br>ND                     | 1.0 ; | ND                     |                        | }             | ND                          |                        |                        |                           |
| 015              | TOTOH ADDETUCIO                                 | ND .                         | 1.0 ; | ND                     |                        | 1             | ND                          |                        | ~ ~ ~ ~ ~              |                           |
| 694              | TOTON ODDEL VERALIMENT                          | ND<br>ND                     | 1.0   | ND                     |                        | ;             | ND                          |                        |                        |                           |
| 014              | HINN AN ADDAD                                   | nu<br>VD                     | 1.0 ; | ND                     |                        | }             | ND                          | MNIOO                  | 1 4 m -                |                           |
|                  | TATAL WHI FURS                                  | ND<br>ND                     | 1.0 ; | ND ·                   |                        | ;             | ND                          | WIN-CO                 | MP 0044                | 1038                      |
|                  | CTINA ACCENTS                                   | ν<br>VD                      | 1.0:  | ND *<br>ND *           |                        | :             | ND<br>ND                    |                        |                        |                           |

PACE INC,/410 1710 DOULAS DRIVE NORTH MINNEAPOLIS, NN 55422

#### Date Received: 04/24/90 Date Reported: 04/27/90

ine i

#### INV# 30487 VOLATILE COMPOUNDS BY 6C

METHODS 601 AND 602 & ETHYLACETATE

PACE Sample ID: PO-GW 0500

Customer Sample ID : 14688

I RESULTS IO.C. BLANK & SPIKED BLANK I O.C. MATRIX SPIKE PO-GW-0500

~

|          |                           | 1 11222                    |     |                        | MAR & JEIN             | CD DEMAK      | i usus in                   | INIA OF H              | 10 - 0                 | -0300                       |
|----------|---------------------------|----------------------------|-----|------------------------|------------------------|---------------|-----------------------------|------------------------|------------------------|-----------------------------|
| CAS<br>¥ | COMPOUNDS                 | I SAMP<br>I CONC<br>I UG/L |     | I BLANK<br>I<br>I UG/L | CONC.<br>ADDED<br>UG/L | %<br>Recovery | IUNSPIKED<br>SAMPLE<br>UG/L | CONC.<br>ADDED<br>UG/L | SPIKE<br>Z<br>Recovery | SPIKE DUP.<br>%<br>RECOVERY |
| 71432    | BENZENE                   | IND                        | 1.0 | I ND                   |                        |               | I ND                        |                        | *****                  |                             |
| 75274    |                           | IND                        | 1.0 |                        | ,                      |               | I ND                        |                        |                        |                             |
| 75252    |                           | IND                        | 1.0 |                        |                        |               | l ND                        |                        |                        |                             |
| 74839    |                           | IND                        | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 56235    | CARBON TETRACHLORIDE      | IND                        | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 108907   | CHLOROBENZENE             | IND                        | 1.0 |                        | 50                     | 91            | I ND                        | 50                     | 96                     | 103                         |
| 75003    |                           | IND                        | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 110758   |                           | IND                        | 1.0 |                        |                        |               | : ND                        |                        |                        |                             |
| 67663    | CHLOROFORX                | IND                        | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 74873    | CHLOROMETHANE             | IND                        | 1.0 |                        |                        |               | i ND                        |                        |                        |                             |
| 124481   | DIBROMOCHLOROHETHANE      | IND                        | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 95501    | 1,2-DICHLOROBENZENE       | IND                        | 1.0 |                        | 50                     | 90            | I ND                        | 50                     | 90                     | 91                          |
| 541731   | 1,3-DICHLOROBENZENE       | ND                         | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 106467   | 1,4-DICHLOROBENZENE       | IND                        | 1.0 |                        | 50                     | 90            | I ND                        | 50                     | 93                     | 91                          |
| 75718    | DICHLORODIFLUOROMETHANE   | HD                         | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 75353    | 1,1-DICHLOROETHANE        | IND                        | 1.0 |                        | 50                     | 96            | i ND                        | 50                     | 102                    | 100                         |
| 107062   | 1,2-DICHLOROETHANE        | IND                        | 1.0 |                        | 50                     | 99            | l ND                        | 50                     | 91                     | 103                         |
| 75354    | 1,1-DICHLOROETHENE        | IND                        | 1.0 |                        |                        |               | l ND                        |                        |                        |                             |
| 156605   | TRANS-1,2-DICHLORDETHENE  | IND                        | 1.0 |                        |                        |               | l ND                        |                        |                        |                             |
| 78875    | 1,2-DICHLOROPROPANE       | IND                        | 1.0 |                        |                        |               | : ND                        |                        |                        |                             |
|          | CIS-1, 3-DICHLOROPROPENE  | ND                         | 1.0 |                        |                        |               | l ND                        |                        |                        |                             |
|          | TRANS-1,3-DICHLOROPROPENE |                            | 1.0 |                        |                        |               | t ND                        |                        |                        |                             |
| 100414   | ETHYLBENZENE              | IND                        | 1.0 |                        | `                      |               | i ND                        |                        | ** ** *** **           |                             |
| 75092    | METHYLENE CHLORIDE        | 1 1.                       |     |                        |                        | ****          | i ND                        |                        |                        |                             |
| 79345    | 1,1,2,2-TETRACHLOROETHANE |                            | 1.0 |                        |                        |               | I ND                        |                        |                        |                             |
| 127184   | TETRACHLOROETHENE         | I ND                       | 1.0 | t ND                   |                        |               | l ND                        |                        |                        |                             |
| 108883   | TOLUENE                   | IND                        | 1.0 |                        | 50                     | 96            | .I ND                       | 50                     | 101                    | 90                          |
| 71556    | 1,1,1-TRICHLOROETHANE     | IND                        | 1.0 |                        |                        |               | l ND                        |                        |                        |                             |
| 79005    | 1,1,2-TRICHLORDETHANE     | IND                        | 1.0 | l ND                   |                        |               | i ND                        |                        |                        | -                           |
| 79016    | TRICHLOROETHENE           | :ND                        | 1.0 | i ND                   |                        |               | I ND                        | <b>1 1 1</b>           | 00110                  |                             |
| 75694    | TRICHLOROFLUOROMETHANE    | IND                        | 1.0 | l ND                   |                        |               | I ND                        | IVIN                   | -COMP (                | )044039                     |
| 75014    | VINYL CHLORIDE            | IND                        | 1.0 | I ND                   |                        |               | i ND                        |                        |                        |                             |
|          | TOTAL XYLENES             | :ND                        | 1.0 |                        |                        |               | : ND                        |                        |                        |                             |

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, MN 55422

-strad

Date Received: 04/24/90 Date Reported: 04/27/90

|                | PACE Sample ID: PO-GW 05                       | )1                           |             |           | Customer               | Sample ID : | : 14689                         |                        |                        |                             |
|----------------|------------------------------------------------|------------------------------|-------------|-----------|------------------------|-------------|---------------------------------|------------------------|------------------------|-----------------------------|
|                |                                                | l Resu                       | .TS         | 1Q.C. BLA | INK & SPIK             | ED BLANK    |                                 | TRIX SPI               | <br>KE ' PO-G          | W-0500                      |
| CAS<br>#       | COMPOUNDS                                      | : SAMP.<br>: CONC.<br>: UG/L | MRL<br>Ug/l | i blank   | CONC.<br>ADDED<br>UG/L | Z           | IUNSPIKED<br>I SAMPLE<br>I UG/L | CONC.<br>Added<br>UG/L | SPIKE<br>X<br>Recovery | SPIKE DUP.<br>Z<br>RECOVERY |
| 71432          | BENZENE                                        | IND                          | 1.0         | •         | `                      |             | <br>I ND                        |                        | ****                   |                             |
| 75274          | BROMODICHLOROMETHANE                           | IND                          | 1.0         | I ND      |                        |             | I ND                            | *****                  |                        |                             |
| 75252          | BROMOFORM                                      | IND                          | 1.0         | i ND      |                        |             | I ND                            |                        |                        |                             |
| 74839<br>56235 | BROHOMETHANE                                   | IND                          | 1.0         |           | **                     |             | i ND                            |                        |                        |                             |
| 108907         | CARBON TETRACHLORIDE<br>CHLOROBENZENE          | IND                          | 1.0         | -         |                        |             | l ND                            |                        |                        |                             |
| 75003          | CHLOROETHANE                                   | IND                          | 1.0         |           | 50                     | 91          | l ND                            | 50                     | 96                     | 103                         |
| 110758         | 2-CHLOROETHYLVINYL ETHER                       | IND                          | 1.0         |           |                        |             | ND                              |                        |                        |                             |
| 7663           | CHLOROFORM                                     | IND                          | 1.0         |           |                        | ****        | ND                              |                        |                        |                             |
| 4873           | CHLOROMETHANE                                  | IND                          | 1.0<br>1.0  |           |                        | ~~~~        | I ND                            |                        |                        |                             |
| 24481          | DIBROMOCHLOROMETHANE                           | IND                          | 1.0         | -         |                        |             | ND                              |                        |                        |                             |
| 75501          | 1,2-DICHLOROBENZENE                            | IND                          | 1.0         |           | 50                     |             | I ND .                          |                        |                        | ***                         |
| 541731         |                                                | IND                          | 1.0         |           |                        | 90          |                                 | 50                     | 90                     | 91                          |
| 06467          | 1,4-DICHLOROBENZENE                            | IND                          | 1.0         |           | 50                     |             | I ND<br>I ND                    | <br>E A                |                        |                             |
| 5718           |                                                | IND                          | 1.0         | -         |                        |             | i ND                            | 50                     | 93                     | 91                          |
| 75353          | 1,1-DICHLOROETHANE                             | : ND                         | 1.0         |           | 50                     |             | i nd                            | 50                     | 140                    |                             |
| 07062          |                                                | IND                          | 1.0         | ND        | 50                     |             | I ND                            | 50                     | 102<br>91              | 100                         |
| 5354           |                                                | : ND                         | 1.0         | ND        |                        |             | I ND                            |                        | 71                     | 103                         |
| 56605          | TRANS-1,2-DICHLOROETHENE                       | IND                          | 1.0         | ND        |                        |             | I ND                            |                        |                        |                             |
| 8875           |                                                | IND                          | 1.0         | ND        |                        |             | I ND                            |                        |                        |                             |
| 0061015        | CIS-1, 3-DICHLOROPROPENE                       | ND                           | 1.0 :       | ND        |                        |             | ND                              |                        |                        |                             |
| 00414          | TRANS-1, 3-DICHLOROPROPENE                     |                              | 1.0         | ND        |                        | 1           | ND                              |                        |                        |                             |
| 5092           | METHNE CHE DIN COLOR                           | IND                          | 1.0 ;       | -         |                        | }           | ND                              |                        |                        |                             |
| 9345           |                                                | IND                          | 1.0 :       |           |                        |             | ND                              |                        |                        |                             |
| 27184          | 1,1,2,2-TETRACHLOROETHANE<br>TETRACHLOROETHENE |                              | 1.0 1       |           | ·                      | }           | ND                              |                        |                        |                             |
| 08883          | TOURSE                                         | IND                          | 1.0 1       | ND        |                        | ;           | ND                              |                        |                        |                             |
| 1556           | 4 4 4 70 70 70 70 70 70 70 70 70 70 70 70 70   | ND                           | 1.0 ;       | ND        | 50                     | 96 1        | ND                              | 50                     | 101                    | 90                          |
| 9005           | A A G TRADUC READER                            | ND<br>ND                     | 1.0 1       | ND        |                        | ;           | ND                              |                        |                        |                             |
|                | TOTOUL CORPORATION                             | ND                           | 1.0 1       | ND        |                        | 1           | ND                              |                        |                        |                             |
| 5694           | TOTOM CORPONED                                 | ND                           | 1.0 /       | ND        |                        | }           | ND                              |                        |                        |                             |
|                | 11711141                                       | ND                           | 1.0 ;       | ND        |                        |             | ND                              |                        |                        |                             |
|                | TOTAL HILL BURD                                | ND                           |             | ND -      |                        |             | ND                              | MN-(                   | COMP 00                | 44040                       |
|                | TTUUL APPRAIS                                  | ND                           | 1.0:        | ND<br>ND  |                        | :           | ND                              |                        |                        |                             |

N D = Not Detected

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, MN 55422

5

Date Received: 04/24/90 Date Reported: 04/27/90 West R

Webser

Marine Area

- 1- M

|          | PACE Sample ID: PO-6W 0502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                            |             | (          | Customer Sample ID : 14690 |          |                             |                        |                        |                             |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|------------|----------------------------|----------|-----------------------------|------------------------|------------------------|-----------------------------|--|--|--|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RESUL                        | TS          | 10.C. BLAN | IK & SPIK                  | ED BLANK | 0.C. MATRIX SPIKE PO-GW-050 |                        |                        |                             |  |  |  |
| CAS<br># | COMPOUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I SAMP.<br>I CONC.<br>I UG/L | MRL<br>Ug/l | I BLANK    | CONC.<br>ADDED<br>UG/L     | RECOVERY | UNSPIKED<br>SAMPLE<br>UG/L  | CONC.<br>Added<br>UG/L | SPIKE<br>X<br>Recovery | SPIKE DUP.<br>X<br>RECOVERY |  |  |  |
| 71432    | BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IND                          | 1.0         | I ND       |                            |          | ·;<br>! ND                  |                        |                        |                             |  |  |  |
| 75274    | BROMODICHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IND                          | 1.0         | I ND       |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 75252    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | t ND                        |                        |                        |                             |  |  |  |
| 74839    | BROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IND                          | 1.0         | I ND       |                            |          | I ND                        |                        | ****                   |                             |  |  |  |
| 56235    | CARBON TETRACHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IND                          | 1.0         | I ND       |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 108907   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | 50                         | 91       | I ND                        | 50                     | 96                     | 103                         |  |  |  |
| 75003    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 110758   | 2-CHLOROETHYLVINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 1.0         |            | -                          |          | l ND                        |                        |                        |                             |  |  |  |
| 67663    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        |                        | ****                   |                             |  |  |  |
| 74873    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 124481   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        | ****                   |                        |                             |  |  |  |
| 95501    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | 50                         | 90       | I ND                        | 50                     | 90                     | 91                          |  |  |  |
| 541731   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | i ND                        | JV<br>                 | 70                     | - 71                        |  |  |  |
| 106467   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | 50                         | 90       | I ND                        | 50                     | 93                     |                             |  |  |  |
| 75718    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            | 70       | I ND                        | JU                     | 7.5                    | . 71                        |  |  |  |
| 75353    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | 50                         |          | I ND                        | 50                     | 102                    |                             |  |  |  |
| 107062   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IND                          | 1.0         |            | . 50                       | 70<br>99 | I ND                        | 50                     | 102                    | 100                         |  |  |  |
| 75354    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IND                          | 1.0         |            | . 30                       | 77       |                             | - VC                   | 71                     | 103                         |  |  |  |
| 156605   | TRANS-1,2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 78875    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
|          | CIS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                           | 1.0         |            |                            |          | I ND                        |                        | ****                   |                             |  |  |  |
|          | TRANS-1,3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 100414   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          |             |            | ****                       |          | I ND                        |                        |                        |                             |  |  |  |
| 75092    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 79345    | 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 127184   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 108883   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | <br>F 1                    |          | I ND                        |                        |                        |                             |  |  |  |
| 71556    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            | 50                         | 96       | I ND                        | 50                     | 101                    | 90                          |  |  |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 79005    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IND                          | 1.0         |            |                            |          | ND                          |                        |                        |                             |  |  |  |
| 79016    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :ND                          | 1.0         |            |                            |          | l ND                        |                        |                        |                             |  |  |  |
| 75694    | TRICHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IND                          | 1.0         |            |                            |          | I ND                        |                        |                        |                             |  |  |  |
| 75014    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | IND                          | 1.0         |            |                            |          | l ND                        | MN-CC                  | MP 0044                | 1041                        |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :ND                          | 1.0         | : ND       | ****                       |          | : ND                        |                        | VIVIE VV4*             |                             |  |  |  |
|          | ETHYLACETATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : ND                         | 1           | I ND       |                            |          | I ND                        |                        |                        | -                           |  |  |  |

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, NN 55422

i gen

2.3

Date Received: 04/24/90 Date Reported: 04/27/90

÷.,

|                                       | PACE Sample ID: PO-GW 05                   | 03                           |       |           | Custozer               | Sample ID :   | 14691                           |                                       |                        |                           |  |
|---------------------------------------|--------------------------------------------|------------------------------|-------|-----------|------------------------|---------------|---------------------------------|---------------------------------------|------------------------|---------------------------|--|
| *<br>** 13* (# 10) 10, 10, 10, 10, 10 |                                            | I RESU                       | TS    | 10.C. BL4 | NK & SPIK              | ED BLANK      | D.C. MATRIX SPIKE PO-GW-05      |                                       |                        |                           |  |
| CAS<br>#                              | COMPOUNDS                                  | I SAMP.<br>I CONC.<br>I UG/L | MRL   | BLANK     | CONC.<br>ADDED<br>UG/L | Z<br>Recovery | IUNSPIKED<br>I SAMPLE<br>I UG/L | ADDED                                 | SPIKE<br>X<br>Recovery | SPIKE DUP<br>X<br>RECOVER |  |
| 71432                                 | BENZENE                                    | IND                          | 1.0   | I ND      |                        |               | <br>  ND                        | · · · · · · · · · · · · · · · · · · · |                        |                           |  |
| 75274                                 | BROMODICHLOROMETHANE                       | IND                          | 1.0   |           |                        |               | I ND                            |                                       | ****                   |                           |  |
| 75252                                 | BROMOFORM                                  | IND                          | 1.0   |           |                        |               | I ND                            |                                       |                        |                           |  |
| 74839                                 | BROMOMETHANE                               | : ND                         | 1.0   |           |                        |               | I ND                            | ****                                  |                        |                           |  |
| 56235                                 | CARBON TETRACHLORIDE                       | : ND                         | 1.0   | I ND      |                        |               | i ND                            |                                       |                        |                           |  |
| 108907                                | CHLOROBENZENE                              | IND.                         | 1.0   |           | 50                     | 91            | I ND                            | 50                                    | 96                     | 103                       |  |
| 75003                                 | CHLOROETHANE                               | IND                          | 1.0   |           |                        |               | ND                              |                                       |                        | 105                       |  |
| 110758                                | 2-CHLOROETHYLVINYL ETHER                   |                              | 1.0   |           |                        |               | I ND                            |                                       |                        |                           |  |
| 67663<br>74873                        | CHLOROFORM                                 | IND                          | 1.0   |           |                        |               | l ND                            |                                       |                        | +                         |  |
| 124481                                | CHLOROMETHANE                              | IND                          | 1.0   |           |                        |               | l ND                            |                                       |                        |                           |  |
| 95501                                 | DIBROMOCHLOROMETHANE                       | IND                          | 1.0   |           |                        |               | I ND                            |                                       |                        |                           |  |
| 541731                                | 1,2-DICHLOROBENZENE<br>1,3-DICHLOROBENZENE | IND                          | 1.0   |           | 50                     | 90            | l ND                            | 50                                    | 90                     | 91                        |  |
| 106467                                | 1,4-DICHLOROBENZENE                        | IND                          | 1.0   |           |                        |               | I ND                            |                                       |                        |                           |  |
| 75718                                 | DICHLORODIFLUOROMETHANE                    | IND                          | 1.0   |           | 50                     | 90            | ND                              | 50                                    | 93                     | 91                        |  |
| 75353                                 | 1,1-DICHLOROETHANE                         | I ND<br>I ND                 | 1.0   | -         |                        |               | ND ND                           |                                       |                        |                           |  |
| 107062                                | 1,2-DICHLOROETHANE                         | IND                          | 1.0   |           | 50                     | 96            | ND                              | 50                                    | 102                    | 100                       |  |
| 75354                                 | 1,1-DICHLOROETHENE                         | IND                          | 1.0   |           | 50                     | 99            | ND                              | 50                                    | 91                     | 103                       |  |
| 156605                                | TRANS-1,2-DICHLOROETHENE                   |                              | 1.0   |           |                        |               | ND                              |                                       |                        |                           |  |
| 78875                                 | 1,2-DICHLOROPROPANE                        | IND                          | 1.0   | -         |                        |               | ND                              |                                       |                        |                           |  |
| 0061015                               | CIS-1,3-DICHLOROPROPENE                    | ND                           | 1.0   |           | *** *** *** ***        |               | ND                              |                                       |                        |                           |  |
| 0061026                               | TRANS-1, 3-DICHLOROPROPENE                 | 1.00                         | 1.0   |           |                        |               | ND                              |                                       |                        |                           |  |
| 00414                                 | ETHYLBENZENE                               | IND                          | 1.0   |           |                        |               | ND                              |                                       |                        |                           |  |
| 5092                                  | XETHYLENE CHLORIDE                         | IND                          | 1.0   |           |                        |               | ND                              |                                       |                        |                           |  |
| 9345                                  | 1,1,2,2-TETRACHLOROETHANE                  | IND                          | 1.0 1 |           |                        |               | ND                              |                                       |                        |                           |  |
| 27184                                 | TOTOLOUS CARAGE STREET                     | IND                          | 1.0 1 |           |                        | 1             | ND                              |                                       |                        |                           |  |
| 08883                                 | T 21 11 21 20                              | IND                          | 1.0 ; |           | 50                     | 0/ 1          | ND                              |                                       |                        |                           |  |
| 1556                                  | I I I TOTOM PROPERTY.                      | : ND                         | 1.0   |           |                        | 96 1          |                                 | 50                                    | 101                    | 90                        |  |
| 9005                                  | 4 4 4                                      | IND                          | 1.0 ; | ND        |                        |               | ND                              |                                       |                        |                           |  |
| 9016                                  | TRICHLOROETHENE                            | :ND                          | 1.0 1 | ND        |                        |               | ND                              | ****                                  |                        |                           |  |
| 5694                                  | TRICHLOROFLUORDMETHANE                     | : ND                         | 1.0 1 | ND        |                        | 1             | 15R                             |                                       |                        |                           |  |
| 5014                                  | VINYL CHLORIDE                             | I ND                         | 1.0   | ND        |                        | 1             | ND                              | MN-CO                                 | MP 0044                | 040                       |  |
|                                       | TOTAL NULEDES                              | :ND                          | 1.0 : | ND        |                        | · •           | ND                              |                                       | 0044                   | 042                       |  |
|                                       | ******** * * * * * * * * * * * * * * *     | IND                          | 1 1   | ND        |                        |               | ND                              |                                       |                        |                           |  |

PACE INC,/#10 1710 DOULAS DRIVE NORTH MINNEAPOLIS, MN 55422

Date Received: 04/24/90 Date Reported: 04/27/90

|          | PACE Sample ID: PO-6W 050  | 1            |                                          |       | Custozoz      | Sample ID : | 1460         |               | · · · · · · · · · · · · · · |            |  |  |  |
|----------|----------------------------|--------------|------------------------------------------|-------|---------------|-------------|--------------|---------------|-----------------------------|------------|--|--|--|
|          |                            |              |                                          |       |               | 3dmpie 10 ; | 14072        |               |                             |            |  |  |  |
| *******  |                            | RESUL        | ESULTS 10.C. BLANK & SPIKED BLANK 1 0.C. |       |               |             |              |               | O.C. MATRIX SPIKE PO-GW-050 |            |  |  |  |
|          |                            | :<br>SAMP.   |                                          | BLANK | CONC.         | 7.          | :UNSPIKED    | CONC.         | SPIKE                       | SPIKE DUP. |  |  |  |
| CAS<br>≇ |                            | CONC.        | XRL<br>UG/L                              |       | ADDED<br>UG/L | RECOVERY    | I SAMPLE     | ADDED<br>UG/L | %<br>Recovery               | RECOVERY   |  |  |  |
| 71432    | BENZENE                    | : ND         | 1.0                                      | I ND  |               |             | ·;<br>  ND   |               |                             |            |  |  |  |
| 75274    | BROMODICHLOROMETHANE       | IND          | 1.0                                      | : ND  |               |             | : ND         |               |                             |            |  |  |  |
| 75252    |                            | IND          | 1.0                                      |       | · ·           |             | I ND         |               |                             |            |  |  |  |
| 74839    |                            | IND          | 1.0                                      |       |               | ÷           | t ND         |               |                             |            |  |  |  |
| 56235    |                            | IND          | 1.0                                      |       | '             |             | I ND         |               |                             |            |  |  |  |
| 108907   |                            | IND          | 1.0                                      |       | 50            | 91          | i ND         | 50            | 96                          | 103        |  |  |  |
| 75003    |                            | IND          | 1.0                                      |       |               |             | i ND         |               | · · · · ·                   |            |  |  |  |
| 110758   | 2-CHLOROETHYLVINYL ETHER   | IND          | 1.0                                      | l' ND |               |             | I ND         |               |                             |            |  |  |  |
| 67663    | CHLOROFORM                 | IND          | 1.0                                      | l ND  | ,             |             | I ND         |               |                             |            |  |  |  |
| 74873    | CHLOROMETHANE              | IND          | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
| 124481   | DIBROMOCHLOROMETHANE       | IND          | 1.0                                      |       | ****          |             | l ND         |               |                             |            |  |  |  |
| 95501    | 1,2-DICHLOROBENZENE        | ND           | 1.0                                      |       | 50            | 90          | I ND         | 50            | 90                          | 91         |  |  |  |
| 541731   | 1,3-DICHLOROBENZENE        | IND          | 1.0                                      |       |               |             | I ND         | ~~~~          |                             |            |  |  |  |
| 106467   | 1,4-DICHLOROBENZENE        | IND          | 1.0                                      |       | 50            | 90          | i ND         | 50            | 93                          | 91         |  |  |  |
| 75718    | DICHLORODIFLUOROMETHANE    | IND          | 1.0                                      |       |               |             | i ND         |               | /J                          |            |  |  |  |
| 75353    | 1,1-DICHLOROETHANE         | IND          | 1.0                                      |       | 50            | 96          | I ND         | 50            | 102                         | 100        |  |  |  |
| 107062   | 1,2-DICHLOROETHANE         | IND          | 1.0                                      |       | 50            | 99          | I ND         | 50            | 91                          | 103        |  |  |  |
| 75354    | 1,1-DICHLOROETHENE         | IND          | 1.0                                      |       |               |             | I ND         |               |                             | - 100      |  |  |  |
| 156605   | •                          | IND          | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
| 78875    | 1,2-DICHLOROPROPANE        | IND          | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
|          | CIS-1, 3-DICHLOROPROPENE   | ND           | 1.0                                      |       |               |             | l ND         |               |                             |            |  |  |  |
|          | TRANS-1, 3-DICHLOROPROPENE |              | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
| 100414   | ETHYLBENZENE               | IND          | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
| 75092    | METHYLENE CHLORIDE         | IND          | 1.0                                      |       |               |             | i AU<br>I ND |               |                             |            |  |  |  |
| 79345    | 1,1,2,2-TETRACHLOROETHANE  |              | 1.0                                      |       |               |             | i nu<br>I ND |               |                             |            |  |  |  |
| 127184   | TETRACHLOROETHENE          | IND          | 1.0                                      |       |               |             | i ND<br>I ND |               |                             |            |  |  |  |
| 108883   | TOLUENE                    | IND          | 1.0                                      |       | 50            | 96          |              | <br>EA        | +^+                         |            |  |  |  |
| 71556    | 1,1,1-TRICHLOROETHANE      | IND          | 1.0                                      |       | VL            | 70          | l ND         | 50            | 101                         | 90         |  |  |  |
| 79005    | 1,1,2-TRICHLOROETHANE      | IND          |                                          |       |               |             | I ND         |               |                             |            |  |  |  |
| 79016    | TRICHLOROETHENE            | :ND          | 1.0                                      |       |               |             | I ND         |               |                             |            |  |  |  |
| 75694    | TRICHLOROFLUOROMETHANE     |              | 1.0                                      |       |               |             | i ND         |               |                             |            |  |  |  |
| 75014    | VINYL CHLORIDE             | i ND<br>I ND | 1.0                                      |       | -             |             | I ND         | MNLC          |                             | 14042      |  |  |  |
| TIVEL    | TOTAL XYLENES              | IND<br>.ND   | 1.0                                      |       |               |             | I ND         |               |                             | 01010      |  |  |  |
|          |                            | :ND          | 1.0                                      |       |               | ·           | : ND         |               |                             |            |  |  |  |
|          | ETHYLACETATE               | IND          | 1                                        | l ND  |               |             | l ND         |               |                             |            |  |  |  |



Offices: Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheville, North Carolina Charlotte, North Carolina Wappingers Falls, New York

Robinson Lane, RD 6 🔲 Wappingers Falls, NY 12590 🗌 Phone (914) 227-2811 🗌 FAX (914) 227-6134

# RAW DATA for VOA 601 & 602 + ETHYLACETATE

### NANCO LABORATORIES, INC.

Printed: 25-APR-1990 9:28:04

SAMPLE: STD 4/25

#6 in Method: CAPILLARY
 Acquired: 25-APR-1990 7:11
 Rate: 3.0 points/sec
 Duration: 48.002 minutes
 ul. Inj.: LRT

Type: UNKN Instrument: Instrument 1 Filename: V92151 Index: Disk

s,

COLUMN: PID

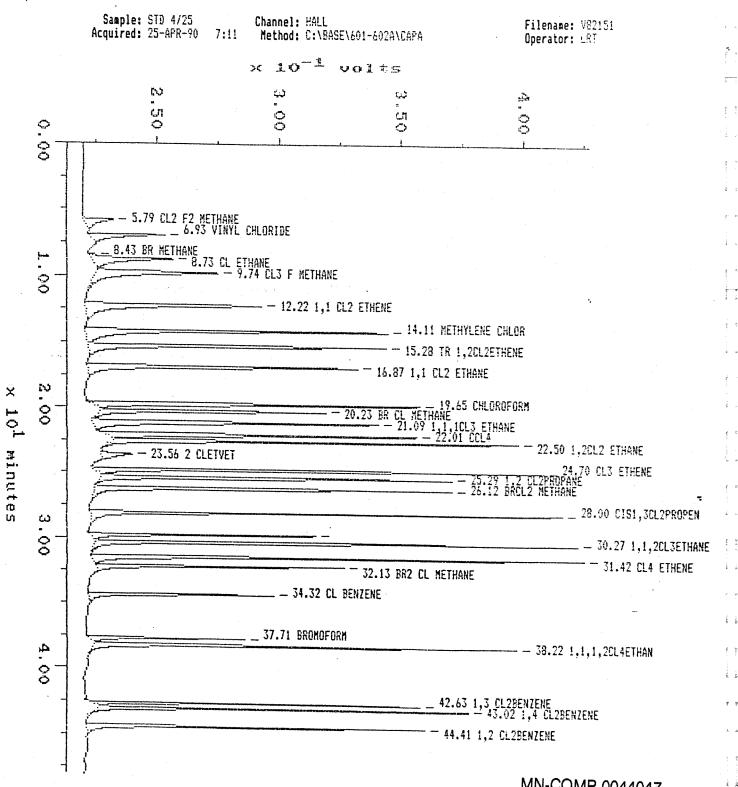
| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent              | Original Conc<br>(PPB )                | Solution Conc<br>(PPB ) | Component Name                         |
|-------|-----------------------------|-----------|-------------|-----------------------------|----------------------------------------|-------------------------|----------------------------------------|
| 1     | 15.201                      | 94673     | 11549       | ※ 중 수 한 수 요 수 요 수 요 수 요 수 요 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ****                    | 朝 羽 谷 谷 谷 谷 月 泉 辛 寺 寺 谷 谷 谷 音 (1)<br>- |
| 2     | 22.538                      | 177672    | 20519       | 9.58                        | 46.51                                  | 46.51                   | BENZENE                                |
| 3     | 23.491                      | 105923    | 13620       | 9.78                        | 47.45                                  | 47.46                   | F2 BENZENE                             |
| 4     | 24.638                      | 91322     | 12247       |                             | .7                                     | T7 + T⊈                 | I DINLEAE                              |
| 5     | 27.930                      | 48264     | 7370        |                             |                                        |                         |                                        |
| 6     | 29.088                      | 174248    | 24550       | 11.35                       | 55.10                                  | 55.10                   | TOLUENE                                |
| 7     | 29.653                      | 34796     | 5862        |                             |                                        |                         | ·DEDENE                                |
| 8     | 31.360                      | 72404     | 10260       |                             |                                        |                         |                                        |
| 9     | 34.253                      | 144576    | 26173       | 9.05                        | 43.92                                  | 43.92                   | CL BENZENE                             |
| 10    | 34.441                      | 122377    | 21098       | 9.31                        | 45.19                                  | 45.19                   | ETHYLBENZENE                           |
| 11    | 34.719                      | 392149    | 59241       | 10.30                       | 50.02                                  | 50.02                   | XYLENE                                 |
| 12    | 36.281                      | 249238    | 37697       | 9.97                        | 48.40                                  | 48.40                   | XYLENE                                 |
| 13    | 42.560                      | 243529    | 41113       | 11.15                       | 54.14                                  | 54.14                   | 1,3 CL2BENZENE                         |
| 14    | 42.959                      | 227902    | 41032       | 9.88                        | 47.98                                  | 47.98                   | 1,4 CL2BENZENE                         |
| 15    | 44.344                      | 195954    | 33098       | 9.63                        | 46.75                                  | 46.76                   | 1,2 CL2BENZENE                         |
| TOTAL |                             | 2375028   | 365430      |                             | 485.48                                 | 485.48                  |                                        |

COLUMN: HALL

| PK <b>I</b> | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name               |
|-------------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|------------------------------|
| 1           | 5.791                       | 234231    | 12355       | 3.28           | 62.63                   | <br>19 17               |                              |
| 2           | 6.927                       | 472621    | 31419       | 3.04           | 58.00                   | 62.63<br>58.00          | CL2 F2 METHANE               |
| 3           | 8.434                       | 34241     | 2801        | Invalid        | Invalid                 | Invalid                 | VINYL CHLORIDE<br>BR METHANE |
| 4           | 8.734                       | 602152    | 33592       | 3.79           | 72.28                   | 72.28                   | CL ETHANE                    |
| 5           | 9.742                       | 1012149   | 49611       | 3.84           | 73.32                   | 73.32                   | CL3 F KETHANE                |
| 6           | 12.219                      | 1222294   | 71740       | 3.49           | 66.63                   | 66.63                   | 1,1 CL2 ETHENE               |
| 7           | 14.115                      | 1731330   | 123848      | 3.49           | 66.52                   | 55.52                   | METHYLENE CHLOR              |
| 8           | 15.278                      | 1404721   | 122151      | 3.52           | 67.12                   | 57.12                   | TR 1,20L2ETHENE              |

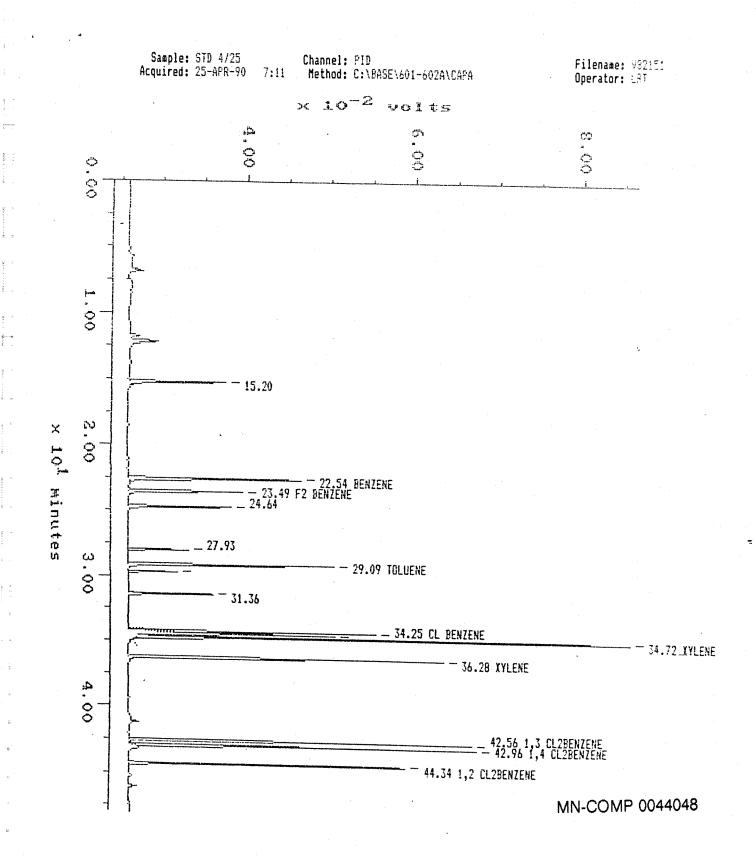
| 10166 |        | 33093663 | 3216456 |              | 1907.26!!      | 1907.26!! |                  |
|-------|--------|----------|---------|--------------|----------------|-----------|------------------|
| TOTAL |        |          |         |              | vu:li          | 66.12     | 1,2 CL2BENZENE   |
| 29    | 44.405 | 1133578  | 139220  | 3.47         | 56.12          | 57.98     | 1,4 CL2BENZENE   |
| 28    | 43.020 | 1151407  | 153128  | 3.56         | 67.98          | 64.81     | 1,3 CL29ENZENE   |
| 27    | 42.627 | 987106   | 135283  | 3.40         | 64.81          | 63.28     | 1,1,1,20L4ETHAN  |
| 26    | 38.215 | 1442873  | 173763  | 3.32         | 63.28          | 70.73     | BROMOFORN        |
| 25    | 37.706 | 555357   | 64256   | 3.71         | 70.73          | 66.10     | CL BENZENE       |
| 24    | 34.320 | 674124   | 76101   | 3.47         | 56.61<br>66.10 | 66.61     | BR2 CL METHANE   |
| 23    | 32.125 | 912691   | 102052  | 3.49         | 70.56          | 70.56     | CLA ETHENE       |
| 22    | 31.421 | 1774572  | 201906  | 3.70         | 78.15          | 78.15     | 1,1,2CL3ETHANE   |
| 21    | 30.274 | 1709749  | 198339  | 4,10         | 75.88          | 75.88     | TR1, 30L2PROPENE |
| 20    | 29.726 | 749994   | 92341   | 3.98         | 58.53          | 68.53     | CIS1, JCL2PROPEN |
| 19    | 27.997 | 1708111  | 194039  | 3.59         | 71.99          | 71.99     | BRCL2 METHANE    |
| 18    | 26.123 | 1462636  | 146673  | 3.77         | 66.13          | 66.13     | 1.2 CL2PROPANE   |
| 17    | 25.292 | 1454922  | 143777  | 3.47         | 68.00          | 68.00     | CL3 ETHENE       |
| 16    | 24.705 | 1718601  | 184249  | 2.74<br>3.57 | 52.18          | 52.18     | 2 CLETVET        |
| 15    | 23.563 | 225349   | 13291   | 2.74         | 54.78          | 64.78     | 1.2CL2 ETHANE    |
| 14    | 22.505 | 1517086  | 166535  | 3.82<br>3.40 | 72.86          | 72.86     | CCL4             |
| 13    | 22.012 | 1541961  | 128174  | 3.60         | 68.63          | 68.63     | 1,1,10L3 ETHANE  |
| 12    | 21.086 | 1617062  | 117061  | 4,58!!       | 87.38!!        | 87.38!!   | SR CL METHANE    |
| 11    | 20.233 | 950781   | 93299   | 3.42         | \$5.15         | 45.16     | CHLOROFORM       |
| 10    | 19.651 | 1660493  | 134648  | 3.40         | 64.88          | 64.88     | 1,1 CL2 ETHANE   |
| 9     | 16.869 | 1431471  | 110804  | 7 40         |                |           |                  |

!! Result calculation based on peak response more than 10% outside of calibration range.


•.

۱

1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 19


## MN-COMP 0044046

T.



MN-COMP 0044047

ř. 



#### NANCO LABORATORIES, INC.

Printed: 25-APR-1990 13:32:14

 SAMPLE:
 BLANK 4/25
 Type:
 UNKN

 #7 in Method:
 CAPILLARY
 Instrument:
 Instrument:
 Instrument:

 Acquired:
 25-APR-1990
 8:53
 Fileneme:
 VS2252

 Rate:
 3.0 points/sec
 Index:
 Disk

 Duration:
 48.002 minutes
 ul.
 Inj.:
 LRT

COLUMN: PID

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
|       |                             |           |             | **********     |                         | ***********             | ***            |
| 1     | 23.535                      | 94310     | 12191       | 100.00         | 42.26                   | 42.25                   | F2 BENZENE     |
|       |                             |           |             |                |                         |                         |                |
| TOTAL |                             | 94310     | 12191       |                | 42.25                   | 42.25                   |                |

COLUMN: HALL

1

| PK <b>#</b> | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Cosponent Name  |
|-------------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|-----------------|
|             | **********                  |           |             |                |                         |                         |                 |
| 1           | 12.131                      | 77883     | 8241        | 9.77           | 8.25                    | 8.25                    | 1,1 CL2 ETHENE  |
| 2           | 14.237                      | 17397     | 1400        | 1.68           | 1.42                    | 1.42                    | METHYLENE CHLOR |
| 3           | 20.321                      | 777918    | 71880       | 77.85!!        | 65.74!!                 | 65.74!!                 | BR CL METHANE   |
| 4           | 23.602                      | 39012     | 3651        | 10.70          | 9.03                    | 9.03                    | 2 CLETVET       |
| TOTAL       |                             | 912210    | 85171       |                | 84.45!!                 | 84.45!!                 | •               |

!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044049

; ; ;

1.1

ę ...

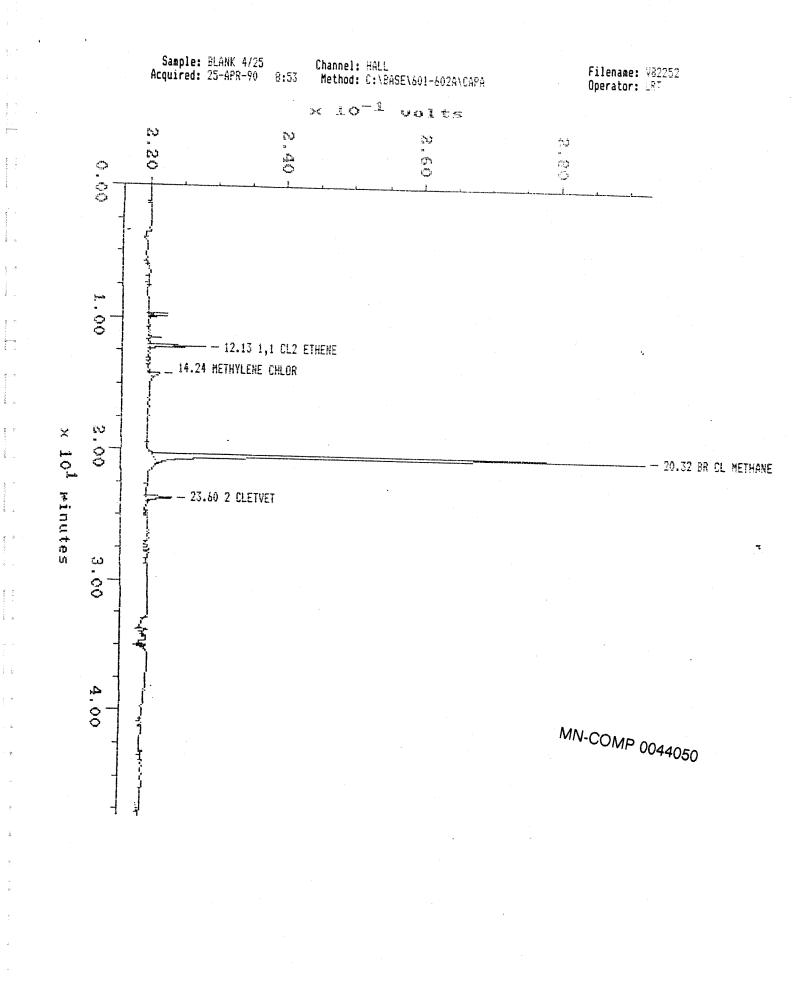
÷ ==

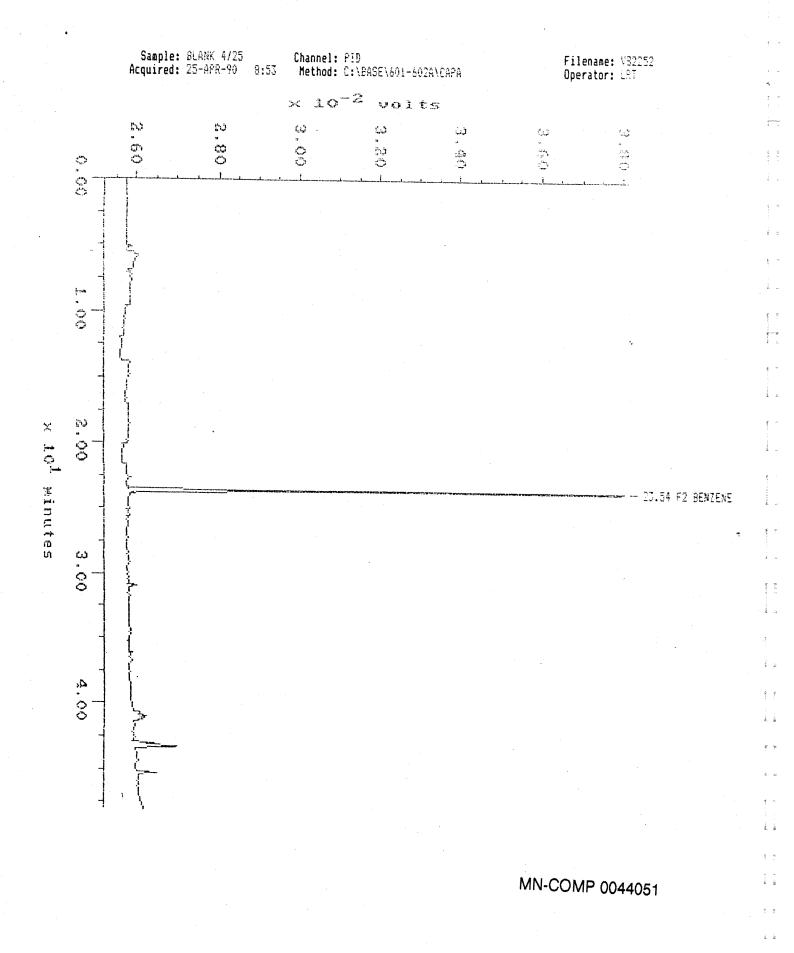
2 54

1 N

6 - 6 7 - 6

90-4- F.


5- - -28 1- -148


1

prints and

۳

٩,





.

## NANCO LABORATORIES, INC.

Printed: 26-APR-1990 13:24:39

SAMPLE: STD 4/26

14 J .

Berro - Hall

÷.

| Acquired:<br>Rate: | 26-APR-1990 11:50<br>3.0 points/sec<br>48.002 minutes | Type:<br>Instrument:<br>Filename:<br>Index: | V92158 |  |
|--------------------|-------------------------------------------------------|---------------------------------------------|--------|--|
|                    |                                                       |                                             |        |  |

COLUMN: PID

| PK#                                   | Retention Time<br>(minutes)                                        | Peak Area                                                          | Peak Height                                                 | Amount Percent                                          | Original Conc<br>(PPB )                                     | Solution Conc<br>(PPB )                                     | Component Name                                                                             |
|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1<br>3<br>4<br>5                      | 15.262<br>22.649<br>23.591<br>24.738<br>28.019                     | 90726<br>156793<br>87784<br>80511<br>41878                         | 11052<br>18199<br>11295<br>10750<br>6401                    | 8.94<br>8.67                                            | 40.56<br>39.34                                              | 40.56<br>39.34                                              | BENZENE<br>F2 BENZENE                                                                      |
| 6<br>7<br>8                           | 29.171<br>29.737<br>31.443                                         | 150976<br>31336<br>64622                                           | 21475<br>5267<br>9126                                       | 10.52                                                   | 47.74                                                       | 47.74                                                       | TOLUENE                                                                                    |
| 9<br>10<br>11<br>12<br>13<br>14<br>15 | 34.353<br>34.541<br>34.818<br>36.392<br>42.687<br>43.086<br>44.461 | 127045<br>108392<br>349421<br>327879<br>231531<br>216518<br>183871 | 22999<br>18622<br>51989<br>49420<br>39189<br>39234<br>31532 | 8.32<br>8.62<br>9.82<br>14.03<br>11.37<br>10.05<br>9.65 | 37.75<br>39.11<br>44.57<br>63.67<br>51.57<br>45.58<br>43.79 | 37.75<br>39.11<br>44.57<br>63.67<br>51.57<br>45.58<br>43.79 | CL BENZENE<br>ETHYLBENZENE<br>XYLENE<br>1,3 CL2BENZENE<br>1,4 CL2BENZENE<br>1,2 CL2BENZENE |
| TOTAL                                 |                                                                    | 2249282                                                            | 346551 🍧                                                    | <b>.</b>                                                | 453.69                                                      | 453.69                                                      |                                                                                            |

COLUMN: HALL

| PK# | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name  |
|-----|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|-----------------|
| 1   | 5.835                       | 239034    | 12842       | 3.21           | 63.91                   | 63.91                   | CL2 F2 METHANE  |
| 2   | 6.977                       | 476215    | 30111       | 3.07           | 61.04                   | 61.04                   | VINYL CHLORIDE  |
| 3   | 8.490                       | 29863     | 2489        | Invalid        | Invalid                 | Invalid                 | BR METHANE      |
| 4   | 8.795                       | 588397    | 32808       | 3.67           | 72.98                   | 72.98                   | CL ETHANE       |
| 5   | 9.825                       | 1053666   | 50019       | 4.25           | 84.55                   | 84.55                   | CL3 F METHANE   |
| 6   | 12.264                      | 1195888   | 68690       | 3.42           | 68.00                   | 68.00                   | 1,1 CL2 ETHENE  |
| 7   | 14.176                      | 1787736   | 130299      | 3.45           | 68.66                   | 68.66                   | METHYLENE CHLOR |
| 8   | 15.334                      | 1512366   | 131410      | 3.86           | 76.80                   | 76.80                   | TS 1,2CL2ETHENE |

| TOTAL |        | 34656079 | 3382308 |        | 1988.14!! | 1788.14!!         |                  |
|-------|--------|----------|---------|--------|-----------|-------------------|------------------|
| 29    | 44.527 | 1134601  | 141320  | 3.33   | 66.18     | 66.18             | 1,2 CL29ENZENE   |
| 28    | 43.142 | 1144663  | 156250  | 3.40   | 67.59     | 67.39             | 1,4 CL2BENZENE   |
| 27    | 42.754 | 1030563  | 140007  | 3.40   | 67.65     | 67.65             | 1,3 CL2BENZEME   |
| 26    | 38.337 | 1559027  | 187534  | 3.34   | 55.48     | 56.48             | 1,1,1,2014ETHAN  |
| 25    | 37.833 | 220380   | 75096   | 3.91   | 77.68     | 77.58             | BROMOFORM        |
| 24    | 34.419 | 694199   | 80439   | 3.42   | 58.00     | <b>58.</b> 00     | CL PENZENE       |
| 23    | 32.247 | 978626   | 83547   | 3.59   | 71.43     | 71.43             | BR2 EL METHANE   |
| 22    | 31.510 | 1936655  | 221801  | 3.87   | 77.01     | 77.01             | * CL4_ETHENE     |
| 21    | 30.352 | 1747610  | 199053  | 4.00   | 79.40     | 79.60             | 1.1,20LJETHANE   |
| 20    | 29.803 | 796047   | 99912   | 4.00   | 79.51     | 79.51             | TR1, JCL2PROPENE |
| 19    | 28.080 | 1733059  | 195090  | 3.50   | 69.53     | 39.53             | CIS1,3012090PEN  |
| 19    | 26.218 | 1477485  | 146520  | 3.66   | 72.72     | 72.72             | BRCL2 METHANE    |
| 17    | 25.392 | 1459817  | 147573  | 3.34   | 66.35     | 66.35             | 1,2 CL2980PAME   |
| 16    | 24.805 | 1768880  | 195819  | 3.52   | 59.99     | 59.99             | OLU ETHENE       |
| 15    | 23.646 | 131351   | 13052   | 1.53   | -30.42    | 30.42             | 2 CLEIVET        |
| 14    | 22.616 | 1568910  | 173640  | 3.37   | 66.99     | 56.99             | 1.2012 ETMANE    |
| 13    | 22.128 | 1614990  | 132722  | 3.84   | 76.31     | 경우 구수<br>기업 e Sel | TTO A            |
| 12    | 21.208 | 1757312  | 125127  | 3.75   | 74.58     | 74.58             | 1,1,1613 ETMANS  |
| 11    | 20.343 | 1140138  | 108888  | 1,85!1 | 96.3511   | 96,3501           | BO CL "ETWANE    |
| 10    | 19.767 | 1942270  | 181050  | 3.87   | 76.93     | 76.93             | CHLORCFORM       |
| 9     | 16.935 | 1526332  | 119200  | 3.57   | 79.90     | 70.99             | ILL ELZ ETRANE   |

!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044053

 $\sum_{k=1}^{r} \sum_{j=1}^{r}$ 

÷ ...

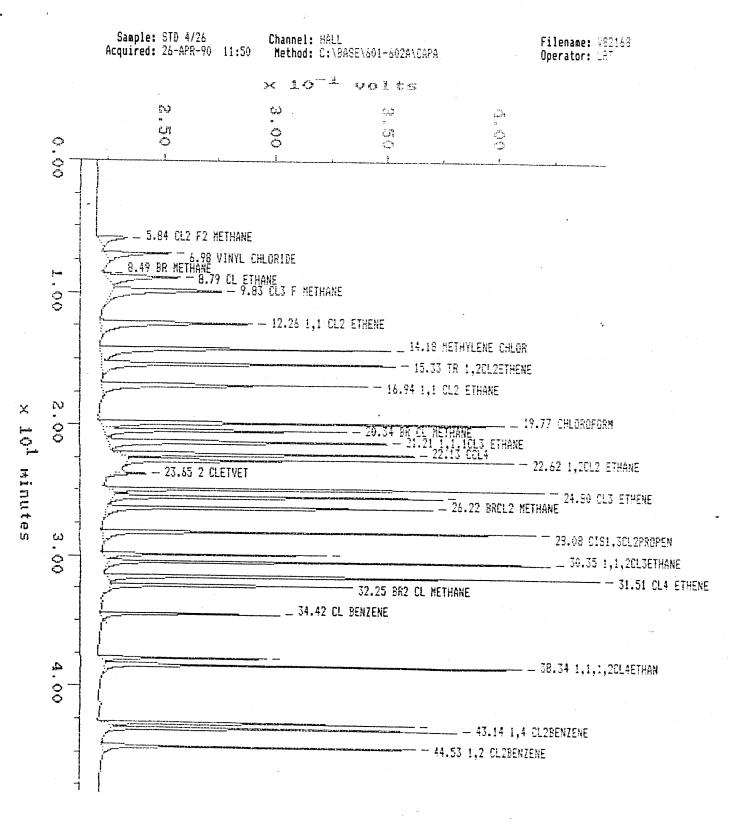
4

and the second

¢ i

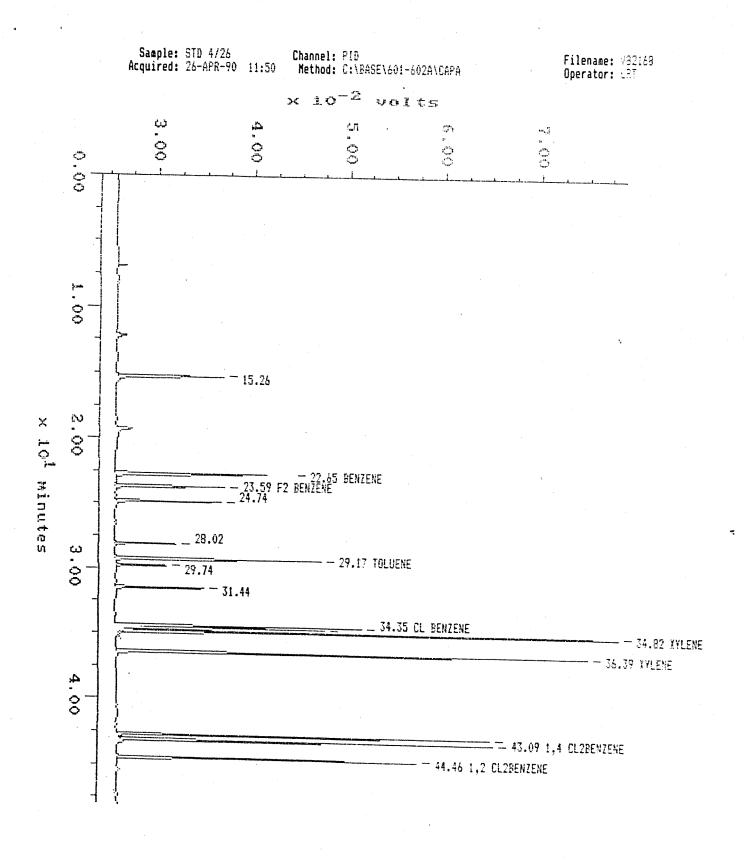
- 1

841 - 11 - 14


ŝ. \_

1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -

т. 1 ца 1 ца


5 8

i ja



ź ż

MN-COMP 0044054



MN-COMP 0044055

č š

1 1

4 2

1

1 5

## NANCO LABORATORIES, INC.

Printed: 27-APR-1990 7:15:30

| SAMPLE: | 6W 0500 MS 4/26<br>#8 in Method: CAPILLARY<br>Acquired: 26-APR-1990 14:16<br>Rate: 3.0 points/sec<br>Duration: 48.002 minutes<br>ul. Inj.: LRT | Type: UNKN<br>Instrument: Instrument 1<br>Filename: V82170<br>Index: Disk |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|         |                                                                                                                                                |                                                                           |

COLUMN: PID

10.0

1 1

| PK#                                 | Retention Time<br>(minutes)                                        | Peak Area                                                          | Peak Height                                                 | Amount Percent                                            | Original Conc<br>(PPB )                                     | Solution Conc<br>(PPB )                                     | Component Name                                                                             |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4                    | 15.240<br>22.638<br>24.727<br>28.013                               | 128381<br>161318<br>83349<br>36103                                 | 15073<br>18692<br>11166                                     | 10.81                                                     | 41.85                                                       | 41.85                                                       | BENZENE                                                                                    |
| 5                                   | 29.171<br>31.449                                                   | 152296<br>64435                                                    | 5509<br>21524<br>9138                                       | 12.44                                                     | 48.15                                                       | 48.16                                                       | TOLUENE                                                                                    |
| 7<br>8<br>7<br>10<br>11<br>12<br>13 | 34.353<br>34.536<br>34.813<br>36.392<br>42.693<br>43.086<br>44.472 | 116159<br>106935<br>342596<br>259568<br>217867<br>202233<br>166282 | 21620<br>18463<br>51438<br>38861<br>37055<br>36626<br>28482 | 8.76<br>9.94<br>11.29<br>13.02<br>12.56<br>11.00<br>10.20 | 33.92<br>38.48<br>43.70<br>50.41<br>48.64<br>42.58<br>39.48 | 33.92<br>38.48<br>43.70<br>50.41<br>48.64<br>42.58<br>39.48 | CL BENZENE<br>ETHYLBENZENE<br>XYLENE<br>1,3 CL2BENZENE<br>1,4 CL2BENZENE<br>1,2 CL2BENZENE |
| TOTAL                               | •                                                                  | 2037522                                                            | 313636                                                      |                                                           | 387.20                                                      | 387.20                                                      |                                                                                            |

COLUMN: HALL

| PK#         | Retention Time<br>(minutes) | Peak Area          | Peak Height      | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name                                     |
|-------------|-----------------------------|--------------------|------------------|----------------|-------------------------|-------------------------|----------------------------------------------------|
| 1<br>2      | 5.880<br>6.949              | 376948<br>515851   | 20429<br>45172   | 5.16<br>3.24   | <br>100.79<br>63.31     | 100.79                  | CL2 F2 METHANE                                     |
| 3           | 7.503<br>8.457              | 3066<br>52880      | 294<br>4753      | Invalid        | Invalid                 | 63.31<br>Invalid        | VINYL CHLORIDE                                     |
| 5<br>6<br>7 | 8.739<br>9.748              | 829983<br>1303464  | 45936<br>62803   | 5.10<br>4.82   | 99.53                   | 99.63<br>94.20          | BR METHANE<br>CL ETHANE                            |
| 7<br>8<br>9 | 12.219<br>14.126            | 1466361<br>1868778 | 91670<br>150602  | 4.05<br>3.67   | 79.08                   | 79.08                   | CL3 F METHANE<br>1,1 CL2 ETHENE<br>METHYLENE CHLOR |
| 9<br>10     | 15.306<br>16.919            | 1574937<br>1610987 | 140086<br>126081 | 3.83<br>3.71   | 74.90<br>72.49          | 74.90<br>72.49          | TR 1,2CL2ETHENE<br>1,1 CL2 ETHANE                  |

| TOTAL |        | 34201151 | 3329552 |                             | 1954.83       | 1954.83 |                   |
|-------|--------|----------|---------|-----------------------------|---------------|---------|-------------------|
|       |        |          |         |                             |               |         | AGE CLICINICHE    |
| 29    | 44.533 | 1147803  | 137423  | 3.42                        | 56.74         | 66.94   | 1.2 CL22ENZENE    |
| 28    | 43.147 | 1186115  | 163671  | 3.58                        | 70.03         | 70.03   | 1.4 CL2PENZENE    |
|       | 42.760 | 1046532  | 145844  | 3.51                        | 68.71         | 68.71   | 1.3 CL2PENZENE    |
| 28    | 38.337 | 1145556  | 138559  | 2.60                        | 50.92         | 50.92   | 1,1,1,2CL4ETHAN   |
| 26    |        | 526610   | 62015   | 3.48                        | 69.06         | 68.06   | BRONDFORM         |
| 25    | 37.827 | 665200   | 81790   | 3.34                        | .65.25        | 65.25   | CL BENZENE        |
| 24    | 34.419 | 910979   | 94593   | 3.40                        | 66.49         | 66.49   | BR2 CL METHANE    |
| 23    | 32.225 |          | 230439  | 4.15                        | 81.10         | 81.10   | CL4 ETHENE        |
| 22    | 31.510 | 2039711  | 180464  | 3.68                        | 71.90         | 71.90   | 1,1,2CL3ETHANE    |
| 21    | 30.352 | 1547177  | 74844   | 3.38                        | <b>66:</b> 06 | 66.06   | TR1, 3CL2PROPENE  |
| 20    | 29.803 | 625184   | 186385  | 3.31                        | . 64.71       | 64.71   | CIS1, JOL 2PROPEN |
| 19    | 28.080 | 1612730  |         | 3.76                        | 73.49         | 73.49   | PROL2 METHANE     |
| 18    | 26.212 | 1493133  | 151907  | 3,43                        | 67.15         | 67.15   | 1,2 CL2990PANE    |
| 17    | 25.381 | 1477301  | 149744  | 3.80                        | 74.32         | 74.32   | OLJ ETHENE        |
| 16    | 24.799 | 1878207  | 205232  | 2.06                        | 40.17         | 40.17   | 2 CLETVET         |
| 15    | 23.646 | 173482   | 15651   | 7 4 4<br>2 + 1 2<br>7 - 6 1 | 60.77         | 60.77   | 1,2CL2 ETHANE     |
| 14    | 22.599 | 1423165  | 159233  | 4.17                        | 21.49         | 81.48   | 2014              |
| 13    | 22.122 | 1724459  | 146246  |                             | 61.23         | 81.23   | 1,1,1CLJ ETHANE   |
| 12    | 21.202 | 1913974  | 135579  |                             | 79.93         | 79.93   | CHLOROFERM        |
| 11    | 19.756 | 2060577  | 182108  | 4.09                        | 70.07         |         |                   |

MN-COMP 0044057

<del>.</del> .

\* \* \* \*

i.

ę ~ -

Berry 11 199

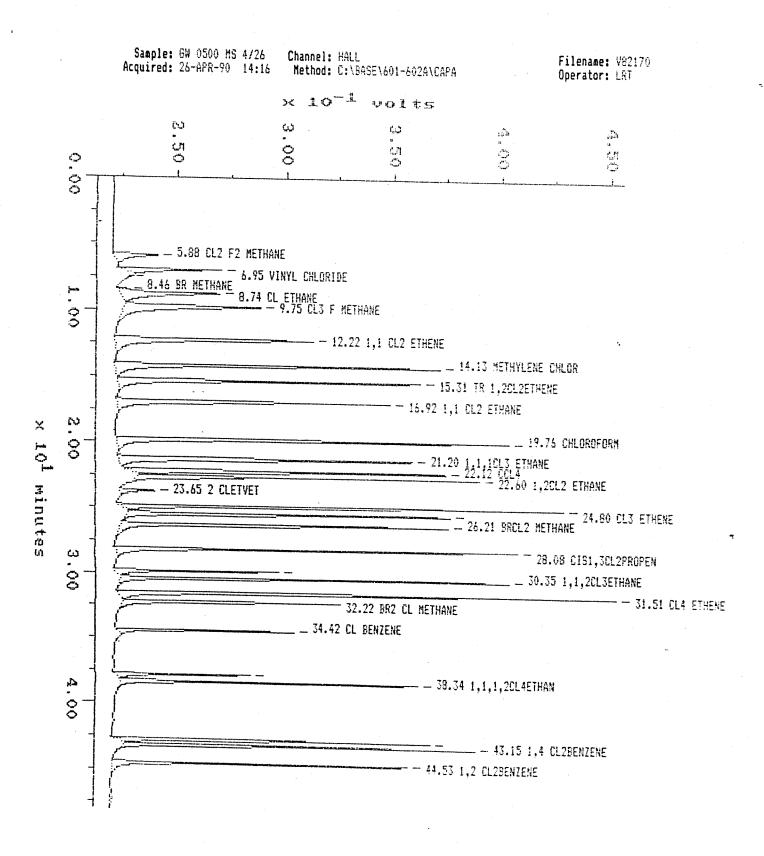
1.1

Alfonda inda

Since and

8 m

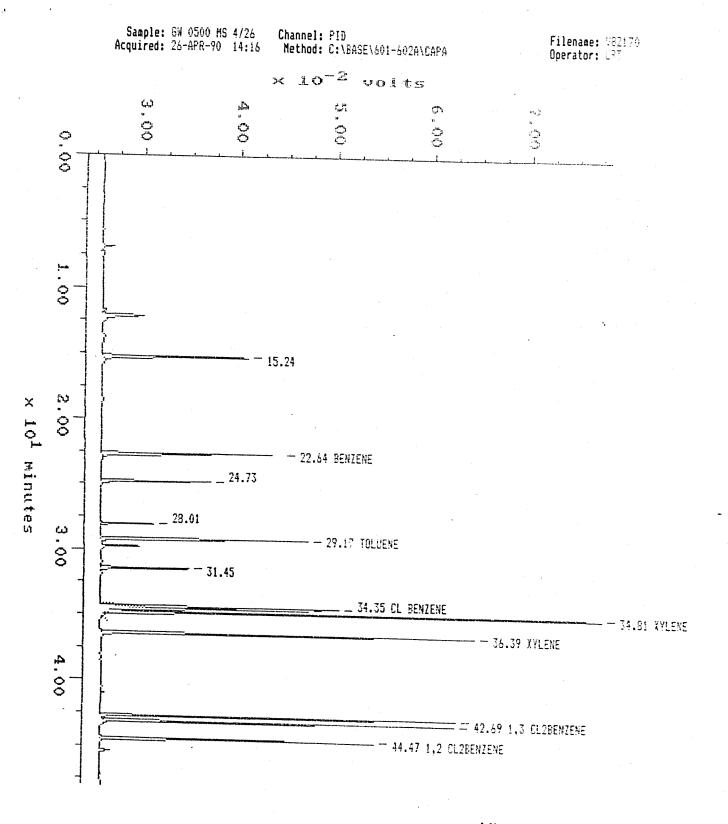
й з.


1000 - 110 - 160

en log

1 1

ê û


۰,



1.4

MN-COMP 0044058

.



MN-COMP 0044059

€ 5

i.

f P 

\* \* \* \*

â s

8. 7

â a

· · ·

## NANCO LABORATORIES, INC.

(

Pristed: 27-APR-1990 7:17:07

SAMPLE: SW 0500 MSD

| Rate:     | 26-APR-1990 15:47<br>3.0 points/sec<br>48.002 minutes |  |  |
|-----------|-------------------------------------------------------|--|--|
| wie iljee | LNI                                                   |  |  |

#### COLUMN: PID

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
|       |                             |           |             | ***            |                         |                         | ***            |
| 1     | 15.245                      | 81970     | 7867        |                |                         |                         | •              |
| 2     | 22.627                      | 139550    | 16219       | 9.96           | 35.64                   | 35.64                   | DENTENE        |
| 3     | 24.715                      | 70540     | 9466        |                | 00101                   | 00 <b>.</b> 34          | BENZENE        |
| - 4   | 28.013                      | 38328     | 5829        |                |                         | ,                       |                |
| 5     | 29.171                      | 136202    | 19352       | 12.03          | 43.07                   | 47 57                   | 701.00.00      |
| 6     | 31.443                      | 55383     | 7805        | 12800          | 70.07                   | 43.07                   | TOLUENE        |
| 7     | 34.347                      | 107344    | 20034       | 8.61           | 30.82                   | 78.89                   |                |
| 8     | 34.530                      | 94853     | 16347       | 9.28           | 33.23                   | 30.82                   | OL BENZENE     |
| 9     | 34.813                      | 308832    | 46575       | 11.00          | 39.39                   | 33.23                   | ETHYLEENZENE   |
| 10    | 36.392                      | 247552    | 37545       | 13.43          |                         | 39.39                   |                |
| 11    | 42.693                      | 205269    | 35467       | 12.89          | 48.08                   | 48.08                   | XYLENE         |
| 12    | 43.086                      | 197854    | 35970       | 11.64          | 46.15                   | 46.15                   | 1,3 CL2BENZENE |
| 13    | 44.466                      | 168020    | 28489       |                | 41.65                   | 41.65                   | 1,4 CL2BENZENE |
|       |                             |           | 20407       | 11.15          | 39.90                   | 39.90                   | 1,2 CL2BENZENE |
| TOTAL | ъ.                          | 1852710   | 288967      |                | 357.95                  | 357.95                  |                |

COLUMN: HALL

| PK#                         | Retention Time<br>(minutes)                                     | Peak Area                                                              | Peak Height                                                   | Amount Percent                                                  | Original Conc<br>(PPB )                                       | Solution Conc<br>(PPB )                                       | Component Name                                                                                                     |
|-----------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3                 | 5.819<br>6.955<br>7.819                                         | 271597<br>535442<br>4091                                               | 16203<br>36726<br>253                                         | 3.78<br>3.42                                                    | 72.62<br>55.71                                                | 72.62<br>65.71                                                | CL2 F2 VETHANE<br>VINYL CHLORIDE                                                                                   |
| 4<br>5<br>7<br>8<br>9<br>10 | 8.462<br>8.772<br>9.781<br>12.258<br>14.153<br>15.306<br>16.902 | 45649<br>632701<br>1163953<br>1342103<br>1759619<br>1489391<br>1578865 | 3892<br>34624<br>55021<br>72622<br>120587<br>133168<br>125457 | Invalid<br>3.95<br>4.38<br>3.79<br>3.52<br>3.70<br>3.70<br>3.70 | Invalid<br>75.95<br>84.20<br>72.74<br>67.59<br>70.99<br>71.13 | Invalid<br>75.95<br>84.20<br>72.74<br>67.59<br>70.99<br>71.13 | BR METHANE<br>CL ETHANE<br>CL3 F METHANE<br>1.1 CL2 ETHENE<br>METHYLENE CHLOR<br>TR 1.2CL2ETHENE<br>1.1 CL2 ETHANE |

| 19.728<br>21.169<br>22.089<br>22.588<br>24.782 | 1990570<br>1769760<br>1663998<br>1622664                                                                             | 179654<br>126826<br>138649<br>182086                                                                                                                                                                                                                                                                                                             | 4.03<br>3.91<br>4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.35<br>75.11<br>78.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHLOROFORM<br>1,1,1CL3 ETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.169<br>22.089<br>22.588                     | 1663998<br>1622664                                                                                                   | 126826<br>138649                                                                                                                                                                                                                                                                                                                                 | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22.089<br>22.588                               | 1663998<br>1622664                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                |                                                                                                                      | 182084                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i in Einfahr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                |                                                                                                                      | *******                                                                                                                                                                                                                                                                                                                                          | 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2012 ETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | 1735246                                                                                                              | 197046                                                                                                                                                                                                                                                                                                                                           | 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL3 ETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                | 1537592                                                                                                              | 157228                                                                                                                                                                                                                                                                                                                                           | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2 CL2PROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | 1538362                                                                                                              | 157068                                                                                                                                                                                                                                                                                                                                           | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SROL2 YETHANE "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                | 1817605                                                                                                              | 207931                                                                                                                                                                                                                                                                                                                                           | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIS: 3CL2PROPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                | 845924                                                                                                               | 106421                                                                                                                                                                                                                                                                                                                                           | 4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TR1, TC1 SPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                | 1854470                                                                                                              | 214443                                                                                                                                                                                                                                                                                                                                           | 4.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2CLIETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31.510                                         | 1872678                                                                                                              | 216256                                                                                                                                                                                                                                                                                                                                           | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CLA ETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                | 1063357                                                                                                              | 114025                                                                                                                                                                                                                                                                                                                                           | 4.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BR2 CL METHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 34.419                                         | 717225                                                                                                               | 81816                                                                                                                                                                                                                                                                                                                                            | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37.822                                         | 739336                                                                                                               | 91368                                                                                                                                                                                                                                                                                                                                            | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRONOFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38.337                                         | 1696585                                                                                                              | 207912                                                                                                                                                                                                                                                                                                                                           | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,1,2014STHAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                | 1017328                                                                                                              | 140885                                                                                                                                                                                                                                                                                                                                           | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3 CL2BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 43.147                                         | 1150857                                                                                                              | 160434                                                                                                                                                                                                                                                                                                                                           | 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4 CL2FENZENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44.533                                         | 1145392                                                                                                              | 143356                                                                                                                                                                                                                                                                                                                                           | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2 CL2BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | 34602369                                                                                                             | 3421957                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1921.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1921.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                | 25.375<br>26.201<br>28.080<br>29.803<br>30.357<br>31.510<br>32.203<br>34.419<br>37.822<br>38.337<br>42.748<br>43.147 | 25.375       1537592         26.201       1538362         28.080       1817605         29.803       845924         30.357       1854470         31.510       1872678         32.203       1063357         34.419       717225         37.822       739336         38.337       1696585         42.748       1017328         43.147       1150867 | 25.375       1537592       157228         26.201       1538362       157068         28.080       1817605       207931         29.803       845924       106421         30.357       1854470       214443         31.510       1872678       216256         32.203       1063357       114025         34.419       717225       81816         37.822       739336       91368         38.337       1696585       207912         42.748       1017328       140885         43.147       1150867       160434         44.533       1145392       143356 | 25.375       1537592       157228       3.64         26.201       1538362       157068       3.94         28.080       1817605       207931       3.80         29.803       845924       106421       4.34         30.357       1854470       214443       4.36         31.510       1872678       216256       3.88         32.203       1063357       114025       4.04         34.419       717225       81816       3.65         37.822       739336       91368       4.57         38.337       1696585       207912       3.84         42.748       1017328       140885       3.48         43.147       1150867       160434       3.54         44.533       1145392       143356       3.48 | 25.375       1537592       157228       3.64       69.89         26.201       1538362       157068       3.94       75.71         28.080       1817605       207931       3.80       72.93         29.803       845924       106421       4.34       93.44         30.357       1854470       214443       4.36       83.71         31.510       1872678       216256       3.88       74.45         32.203       1063357       114025       4.04       77.61         34.419       717225       81816       3.65       70.19         37.822       739336       91368       4.57       87.79         38.337       1696585       207912       3.84       73.62         42.748       1017328       140885       3.48       64.79         43.147       1150867       160434       3.54       67.95         44.533       1145392       143356       3.48       66.80 | 25.375       1537592       157228       3.64       69.89       69.89         26.201       1538362       157068       3.94       75.71       75.71         28.080       1817605       207931       3.80       72.93       72.93         29.803       845924       106421       4.34       93.44       83.74         30.357       1854470       214443       4.36       83.71       83.71         31.510       1872678       216256       3.88       74.45       74.46         32.203       1063357       114025       4.04       77.61       77.61         34.419       717225       81816       3.65       70.19       70.19         37.822       739336       91368       4.57       87.79       97.79         38.337       1696585       207912       3.84       73.82       73.92         42.748       1017328       140885       3.48       66.79       66.79         43.147       1150867       160434       3.54       67.95       67.95         44.533       1145392       143356       3.48       66.80       66.80 |

MN-COMP 0044061

۰.

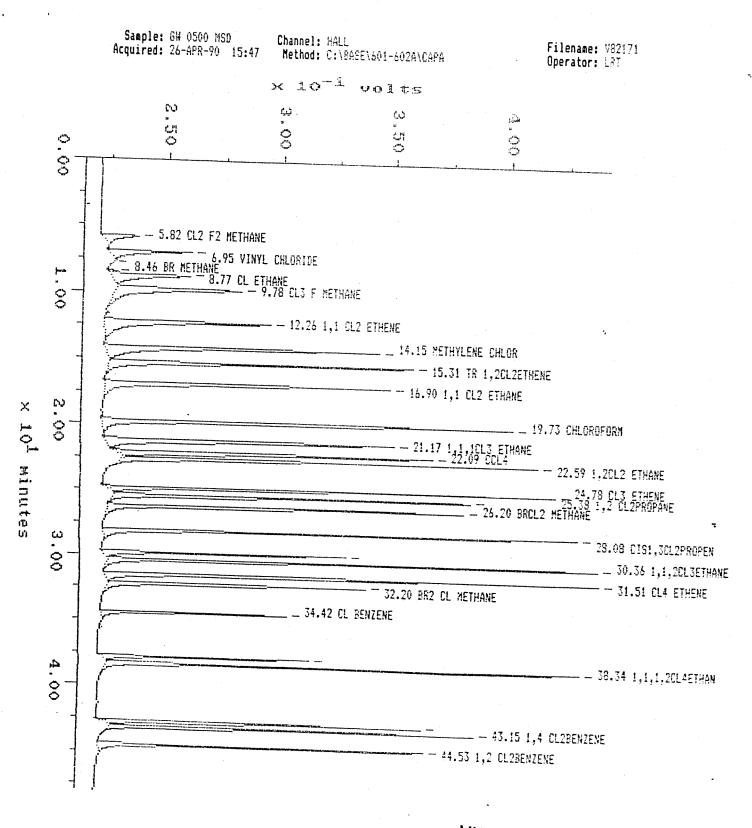
-------5 5

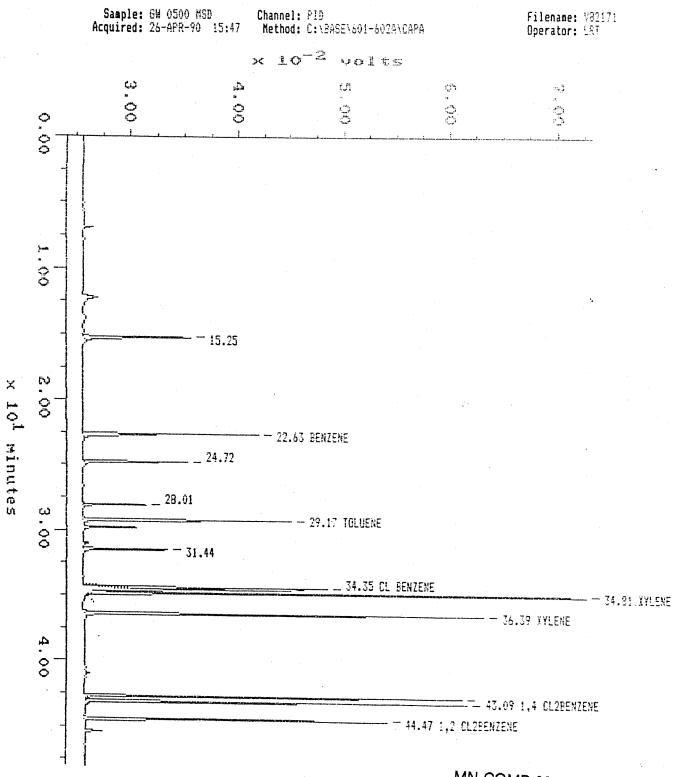
a u

An mini

> i k a

§ 9


Ben er er feb


 $\frac{1}{2} = \frac{1}{2}$ 

5 × -

i i

fina a contra





MN-COMP 0044063

÷.

91 S.

1

2 4

844.1.1.1.1.4.88

ginter E. modi

## NANCO LABORATORIES, INC.

Printed: 27-APR-1990 11:49:48

د

SAMPLE: BLANK MS

+

2010

.

#7 in Method: CAPILLARY
 Acquired: 27-APR-1990 7:20
 Rate: 3.0 points/sec
 Duration: 48.002 minutes
 ul. Inj.: LRT

Type: UNKN Instrument: Instrument 1 Filename: V82178 Index: Disk

#### COLUMN: PID

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent                         | Original Conc<br>(PPB ) | Solution Conc<br>(PPB } | Component Name                   |
|-------|-----------------------------|-----------|-------------|----------------------------------------|-------------------------|-------------------------|----------------------------------|
| i     | 15.317                      | 76491     | 9497        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | *****                   |                         | ************                     |
| 2     | 22.677                      | 147286    | 16980       | 9.59                                   | 37.85                   | 77                      |                                  |
| 3     | 23.613                      | 87869     | 11292       | 9.96                                   | 37.33                   | 37.85                   | PENZENE                          |
| 4     | 24.755                      | 76208     | 10360       |                                        | 07.07                   | 39.37                   | F2 BENZENE                       |
| 5     | 28.035                      | 40830     | 6235 -      |                                        |                         |                         |                                  |
| 6     | 29.188                      | 145527    | 20357       | 11.64                                  | 46.02                   | 11 00                   | warmen of the same second        |
| 7     | 29.753                      | 29990     | 5090        | · · · · · · ·                          | 10.01                   | 45.02                   | TOLUENE                          |
| 8     | 31.466                      | 59873     | 8433        |                                        |                         |                         |                                  |
| 9     | 34.353                      | 110394    | 20543       | 8.07                                   | 31.89                   | 31.89                   |                                  |
| 10    | 34.536                      | 97448     | 16874       | 8.69                                   | 34.36                   | 34.36                   | OL BENZENE                       |
| 11    | 34.807                      | 314751    | 47475       | 10.16                                  | 40.15                   | 40.15                   | ETHYLEENZENE                     |
| 12    | 36.381                      | 201326    | 30146       | 9.89                                   | 39.10                   | 39.10                   | TYLENE T                         |
| 13    | 42.671                      | 205713    | 35351       | 11.65                                  | 46.03                   | 46.03                   | (YLENE                           |
| 14    | 43.070                      | 195198    | 34643       | 10.40                                  | 41.10                   | 41.10                   | 1,3 CL2BENZENE                   |
| 15    | 44.455                      | 165797    | 28251       | 9.95                                   | 39.36                   | 39.36                   | 1,4 CL2BENZENE<br>1,2 CL2BENZENE |
| TOTAL | •                           | 1954703   | 301526      |                                        | 395.22                  | 395.22                  |                                  |

COLUMN: HALL

| PK# | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name  |
|-----|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|-----------------|
| 1   | 5.858                       | 196452    | 10152       | 2.86           | 52.53                   | 52.53                   | CL2 F2 XETHANE  |
| 2   | 61994                       | 461094    | 28914       | 3.08           | 56.59                   | 56.59                   | VINYL CHLORIDE  |
| 3   | 8.518                       | 29183     | 2594        | Invalid        | Invalid                 | Invalid                 | BR METHANE      |
| 4   | 3.839                       | 502405    | 26273       | 3.28           | 60.31                   | 60.31                   | CL EIHANE       |
| 5   | 9.870                       | 846478    | 48493       | 3.34           | 61.45                   | 61.45                   | CL3 F METHANE   |
| 6   | 12.341                      | 1195551   | 59437       | 3.55           | 65.27                   | 65.27                   | 1.1 CL2 ETHENE  |
| 7   | 14.231                      | 1590599   | 114298      | 3.33           | 61.17                   | 51.17                   | METHYLENE CHLOR |
| 8   | 15.399                      | 1348770   | 116625      | 3.51           | 64.57                   | 54.57                   | TR 1.20L2ETHENE |

| TOTAL |        | 31986765 | 3174759 |        | 1837.47!! | 1837.47!:               |                          | a.<br>a |
|-------|--------|----------|---------|--------|-----------|-------------------------|--------------------------|---------|
|       |        |          |         |        |           | 59.28                   | 1,2 CL2BENZENE           | 1       |
| 29    | 44.516 | 1014386  | 128932  | 3.23   | 59.28     | 61.46<br>50.55          | 1,4 CL2BENZENE           |         |
| 28    | 43.131 | 1040639  | 144706  | 3.35   | 61.46     |                         | 1,3 CL2BENZENE           | á       |
| 27    | 42.737 | 916017   | 126240  | 3.28   | 60.27     | <b>60.</b> 27           | BROMOFORM                |         |
| 26    | 38.321 | 1499516  | 187119  | 8.61!  | 158.30!   | 158.301                 | DOANACAAN                | (       |
| 25    | 37.805 | 623526   | 70041   |        | **        | 01400 4                 | LL BENZENE               | 4       |
| 24    | 34.419 | 627492   | 71205   | 3.36   | 61.68     | 61.68                   |                          | į       |
| 23    | 32.219 | 900800   | 99835   | 3.58   | 65.75     | 65.75                   | BRZ CL METHANE           | Î       |
| 22    | 31.527 | 1775720  | 202763  | 3.84   | 70.65     | 70.65                   | CL4 ETHENE               |         |
| 21    | 30.374 | 1684267  | 192992  | 4.20   | 77.17     | 71.02                   | 1.1.20L3ETHANE           |         |
| 20    | 27.820 | 736510   | 90947   | 4.07   | 74.82     | 74.82                   | TR1.3CL2PROPENE          |         |
| 19    | 28.102 | 1636756  | 191493  | 3.57   | 65.67     | 5                       | CISI.JCL2PROPEN          |         |
| 18    | 26.240 | 1412879  | 144166  | 3.78   | 69.54     |                         | BRCL2 METHANE            |         |
| 17    | 25.414 | 1400050  | 139583  | 3.46   | 63.64     | 43.44                   | 1.2 CLIPROPANE           |         |
| 16    | 24.827 | 1661986  | 182430  | 3.58   | 65.76     | 42.10<br>45.70          | Z SELETVER<br>GLG ETHENE |         |
| 15    | 23.685 | 160222   | 12167   | 2.02   | 37.10     | 37.10                   | 2 CLETVET                |         |
| 14    | 22.538 | 1495430  | 168087  | 3.48   | 63.85     | 63.85                   | 1,2012 ETHANE            |         |
| 13    | 22.150 | 1550326  | 130279  | 3.99   | 73.25     | 97.20<br>77.45<br>77.45 | 1.1.1CL3 ETHANE<br>CCL4  |         |
| 12    | 21.225 | 1638953  | 117828  | 3.79   | 69.56     | 69.55                   | BR OL METHANE            |         |
| 11    | 20.371 | 962833   | 99890   | 4.8211 | 88.581    | 99.5811                 | CHLOROFORM               |         |
| 10    | 19.789 | 1660982  | 158095  | 3.55   | 65.18     | 55.18                   | 1.1 CL2 ETHANE           |         |
| 9     | 16.980 | 1412947  | 109174  | 3.49   | 54.09     | 54.09                   | ti a contra manual un    |         |

!! Result calculation based on peak response more than 10% outside of calibration range.
! Result calculation based on peak response ratio outside of calibration range.

### MN-COMP 0044065

-

1 1

ş 2 ÷ ...

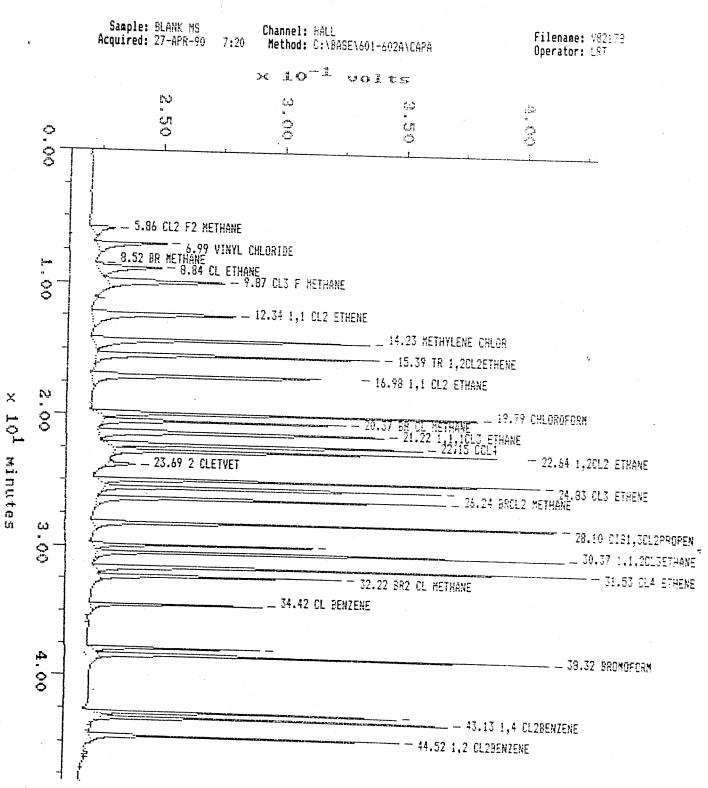
{ \* 1, 2

ř. F 1

ę -

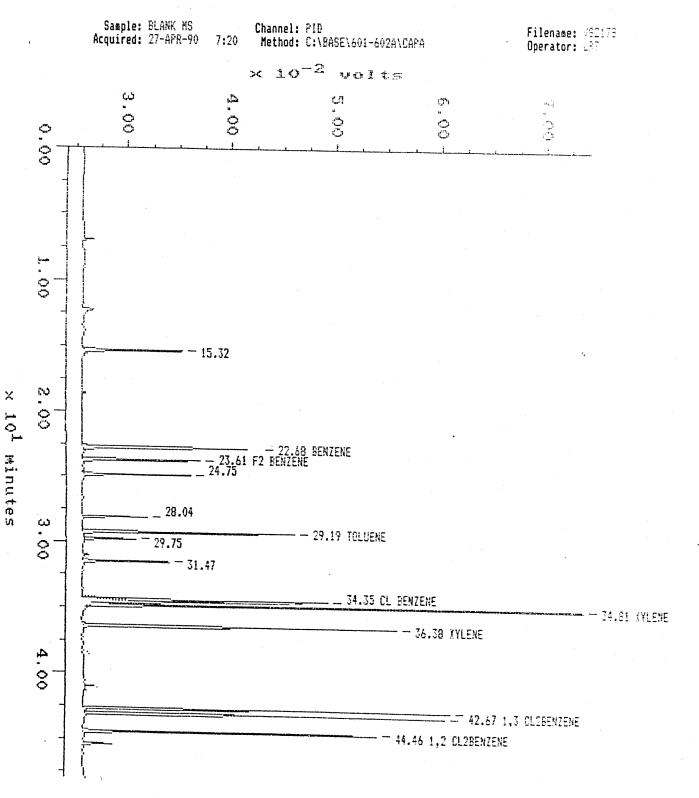
1 - 1 2 - 2

•


Marine .

100

8° 10


the state

Li



MN-COMP 0044066

1.1



MN-COMP 0044067

 $\frac{g}{2} = \frac{g}{2}$ 

1 0 1.1

11-1-1-1-1-1-

1

ę ę 1 1

1

1 4

1 8

-

8. 7 

# NANCO LABORATORIES, INC.

Printed: 26-APR-1990 12:39:05

SAMPLE: GW 0498

5

tit I .

έ.e

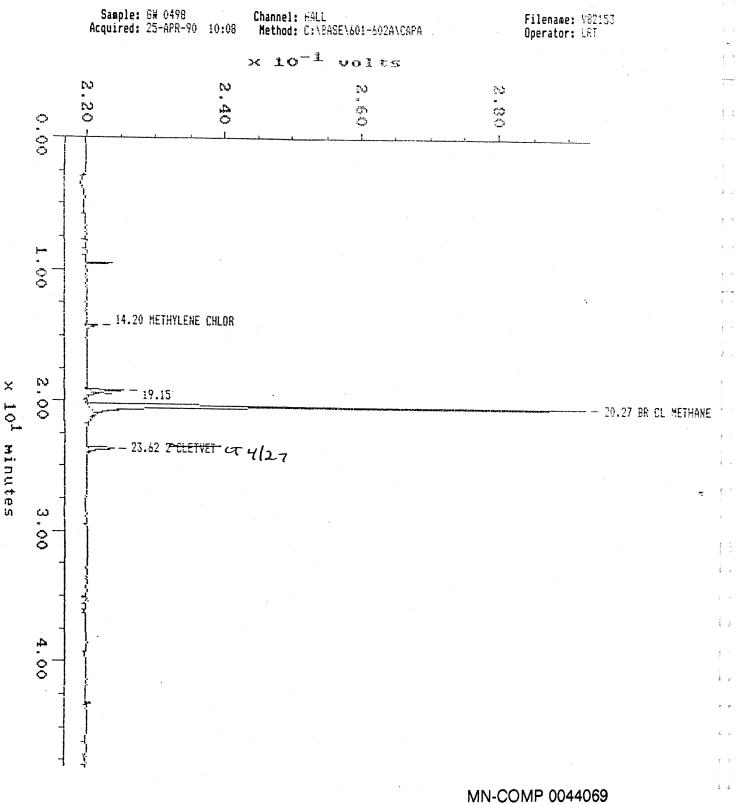
goonge g

| <pre>#8 in Method: CAPILLARY Acquired: 25-APR-1990 10:08 Rate: 3.0 points/sec Duration: 48.002 minutes ul. Inj.: LRT</pre> | Instrument:<br>Filename:<br>Index: |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|

COLUMN: PID

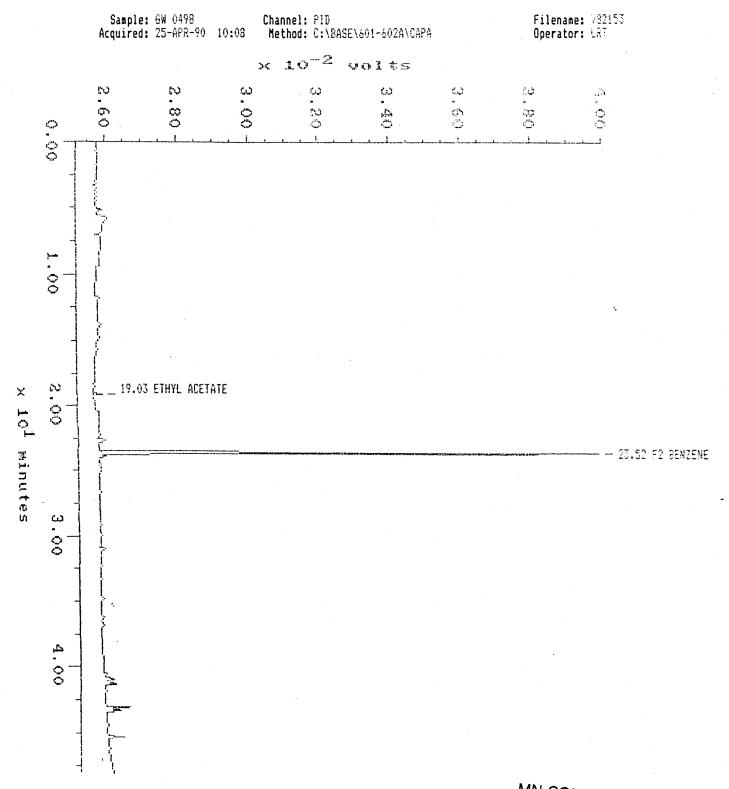
| PK#   | Retention Time<br>(minutes) | Peak Area      | Peak Height  | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name              |
|-------|-----------------------------|----------------|--------------|----------------|-------------------------|-------------------------|-----------------------------|
| 1     | 19.030<br>23.519            | 1995<br>109833 | 234<br>14086 | 0.53<br>99.47  | 0.26<br>49.22           | 0.26                    | ETHYL ACETATE<br>F2 benzene |
| TOTAL |                             | 111828         | 14320        |                | 49.48                   | 47.48                   |                             |

COLUMN: HALL


**•** • • • •

AV.

| PK            | Retention Time<br>(minutes) | Peak Area               | Peak Height          | Amount Percent           | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name                                 |
|---------------|-----------------------------|-------------------------|----------------------|--------------------------|-------------------------|-------------------------|------------------------------------------------|
| 1<br>2        | 14.203<br>19.152            | 17210<br>51518          | 1534<br>4973         | 1.67                     | 1.41                    | 1.41                    | METHYLENE CHLOR                                |
| 3<br>, 4<br>5 | 19.424<br>20.271<br>23.624  | 2332<br>765028<br>38589 | 640<br>72316<br>3451 | 4.66<br>83.11!!<br>10.56 | 3.94<br>70.31!!<br>8.94 | 3.94<br>70.31!!<br>8.94 | CHLOROFORN<br>BR CL METHANE<br>CLETVET CT 4/27 |
| TOTAL         |                             | 874676                  | 82915                |                          | 84.60!!                 |                         |                                                |


!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044068



- - - -3. 前

i i



100 C

\*\*\*

## NANCO LABORATORIES, INC.

Printed: 25-APR-1990 13:15:03

| TO IN MOTOR CADILLADY | SAMPLE: | SAMPL | MPLE: | 6¥ 0499 | #9 in Method:<br>Acquired:<br>Rate:<br>Duration: | 25-APR-1990 11:12<br>3.0 points/sec<br>48.002 minutes |  |  |
|-----------------------|---------|-------|-------|---------|--------------------------------------------------|-------------------------------------------------------|--|--|
|-----------------------|---------|-------|-------|---------|--------------------------------------------------|-------------------------------------------------------|--|--|

COLUMN: PID

| PK∎   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPR ) | Component Name                |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|-------------------------------|
| ***** | *****                       | ****      |             | *********      | ***                     | ***********             | 谷 春 春 春 春 章 章 章 章 章 章 章 章 章 章 |
| 1     | 23.541                      | 100958    | 12932       | 100.00         | 45.24                   | 10.21<br>13.21          | FI EINZEHE                    |
| TOTAL |                             | 100958    | 12932       |                | 45.24                   | 43,24                   |                               |

COLUMN: HALL

----

| PK#         | Retention Time<br>(minutes) | Peak Area                | Peak Height           | Amount Percent          | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name                   |
|-------------|-----------------------------|--------------------------|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------------|
| 1<br>2<br>3 | 14.214<br>20.305<br>23.613  | 14565<br>629181<br>28660 | 1453<br>79745<br>2813 | 1.68<br>87.81!!<br>8.51 | 1.31<br>70.07!!<br>6.64 | 1.31<br>70.07!!         | HETHYLENE CHLOR<br>BR CL METHANE |
| TOTAL       |                             | 872407                   | 84012                 |                         | 73.02!!                 | 78.02!!                 | • <b>•</b>                       |

!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044071

. z

94 - 1 1

· 44 · 44

÷ ...

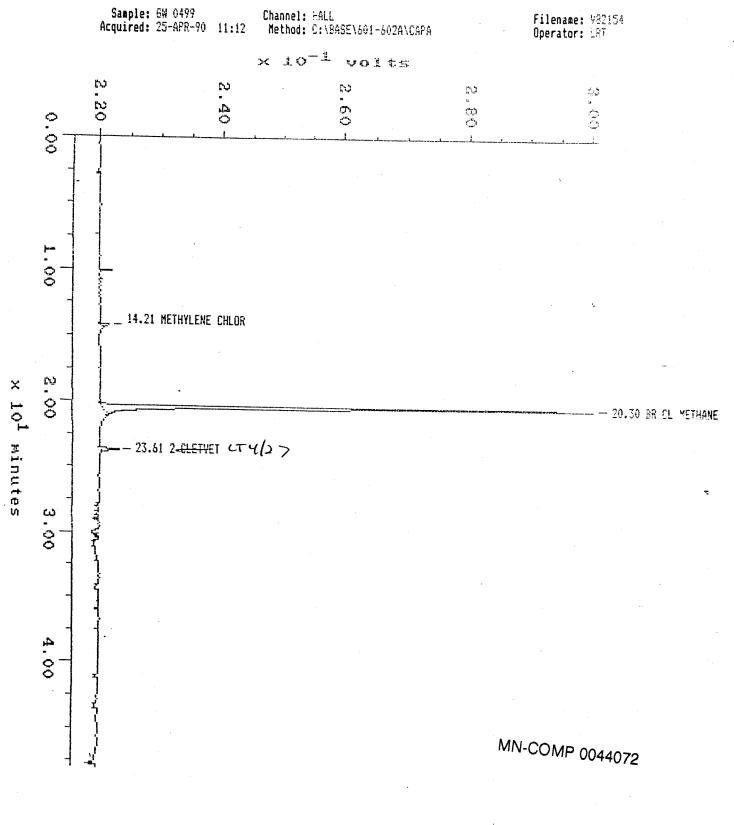
х 1 - 1 - 14 1 - 1 - 14

t e

10 N 10

1.14

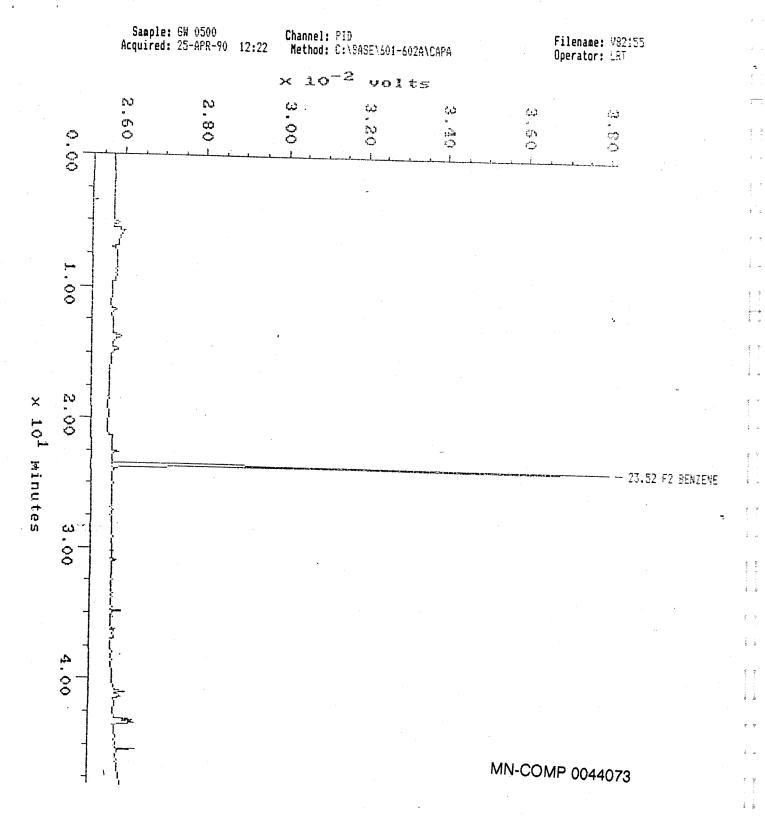
₹ <u>ñ</u>


a á

i k

1 E

1


1 P.



a a' a ÷.,

1. 1.

5.6.6



the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

÷. ".»

## NANCO LABORATORIES, INC.

Printed: 25-APR-1990 8:18:49

SAMPLE: GW 0500

10.5

-----

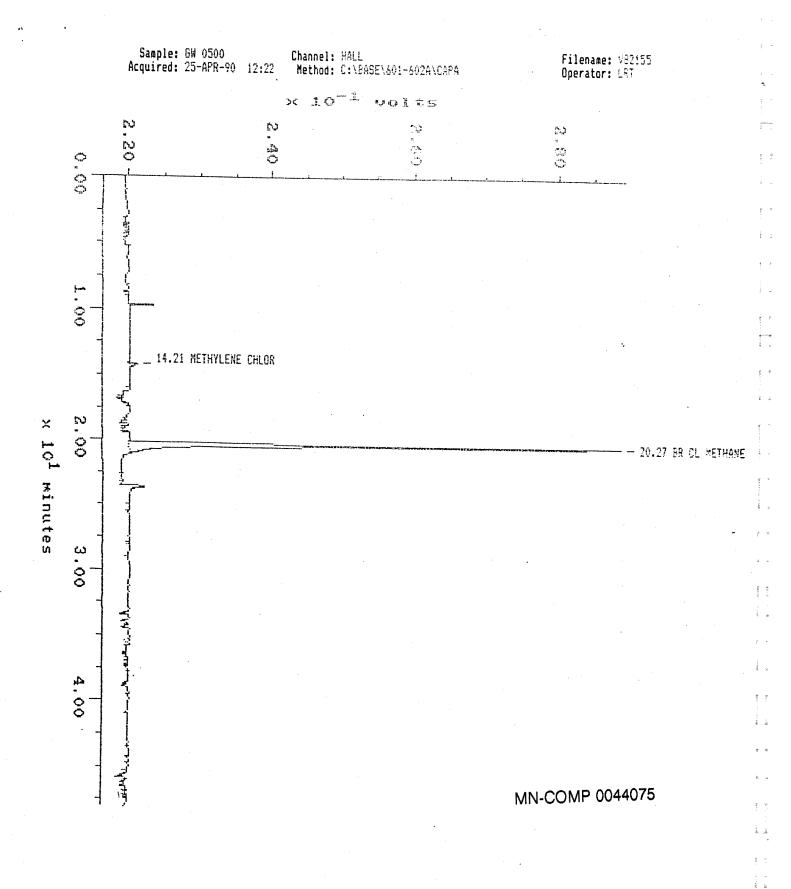
2

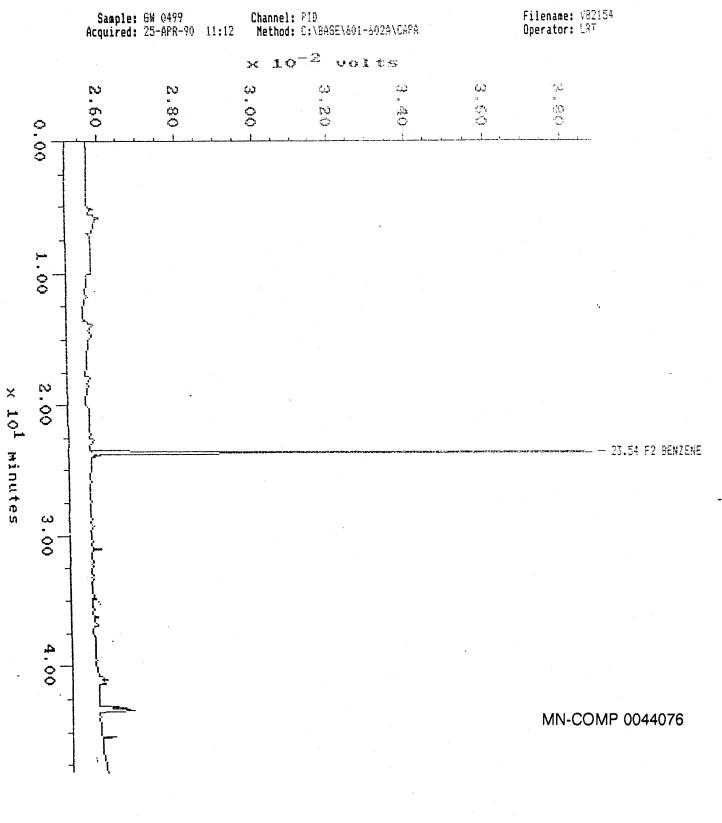
#10 in Method: CAPILLARY
 Acquired: 25-APR-1990 12:22
 Rate: 3.0 points/sec
 Duration: 48.002 @inutes
 ul. Inj.: LRT

Type: 5NKN Instrument: Instrument 5 Filename: V82155 Index: Disk

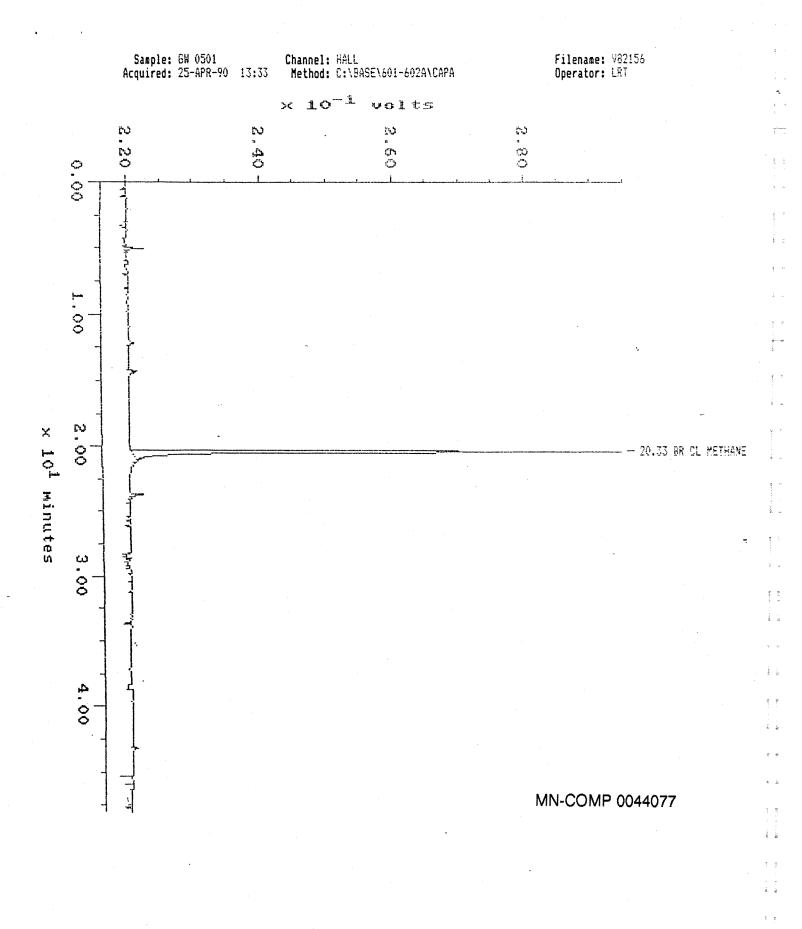
COLUMN: PID

| PKŧ   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc | Component Name                          |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|---------------|-----------------------------------------|
| @###  | ******                      | *****     | *****       |                | 110 )                   | (PPB )        |                                         |
| 1     | 23.519                      | 97425     | 19711       |                |                         | ******        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|       |                             | // 120    | 12311       | 100.00         | 43.66                   | 43.68         | F2 PENZENE                              |
| TOTAL |                             |           |             |                | *********               |               | ՝ մաս՝ տասնատու՝ Հայնապուշ Նապ։         |
| IVINL |                             | 97426     | 12311       |                | 43.66                   | 43.66         |                                         |


COLUMN: HALL


.....

| PK#   | Retention Time<br>(minutes) | Peak Area      | Peak Height  | Amount Percent  | jenee wone                | Solution Conc | Component Name                   |
|-------|-----------------------------|----------------|--------------|-----------------|---------------------------|---------------|----------------------------------|
| 1 2   | 14.214<br>20.266            | 8236<br>782168 | 986<br>68671 | 1.60<br>98.40!! | (PPB )<br>1.07<br>66.10!! | (PPB )<br>    | METHYLENE CHLOR<br>Br CL METHANE |
| TOTAL | •                           | 790404         | 69656        |                 | 67.17!!                   | 67.17!        | En GE HEIMME                     |


!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044074





.

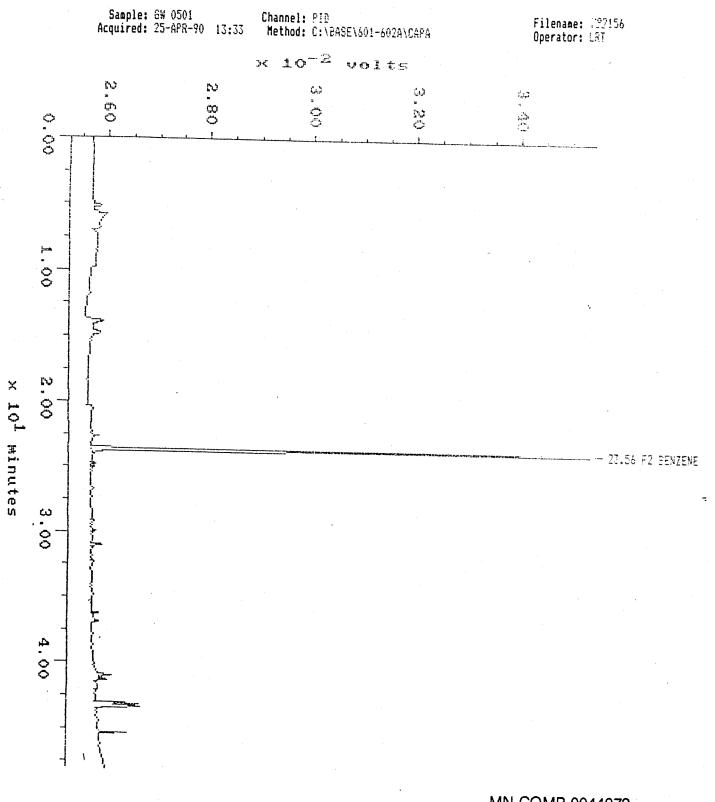


# NANCO LABORATORIES, INC.

Printed: 26-APR-1990 8:20:13

SAMPLE: 6W 0501

| · | Acquired:<br>Rate:<br>Duration:           | iype:<br>Instrument:<br>Filename:<br>Index: | V82156 | a i | • • |  |
|---|-------------------------------------------|---------------------------------------------|--------|-----|-----|--|
|   | Duration: 48.002 minutes<br>ul. Inj.: LRT |                                             |        |     |     |  |


#### COLUMN: PID

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
| 1     | 23.563                      | 76194     | 9663        | 100.00         | 34.14                   | 34.14                   | F2 BENZENE     |
| TOTAL |                             | 76194     | 9663        |                | 34.14                   | 34.14                   |                |

#### COLUMN: HALL

| PK    | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPR ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
|       |                             | ********  | *********   | **********     |                         |                         |                |
| 1     | 20.327                      | 728236    | 74173       | 100.00!!       | 61.54!!                 | 51.54!!                 | BR CL METHANE  |
| TOTAL | 4                           | 728236    | 74173       |                | 61.54!!                 | 61.54!!                 |                |

!! Result calculation based on peak response more than 10% outside of calibration range.



MN-COMP 0044079

ţ ŝ

61 LA i i

1997

1. A.

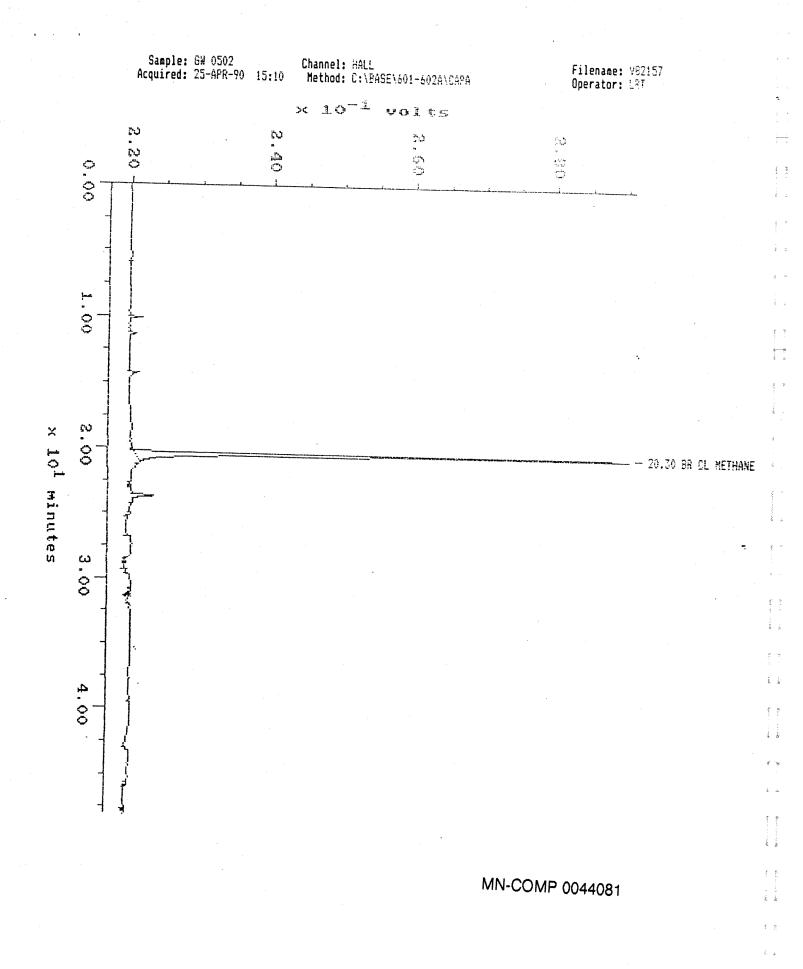
į,

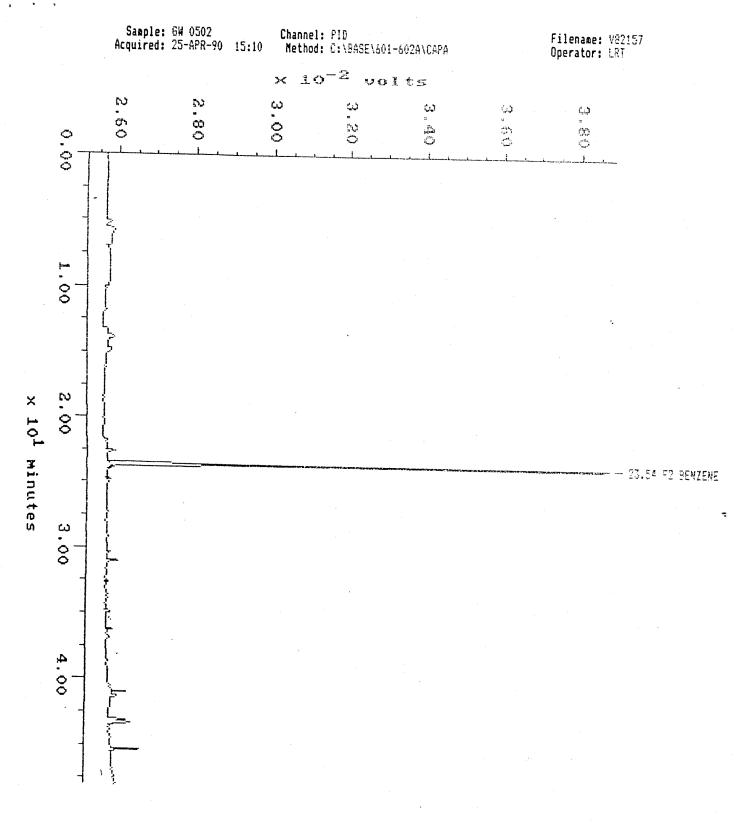
## NANCO LABORATORIES, INC.

Printed: 25-APR-1990 16:21:43

| SAMPLE: | GW 0502<br>#12 in Method: CAPILLARY<br>Acquired: 25-APR-1990 15:10<br>Rate: 3.0 points/sec<br>Duration: 48.002 minutes<br>ul. Inj.: LRT | Type: UNKN<br>Instrument: Instrument 1<br>Filename: V82157<br>Index: 6 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|         |                                                                                                                                         |                                                                        |

COLUMN: PID


| PK    | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
|       | 23.535                      | 101560    | 12955       | 100.00         |                         | 45,51                   | F7 SEN7ENE     |
| TOTAL |                             | 101550    | 12955       |                |                         |                         | 4 L 25H15H5    |
|       |                             |           | **100       |                | 74.dl                   | 45.51                   |                |


COLUMN: HALL

١

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
|       | ****                        | ******    | ***         | *********      | *****                   | *****                   | *****          |
| 1     | 20.299                      | 776033    | 69945       | 100.00!!       | 65.58!!                 | 65.58!!                 | BR CL METHANE  |
| TOTAL |                             | 776033    | 69945       |                | 65.58!!                 | 65.58!!                 |                |

!! Result calculation based on peak response more than 10% outside of calibration range.





10 T - 10 M

ś. w

#### NANCO LABORATORIES, INC.

Printed: 25-APR-1990 17:32:07

SAMPLE: 6W 0503 Type: ExKa #13 in Method: CAPILLARY Instrument: Instrument 1 Acquired: 25-APR-1990 16:19 Filename: V82158 Rate: 3.0 points/sec Index: 7 Duration: 48.002 minutes ul. Inj.: LRT

COLUMN: PID

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(FPB ) | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|
| ***   |                             | ******    | *********   | *******        | *****                   |                         | -              |
| 1     | 23.513                      | 90720     | 11662       | 100.00         | 40.65                   | 40.65                   | FE BENZENE     |
| TOTAL |                             | 90720     | 11662       |                | 40.35                   | 40.65                   |                |

COLUMN: HALL

٦

ŧ

| ₽K∎   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc<br>(PPB ) | Component Name |                                                                                                                                                            |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 20.271                      | 770586    | 67211       | 100.00!!       | 65.12!!                 | 65.12!!                 | BR CL METHANE  | 10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1<br>10-1-1-1<br>10-1-1-1<br>10-1-1-1-1 |
| TOTAL | · •                         | 770586    | 67211       | • •            | 65.12!!                 | 65.12!!                 |                | ₹. A                                                                                                                                                       |

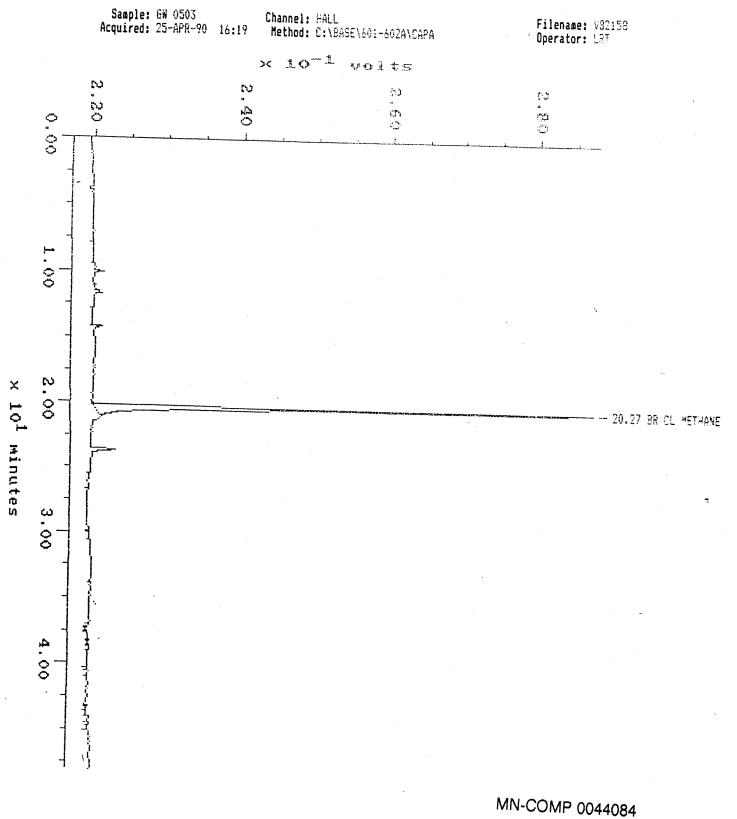
!! Result calculation based on peak response more than 10% outside of calibration range.

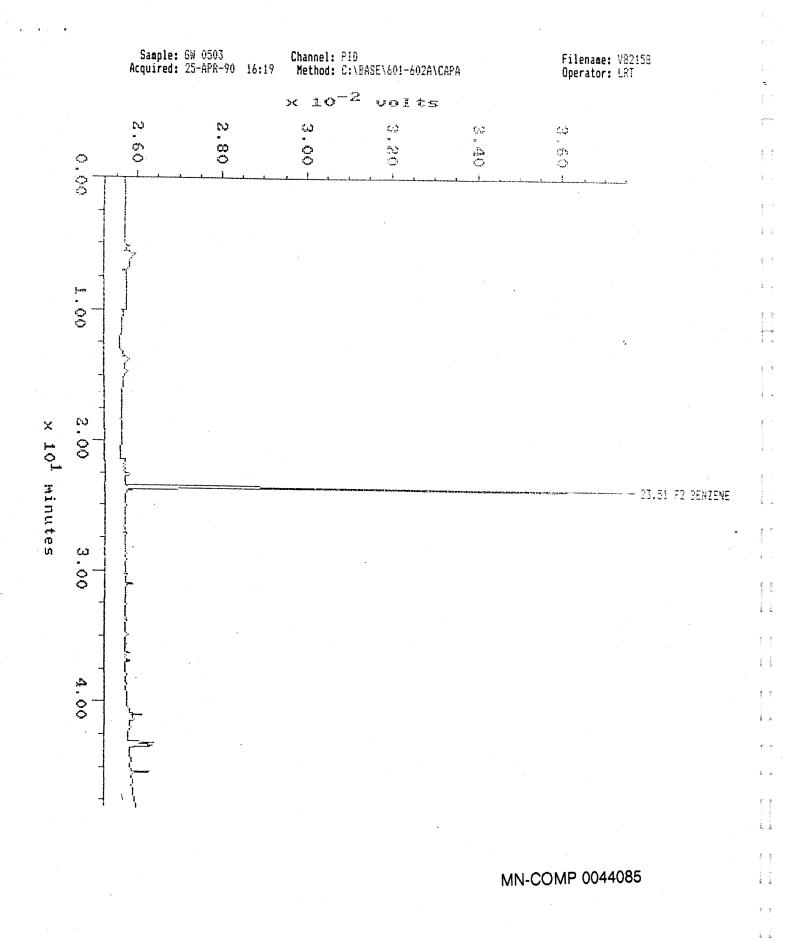
### MN-COMP 0044083

2 N 8 ~

к з

-


5 5 é é


4 20

8 - B 1

i i

۰.





# NANCO LABORATORIES, INC.

Printed: 26-APR-1990 9:22:50

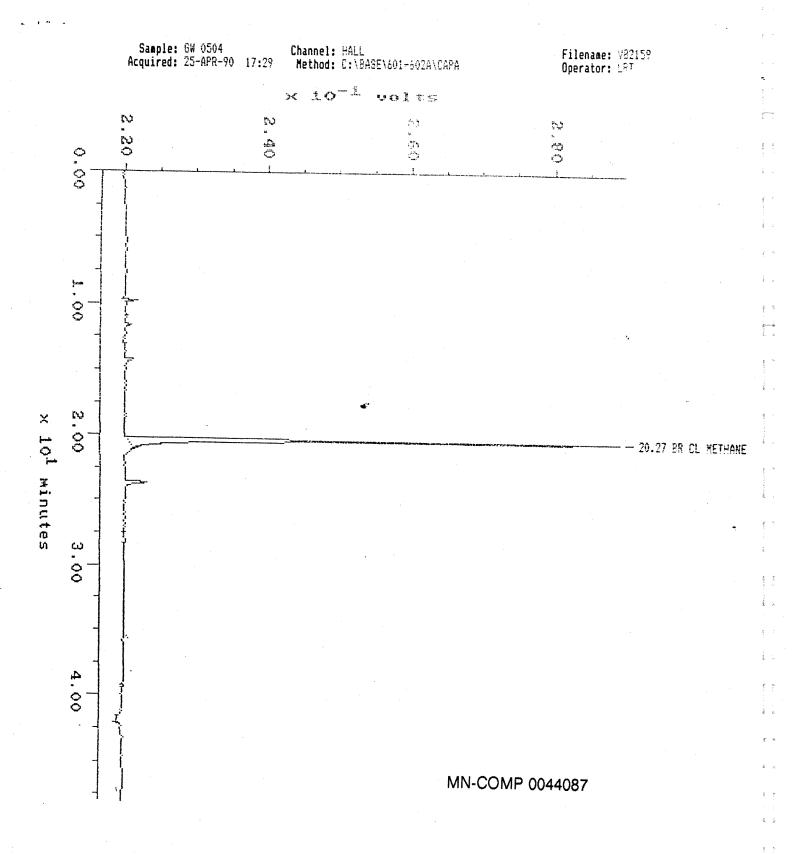
| ul. Inj.: LRT | SAMPLE: 6W 0504<br>#14 in Method: CAPILLARY<br>Acquired: 25-APR-1990 17:29<br>Rate: 3.0 points/sec<br>Duration: 48.002 minutes<br>ul. Inj.: LRT | Type: UNKN<br>Instrument: Instrument 1<br>Filename: V82159<br>Index: Disk |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|

COLUMN: PID

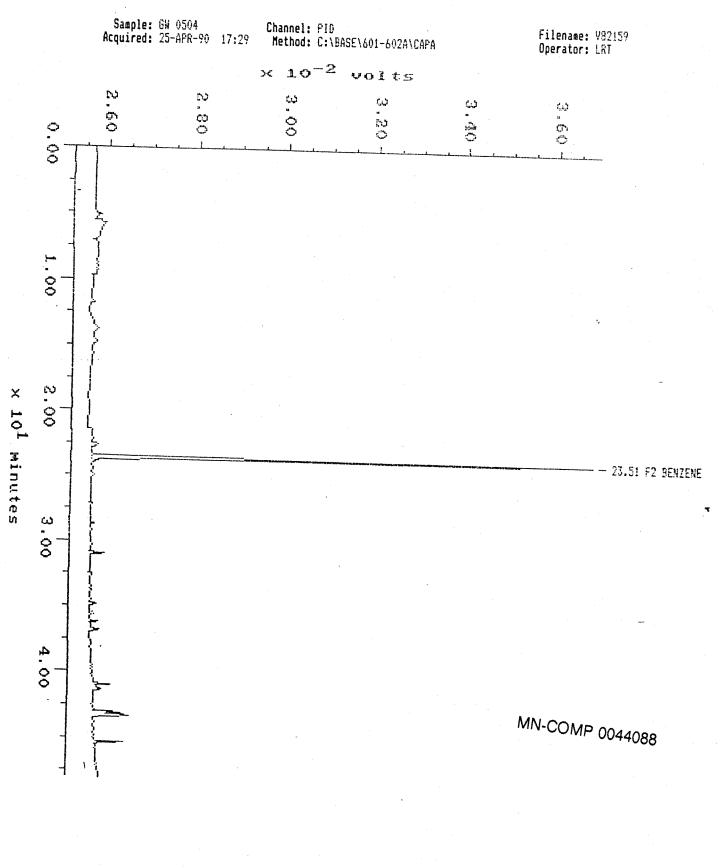
State -

2 5

| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) |        | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|--------|----------------|
|       |                             | ******    | **********  |                | ((1))                   | (PPB ) |                |
| 1     | 23.513                      | 88527     | 11105       |                | *****                   | ****** | ************   |
|       |                             |           | 11125       | 100.00         | 39.67                   | 39.47  | F2 BENZENS     |
| TOTAL |                             | 88527     | 11125       |                | 39.67                   | .39.67 |                |


COLUMN: HALL

61/ 8


| PK#   | Retention Time<br>(minutes) | Peak Area | Peak Height | Amount Percent | Original Conc<br>(PPB ) | Solution Conc   | Component Name |
|-------|-----------------------------|-----------|-------------|----------------|-------------------------|-----------------|----------------|
|       |                             |           |             |                | (FFB )                  | (PPB )          |                |
| 1     | 20.266                      | 771584    | (0007       |                | **********              |                 | *****          |
|       | 277200                      |           | 68927       | 100.00!!       | 65.20!!                 | <b>55.20</b> !! | BR CL METHANE  |
| TOTAL |                             | 771584    | 68927       |                | **********              |                 |                |
|       | •                           |           | 00121       |                | 65.20!!                 | 65.2011         |                |

!! Result calculation based on peak response more than 10% outside of calibration range.

MN-COMP 0044086



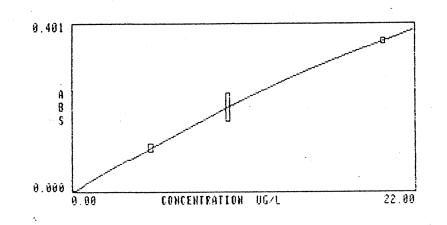
1 - A 2



-

0.....

17


i...»

244-5 5 1.00

#### Varian DS-15 AA-1275/1475 Report

| Pace Laboratory<br>1710 Douglas Drive<br>(612) 544-5543 | Minneapolis,MN 55422                           | Calculated<br>Entered:<br>Reviewed: | 5 A 190<br>5/10/90 | By: UMR<br>By: Meg |
|---------------------------------------------------------|------------------------------------------------|-------------------------------------|--------------------|--------------------|
| OPERATOR<br>DATE<br>BATCH                               | LAURIE RYAN<br>05-09-90 09:35<br>As FURNACE #2 |                                     |                    | •                  |
| PROGRAM 1                                               | As FURNACE                                     |                                     |                    |                    |

| SAMPLE                                    |   | CONC<br>UG/L                   | %RSD              | MEAN<br>ABS                       |                                   | READINGS                          |
|-------------------------------------------|---|--------------------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| BLANK<br>STANDARD<br>STANDARD<br>STANDARD | 2 | 0.00<br>5.00<br>10.00<br>20.00 | 2.6<br>8.5<br>1.5 | -0.039<br>0.105<br>0.205<br>0.365 | -0.040<br>0.107<br>0.192<br>0.369 | -0.039<br>0.103<br>0.217<br>0.361 |



## MDL=0.002 mg1L

|                |              |      |         |        |         |                       | 4          |
|----------------|--------------|------|---------|--------|---------|-----------------------|------------|
| EPA 378 6.20   | 6.751072     | 6.5  | 0.140   | 0.134  | 0.147   |                       |            |
| 2.00           | 1.43         | 23.5 | 0.030   | 0.035  | 0.025   |                       |            |
| 16760          | NO 0.17mg12  | 99.9 | 0.003   | 0.007  | 0.000   |                       |            |
| 16760AWTY=10-0 | 9.67977      | 0.0  | 0.198   | 0.198  | 0.198   |                       | '.         |
| 16761          | NO 0.17mg16  | 99.9 | 0.003   | 0.007  | 0,000   | 1252 2507             |            |
| 16390 25X      | 0            | 2.3  | 0.752   | 0.765  | 0.740 R | lerun at Starlax      |            |
| 16390 25X AG   | 0.00 .       | 99.9 | 0.000   | 0.000  | 0.000   |                       |            |
| 16391 25X      | OVER         | 2.8  | 1.025   | 1.046  | 1.004 6 | Rerun at 200% or 500% | -          |
| 16391 25X AG   | 0.02         | 99.9 | 0.000   | 0.001  | 0.000   |                       | 19 - A     |
| 16392 25X      | OVER         | 2.3  | 0.884   | 0,870  | 0.899   | Rerun at 125x or 250x | - <b>.</b> |
| 16392 25XAF    | OVER         | 1.4  | 0.929   | 0.920  | 0.939   |                       |            |
| 16392 25X AG   | 0.02         | 99.9 | 0000    | 0.002  | -0.001  |                       | ł          |
| 16392 25XAFm   | 10.0 8.97707 | 1.1  | 0.184   | 0.186  | 0.183   | MN-COMP 0044089       | )          |
| 10.0           | 9.02         | 2.6  | 0.185   | 0.189  | 0.182   |                       |            |
| EPA 378 6.20   | 6.361072     | 4.8  | 0.132   | 0.128  | 0.137   |                       |            |
| 16393 25X 43   | 2.5~g-0.02   | 99.9 | -0.000° | -0,001 | 0,000   |                       |            |
| 16393 25X AG   | -0.05        | 99.9 | -0.001  | -0.002 | 0.000   |                       |            |
| 14685          | NO 0.57 myll | 47.1 | 0.012   | 0.008  | 0.016   |                       |            |
| 14686AW77=10.6 | 7.76732      | 3.9  | 0.160   | 0.165  | 0.156   |                       |            |
|                |              |      |         |        |         |                       |            |

|                 |                       |        |        |        | · · · · ·   |                                                                                                                         |
|-----------------|-----------------------|--------|--------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------|
| SAMPLE          | CONC                  | %RSD   | MEAN   |        | READINGS    |                                                                                                                         |
| 1<br>6- 1       | UG/L                  |        | ABS    |        |             |                                                                                                                         |
| 14687           | NO 0.38 mg1L          | 17.6   | 0.008  | 0.000  | a           |                                                                                                                         |
| 14688           | NO 0.10               | 99.9   |        | 0.009  | 0.007       |                                                                                                                         |
| 14689           | NO 0.67               | 10.1   |        | 0.004  | 0.000       | 197.<br>1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - |
| 14690           | NO 0.29               | 70.7   | 0.014  | 0.013  | 0.015       |                                                                                                                         |
| 4691            | NO 0.12               |        |        | 0,009  | 0.003       | •                                                                                                                       |
| 14691AW TV=10.1 |                       | 99.9   |        | -0.001 | 0.006       |                                                                                                                         |
| 14671AW 14652   | 6.98612<br>ND 0.77. W | 0.9    | 0.145  | 0.144  | 0.146       |                                                                                                                         |
| 1492-14664 8x   | NO 0.33 mg16          | 80.8   | 0.007  | 0.003  | 0.011       |                                                                                                                         |
| 0.0             | NO 0.69mjiL           | 4.3    |        | 0.015  | 0.014 mo(20 | 0004                                                                                                                    |
| 6 i.            | 8.29                  | 7.4    |        | 0.180  | 0.162       |                                                                                                                         |
| ÉPA 378 6.20    | 6.26/012              | 4.8    | 0.130  | 0.126  | 0.135       |                                                                                                                         |
| 14866 2X        | ND 0.05 mg12          | 99.9   |        | 0.000  | 0.002       |                                                                                                                         |
| 14868 2X        | NO 0.02               | 99.9   |        | 0.003  | -0.002      |                                                                                                                         |
| 44870 2X        | NO -0.10 4            | 99.9   | -0.002 | 0.000  | -0.004      |                                                                                                                         |
| 14870 ZXAW7x=10 |                       | 2.8    | 0.175  | 0.171  | 0.178       |                                                                                                                         |
| 14870 2XDAW     | 8.74 <b>1</b> 73      | 5.4    | 0.180  | 0.187  | 0.173       |                                                                                                                         |
| 14874 2X        | NO 0.12mg1L           | 84.8   | 0.002  |        | 0.004       |                                                                                                                         |
| 14876 2X        | NP 0.10               | 70.7   |        | 0.003  | 0.001       | •                                                                                                                       |
| 14878 2X        | NO 0.86               | 54.9   | 0.018  | 0.025  | 0.011       |                                                                                                                         |
| 14880 2X        | NO -0.12              | 28.2   | -0.002 | -0.002 | -0.003      |                                                                                                                         |
| 14882 2X        | ND 1.174              |        | 0.024  | 0.021  | 0.028       | J                                                                                                                       |
| ,14882 2XAW TY: | 1.2 10.72962          | 2.5    | 0.218  | 0.214  | 0.222       |                                                                                                                         |
| 14883 2X        | NO 1.19mg11           | 16.9   |        | 0.022  |             |                                                                                                                         |
| 4885 2X         | NO 0.901              | 14.8   |        | 0.022  | 0.028       |                                                                                                                         |
| EPA 378 6.20    | 5.81942               | 5.2    |        |        | 0.017 4     |                                                                                                                         |
| 2.00            | 1.19                  | 33.9   | 0.025  | 0.117  | 0.126       |                                                                                                                         |
|                 | ***/                  | 7<br>7 | 0.020  | 0.031  | 0.019       |                                                                                                                         |

FOR CLP USE ONLY?

| · · / ·      |           |                  |                   |            |        |                                                    | <b></b> ]. |  |  |
|--------------|-----------|------------------|-------------------|------------|--------|----------------------------------------------------|------------|--|--|
| ATOMIC ABS   | ORPTION E | LEMENT           | DATE ANALYZED:    | 4-27-90    | CLIENT | CLIENT NAME:                                       |            |  |  |
| ••           |           |                  | ANALYZED BY:      | J.Z.M      | -      |                                                    |            |  |  |
| ABBREVIATI   | ни        | g-U              | TIME:             | 07:55      |        |                                                    |            |  |  |
|              |           | L L              | CALCULATED BY:    | <u>TEM</u> | FILE # | _ FILE #:<br>_ DATE RECEIVED:<br>_ DATE COLLECTED: |            |  |  |
|              |           |                  | DATA REVIEWED BY: |            | DATE R |                                                    |            |  |  |
|              |           |                  | ENTERED BY:       |            | DATE C |                                                    |            |  |  |
|              |           |                  | INSTRUMENT ID #   | 3          | HIGH S | HIGH STD. CONC.: 10                                |            |  |  |
|              |           |                  |                   |            | ABS:   |                                                    | 0.240      |  |  |
|              | •         |                  | MDLO              | 50002      | R FACT | OR:                                                | Linre      |  |  |
| · · · ·      |           |                  |                   |            | Rec    |                                                    |            |  |  |
| Sample       | Results   | Units            | Comments          | True       | Found  | % REC Du                                           | plicate    |  |  |
| BLK          | N.P       | ug l             |                   |            |        |                                                    |            |  |  |
| 5+210        | 10.00     | <u> </u>         |                   |            | . 46   |                                                    |            |  |  |
| std7         | 6.93      |                  |                   |            |        |                                                    |            |  |  |
| StdS         | 5.04      |                  |                   |            |        |                                                    |            |  |  |
| <u>5td3</u>  | 3.06      |                  | •                 |            |        |                                                    |            |  |  |
| 5+01         | 1.00      |                  |                   |            |        |                                                    |            |  |  |
| 5.06HZ       | 0.25      |                  |                   |            |        |                                                    |            |  |  |
| EPA          | 2.89      | 4                | WS 379            | 3.00       |        | 96                                                 |            |  |  |
| 12702        | 0.0114    | mall             |                   |            |        |                                                    | 0.015      |  |  |
| 15247        | Nip       |                  | ****              |            |        | -                                                  |            |  |  |
| BLK<br>Solid | N.D       | J                |                   | ·····      |        |                                                    |            |  |  |
| 66154        | N.D       | mally            | 0.07              |            |        | -                                                  |            |  |  |
| 15375        | N.D       | mall             |                   |            |        |                                                    |            |  |  |
| 15377        | Q.M_      |                  | 0.004             |            |        |                                                    |            |  |  |
| 15376        | ND        | - <u>  · · /</u> |                   | 5.00       | 4.43   | -geg -                                             |            |  |  |
| 15503        | N.D       | ke or dup        |                   | 5,00:      | 4.60   | 92                                                 |            |  |  |

A – Analytical spike or duplicateM – Matrix spike or duplicate

38 WPPLABFM pg 1

MN-COMP 0044091

FOR CLP USE ONLY? ]

| MIC A                   | BSORPTION                                                                                                       | ELEM          | ENT         | DATE ANALYZED:                        |      | 4-27-9       |        | NAME:      |                                         |                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-------------|---------------------------------------|------|--------------|--------|------------|-----------------------------------------|-----------------------------------------------|
| ABBREVIAT               | LION                                                                                                            | 19-1          | U           | ANALYZED BY:                          |      | JEM          |        | T NUMB     | ER:                                     |                                               |
| 7                       | a contraction de la c | 5             |             | CALCULATED BY:                        |      | <u>J.S.S</u> | PROJEC | T NAME     | • `                                     |                                               |
|                         |                                                                                                                 |               |             | DATA REVIEWED BY:                     |      |              |        |            |                                         |                                               |
|                         |                                                                                                                 |               |             | ENTERED BY:                           |      | JEN          |        |            |                                         |                                               |
|                         |                                                                                                                 |               |             | INSTRUMENT ID #                       |      | 3            | DATE C |            |                                         | 10                                            |
|                         |                                                                                                                 |               |             |                                       |      |              | ABS:   |            |                                         | 0.240                                         |
| . 8<br>                 | •                                                                                                               |               |             | MDL O                                 | 2.00 | 7            | R FACT |            |                                         | Linry                                         |
| Comple                  |                                                                                                                 | /             | lua L       | ists                                  | 1    | Spike        | Rec    |            |                                         | and the second second second second second    |
| Sample                  | Results                                                                                                         | Un1           | lts         | Comments                              |      | True         | Found  | % REC      | Dup]                                    | lcate                                         |
| 14281                   | N.D                                                                                                             | m             | 1K          | 0.0008<br>Leachatr                    |      | 5.00         | 4.47   |            | · • • • • • • • • • • • • • • • • • • • |                                               |
| 14293                   | NID                                                                                                             |               | ر<br>       |                                       |      | 5.00         | 4.65   | 93         |                                         |                                               |
| 14015                   | N.D                                                                                                             |               |             |                                       |      | 5.00         | 4.91   | 96         |                                         |                                               |
| 15189                   | N.P                                                                                                             | -             |             |                                       |      |              |        |            |                                         |                                               |
| 15189                   | 1                                                                                                               | -             |             |                                       |      |              |        |            | · · · · · · · · · · · · · · · · · · ·   |                                               |
| 14886                   | N.P                                                                                                             |               |             | · · · · · · · · · · · · · · · · · · · |      |              |        |            |                                         | ananan aranganan arang di sa sa               |
| 14697                   | N,D                                                                                                             |               |             |                                       |      | 5.00         | 4.91   | 98         |                                         |                                               |
| 14683                   | N.D                                                                                                             |               |             |                                       |      |              | ······ |            |                                         |                                               |
| 14689                   | N.D                                                                                                             |               | -           |                                       |      |              |        |            | - <b></b>                               | nan sa an an an an an an an an an an an an an |
| 5.                      | 4.95                                                                                                            | Lug           | (           |                                       |      |              |        |            |                                         |                                               |
| 14690                   | N:D                                                                                                             | 1009          |             |                                       |      |              |        |            |                                         |                                               |
| 14691                   | NIP                                                                                                             |               | <b>)</b>    |                                       |      |              |        |            |                                         |                                               |
| 14692                   | NIP                                                                                                             | -             |             |                                       |      |              |        |            |                                         |                                               |
| 14864                   | N.P                                                                                                             |               |             |                                       |      |              |        |            | •••                                     | nin van konsta                                |
| 14796                   | N.D                                                                                                             |               |             | Leachate                              |      | 5.00         | 5.04   | 10)        |                                         |                                               |
| 14868                   | N.P                                                                                                             |               | Ĺ.          | •                                     |      |              |        |            |                                         |                                               |
| A - Analy<br>Mir Matrix | cical spii<br>( spike <sub>n</sub> oi                                                                           | ke or<br>∶dup | dup<br>llca | licate<br>te                          |      |              |        | , <u>.</u> |                                         |                                               |

1466 N.P. 38 HPPLABFM pg 1

. -

|                          | •         |               |               |                   |            | FUR CL   | P USE U                                | NLY!                                               |
|--------------------------|-----------|---------------|---------------|-------------------|------------|----------|----------------------------------------|----------------------------------------------------|
| MIC AB                   | SORPTION  | ELE           | MENT          | DATE ANALYZED:    | 4-27-90    | CLIEN    | T NAME:                                | · • • • • • • • • • • • • • • • • • • •            |
|                          |           | ,             |               | ANALYZED BY:      | <u>MSL</u> |          |                                        | ER:                                                |
| ABBREVIAT                | ION       | dg-           | -4            | TIME:             | 07:55      | PROJE    | CT NAME                                | •                                                  |
|                          |           | -             |               | CALCULATED BY:    | JEm        | FILE /   | 7:                                     |                                                    |
|                          |           |               |               | DATA REVIEWED BY: |            | DATE I   | RECEIVE                                | D:                                                 |
|                          |           |               |               | ENTERED BY:       | TEN        | DATE (   | COLLECT                                | ED:                                                |
|                          |           |               |               | INSTRUMENT ID #   | 3          | HIGH S   | STD. CO                                | NC.: 10                                            |
|                          |           |               |               |                   |            | ABS:     |                                        | 0.240                                              |
| · .                      | •         |               |               | MDL <u>O</u> .    | 00-5       | R FAC    | FOR:                                   | Lincey                                             |
| Sample                   | Results   |               | Analy<br>nits | comments          | Spik       | e_Rec    |                                        | 1                                                  |
|                          |           |               |               | COmments          | True       | Found    | % REC                                  | Duplicate                                          |
| 14870                    | N.P       | .r            | nak.          |                   |            |          |                                        |                                                    |
| 14874                    | N.P       |               | $\gamma$      |                   |            | ·        | •• • • • • • • • • • • • • • • • • • • |                                                    |
| 14876                    | N.D       |               |               |                   |            | -        |                                        |                                                    |
| 14679                    | R.D       |               |               |                   | 5.00       | 5.04     | 101                                    |                                                    |
| 14840                    | N,P       |               |               | -                 | 5.00       | <u> </u> | 101                                    |                                                    |
| 14882                    | N.P       |               |               |                   |            |          | -                                      |                                                    |
| 14483                    | NID       |               |               |                   | e          |          | ·· [                                   |                                                    |
| EPA                      | 3.11      |               | 1             | WS 379            | 500        |          | 104                                    |                                                    |
| 14885                    |           |               |               |                   |            |          |                                        | arten dantantera di si kananan kanangan da sep dan |
| 14887                    | N.D       |               |               |                   |            |          | • • • • • • • • • • • • • • • • • • •  |                                                    |
| 14885                    | N.D       |               |               |                   |            |          |                                        |                                                    |
| 14891                    | N.P       |               |               |                   | 5.00       | 4.78     | 105                                    |                                                    |
| 14893                    | ·N.P      |               |               |                   |            |          |                                        |                                                    |
| HANS!                    | NP        |               |               |                   |            | 4        |                                        | - • • • <del>• • • • • • • • • • • • • • • •</del> |
| 14903                    | 0.0003    |               |               |                   |            |          |                                        |                                                    |
| 14940                    | NA -      | $\mathcal{L}$ |               |                   |            |          | ·  ·                                   |                                                    |
| A – Analyt<br>M – Matrix | ical spik | e du          | r dupl        | Icate             |            |          | ·I                                     |                                                    |
| M - Matrix               | . KITE OI | uu            | φιιται        | . C               |            | MN-CC    | MP 004                                 | 4093                                               |

FOR CLP USE ONLY? I

| • • • •          |           |           |           |                 |            |          |          | FOR ( | CLP USE  | ONLY? 1 I                                     |
|------------------|-----------|-----------|-----------|-----------------|------------|----------|----------|-------|----------|-----------------------------------------------|
| . OMIC /         | ABSORPTIO | N ELEMEN  | T DAT     | E ANA           | LYZED:     | 4-2-     | 1_9      | 2     |          |                                               |
| ABBREVIA         | TION      | 111       | ANA       | LYZED           |            |          |          |       | NT NAME  | •                                             |
|                  | -         | ng-4      | TIM       |                 |            | 07'      | <u> </u> | FRUJ  |          | <br>BER:                                      |
| 1.<br>1.<br>1. v |           |           |           | CULATE          |            |          | m        |       |          | Ε                                             |
| # 5 <sup>'</sup> |           |           | DAT       | A REVI          | EWED BY:   |          |          |       |          |                                               |
|                  |           |           | ENTI      | ERED B          | Y:         | <u> </u> | $\sim$   | DATE  | RECEIV   | ED:                                           |
| ź,               |           |           | INST      | <b>TRUMEN</b>   | T ID #     | 3        |          | DATE  | COLLECT  | 1ED:                                          |
|                  |           |           |           |                 |            |          |          | HIGH  | STD. CO  | DNC.: 10                                      |
| 22<br>22         | •         |           |           | ł               | MOL O      | 5000     |          | ABS:  |          | 0.240                                         |
|                  | 1         | Ana       | luce la   |                 |            |          |          | R FAC | TOR:     | Linney                                        |
| ample            | Results   | Units     | vsis      | Comme           | nte        |          | Spik     | e_Rec |          | · · · · ·                                     |
|                  |           | ·}        |           |                 |            | True     |          | Found | 1% REC   | Duplicate                                     |
| 4942             | -N.D      | myll      | 1         |                 |            | 5.0      |          |       |          |                                               |
| 14944            | N.P       |           |           |                 |            |          | 20       | 4.82  | 96       | N.D                                           |
| 4946             | NP        |           |           |                 |            |          |          |       |          | -                                             |
| 14947            | NP        |           |           |                 |            |          |          |       |          | · · · · · · · · · · · · · · · · · · ·         |
| 4949             | N.P       |           |           |                 |            |          |          | ~     |          |                                               |
| 1951             | N.P       |           |           |                 |            |          |          | · .   |          | na an an an an an an an an an an an an a      |
| 14675            | NiD       |           |           |                 | -          |          |          |       |          | , damananan ang ang ang ang ang ang ang ang a |
| 5. 7             | T         |           |           | Disc            | 2          |          |          |       | [·]      |                                               |
| -1611            | N.D       |           |           |                 |            |          |          |       | -        |                                               |
| EPA -            | 3.11      | my K      | W         | 4               | 375 concla | 0 2 60   |          |       |          |                                               |
| 4679             | N.D       | mar       |           |                 |            | 3.00     | -        |       | 104      |                                               |
| 1681             | N.D       | Y'I       |           |                 |            | 5.00     | ]_       | 5.04  | 161      |                                               |
| -1792            | Nip       |           | 1         | 0.0             | 7008       | 5.60     |          | 4.00  | 101      | •                                             |
| BLK<br>Her       | N.P       |           |           | <u>- 4 ça ç</u> | hate       | 5.00     | _        | 4.43  | 84       |                                               |
| ubie BLA         | N.D       | ug _      |           |                 |            | 5.00     | _ _      |       |          |                                               |
|                  |           | ×         |           |                 |            | 5.00     |          | 4.67  | 47<br>44 |                                               |
|                  | 0.0076 m  | 19/m3_    |           | <u>H</u>        |            |          |          |       |          |                                               |
| Analytic         | al spike  | or dunl   | Lata      |                 |            |          |          |       |          |                                               |
| - Matrix s       | pike or d | luplicate | eule<br>! |                 |            |          |          |       |          |                                               |

IPPLABFM pg 1

•

FOR CLP USE ONLY?

1

| , c A                    | BSORPTION        | ELEMENT             | DATE A       | NALYZED:   |     | 4-27-90      | 5     | CLICN                                  | NAME:                                  |                                        | - <b> ]</b> _                          | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|------------------|---------------------|--------------|------------|-----|--------------|-------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                  |                     | ANALYZI      | •          |     | JEM          |       |                                        |                                        |                                        |                                        | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABBREVIA                 | TION             | Hg-Y                | TIME:        |            |     | 07:55        |       | PROJEC                                 | T NAME                                 | CR:                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                  | ~                   | CALCULA      | TED BY:    |     | JEN          |       | FILE #                                 |                                        | •                                      |                                        | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                  |                     | DATA RE      | VIEWED BY: |     |              |       |                                        | ECEIVE                                 | <br>n .                                |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                  |                     | ENTERED      | BY:        | •   | オシレ          | ~     | DATE C                                 | OLLECT                                 | U                                      | •••••••••••••••••••••••••••••••••••••• | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                  |                     | INSTRUM      | IENT ID #  |     | 3            |       |                                        |                                        |                                        |                                        | <del>-</del> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |                  |                     |              |            |     |              |       | ABS:                                   |                                        | 16                                     | 0.240                                  | . –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | •                |                     |              | MDL O.     | 000 | 2            |       | R FACT                                 | OR:                                    |                                        | Linr                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | 1                | Anal                | veic         |            |     |              |       |                                        |                                        |                                        |                                        | <b>ァ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample                   | Results          | Units               |              | mments     | :-  | Spik<br>True | e Rec |                                        | 1. 050                                 |                                        |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                        | .                |                     |              |            |     |              | -     | ound                                   | % REC                                  | Dup1                                   | cate                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15379                    | 6.043            |                     |              | CH HS      |     |              |       |                                        |                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15380                    | 0.0168           |                     |              |            |     |              |       |                                        | • • ·                                  |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15361                    | 0.6223           |                     |              |            |     |              |       |                                        | • • • • • • • • •                      |                                        |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15362                    | 0.0133           |                     |              |            |     |              |       |                                        |                                        |                                        |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| sitd 5                   | 4.95             | igle                |              |            |     |              |       |                                        |                                        |                                        |                                        | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |
| 15055                    | 50.0031          |                     | R            | ł          |     |              |       |                                        |                                        | • •••••••••••••••••••••••••••••••••••• |                                        | Sector And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EPA                      | 2.89             | ugh                 | ws           | 378 conc   | 18  | 3.00         |       |                                        | 96                                     |                                        |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15056                    | 0.6367           |                     | T            | HHA        |     | <u> </u>     |       |                                        | <u></u>                                |                                        |                                        | an in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15057                    |                  |                     | )            | .)         |     |              |       |                                        |                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1505%                    | 0.0542           | •                   |              | -          |     |              |       |                                        |                                        |                                        |                                        | r ennydigt 🔒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15060                    | <0.25            | JAG _               |              |            |     |              |       |                                        | •••••••••••••••••••••••••••••••••••••• |                                        | • • • •                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EPA                      | 7.98             | ugth.               | <u> </u>     | s 378      |     | 3.00         |       |                                        | 601                                    | · • • · · · · · · · · ·                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Solid                    | N.P              | mg/K2               |              | -          |     |              |       |                                        | -                                      |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14156                    | N.P              |                     |              |            |     |              |       |                                        |                                        |                                        |                                        | ŗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14157                    | NP               | <u>\</u>            |              |            |     |              |       | {.<br>                                 |                                        |                                        |                                        | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15383                    | <u> &lt;0.25</u> | uq                  | . 7          | EH HS      |     |              |       |                                        |                                        |                                        |                                        | Reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A — Analyt<br>M — Matrix | spike or         | e oc dup<br>duplica | licate<br>te |            |     |              |       | ······································ |                                        |                                        |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

38 WPPLABFM pg 1

|                                                                         |                                                                   |                       | чи.                                                                                            |                                                   | FOR                                                |                                                           |           |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-----------|
| -                                                                       | ABSORPTION                                                        |                       | ANALYZED BY:<br>TIME:<br>CALCULATED BY:<br>DATA REVIEWED BY:<br>ENTERED BY:<br>INSTRUMENT ID # | <u>لرمیں میں میں میں میں میں میں میں میں میں </u> | 90 CLIEN<br>SM PROJE<br>SS PROJE<br>M FILE<br>DATE | CT NUMI<br>CT NAME<br>#:<br>RECEIVE<br>COLLECT<br>STD. CO | :         |
| Ample                                                                   | Results                                                           | Analy<br>Units        | Comments                                                                                       |                                                   | ke <u>Rec</u><br>Found                             |                                                           |           |
| 1370)<br>-4476<br>-3412<br>4572<br>BLK<br>5410<br>-2415<br>-401<br>-210 | 1.8<br>N.D<br>O.17<br>N.D<br>N.D<br>10.36<br>4.95<br>1.04<br>7.95 | my/Ks                 | 0.0%                                                                                           | 2.00                                              | 7.01<br>7.10                                       | 107<br>105                                                | Duplicate |
| Analytic<br>Matrix s                                                    | al spike<br>pike or d<br>pg 1                                     | or duplic<br>uplicate | cate                                                                                           |                                                   | MN-COMF                                            | 2 00440                                                   | 96        |

- ---

ANALYSIS:

FOR CLP USE ONLY?

| ATOMIC AB                               |                 |          | _ TIME:<br>CALCULATED BY: _<br>DATA REVIEWED BY:<br>ENTERED BY:<br>INSTRUMENT ID # | MK6<br>20:25<br>Meg-<br>Izr<br>Meg- | PRO<br>PRO<br>FIL<br>DAT<br>DAT<br>HIG<br>ABS | DJECT NAME<br>E #:<br>E RECEIVE<br>E COLLECT<br>H STD. CO | ER:<br><br>D:<br>UD:<br>NC.: _ |                                           |
|-----------------------------------------|-----------------|----------|------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------------------|
| Sample                                  | Results         | <u> </u> | Comments                                                                           |                                     | Spike Rec                                     | d 1% REC                                                  | Dupli                          | cate E                                    |
| 0.100.0td                               |                 | mgle     | 101.0%                                                                             |                                     |                                               |                                                           |                                | <sup>7</sup>                              |
| 1.00.0td                                |                 | -        | 97.9%                                                                              | ·····                               | ······                                        |                                                           |                                |                                           |
| 2.00 ord                                |                 |          | 98.0°%                                                                             | ·                                   |                                               |                                                           |                                |                                           |
| 4.00 std                                | .3.95           |          | 98.8%                                                                              |                                     |                                               |                                                           |                                | <u>ج</u> ،                                |
| EPA 283                                 | 3.46            |          | <u>TV=3.25 106.50</u>                                                              | 10                                  |                                               |                                                           | <br>· •                        |                                           |
| ICP Blank                               | 0.023           | <u> </u> | /                                                                                  | -                                   | ······                                        |                                                           |                                |                                           |
|                                         | 0.000           | <u> </u> | SND                                                                                |                                     |                                               |                                                           |                                | 2                                         |
|                                         | 0.023           |          | <u>)</u>                                                                           |                                     |                                               |                                                           |                                | · · · · · · · · · · · · · · · · · · ·     |
| Blank                                   | 0.036           |          | 2                                                                                  | ·····                               |                                               |                                                           |                                |                                           |
|                                         | 0032            |          | 2ND                                                                                |                                     |                                               |                                                           |                                | 1                                         |
|                                         | 0.073           |          | )                                                                                  |                                     |                                               |                                                           |                                | ••••••••••••••••••••••••••••••••••••••    |
| 13061                                   | 13              | mgiky    | ICP MDL= a.                                                                        | 5                                   |                                               |                                                           |                                |                                           |
| 13063                                   | 180             |          | i                                                                                  | 8.25                                | - 8,50                                        | 103.0                                                     | 8.95                           | 3.6 PM                                    |
| 13412                                   | 24              |          |                                                                                    | 1.95                                |                                               | 101.0                                                     | 1.97                           | 0.0K                                      |
| 14686                                   | ND              | male     |                                                                                    |                                     |                                               | 100. <u>9</u>                                             | *********                      | <u></u>                                   |
| <u>14687</u><br>A - Analy<br>M - Matri: | ND<br>tical spi | ke or du |                                                                                    |                                     | <u>```</u>                                    |                                                           |                                | stand and and and and and and and and and |

38 WPPLABFM pg 1

MN-COMP 0044097

έż

5 ×

-----

FOR CLP USE ONLY?

ATOMIC ABSORPTION ELEMENT 5-10.90 DATE ANALYZED: CLIENT NAME: MKG PROJECT NUMBER:\_\_\_\_\_ ANALYZED BY: ABBREVIATION CY, CY-N, 20:25 PROJECT NAME. TIME: Meg Cr-D CALCULATED BY: FILE #: DATE RECEIVED: DATA REVIEWED BY: Meg ENTERED BY: \_\_\_\_ DATE COLLECTED: INSTRUMENT ID # HIGH STD. CONC.: ABS: MOL OI **R** FACTOR: Analysis Spike Rec Sample Results Units Comments True Found % REC Duplicate myle ICP 14688 ND ND) 14689 14690 ND NI) 141091 14692 ND 1.00 std 0.972 97.2% 98.5% 2.00 old 1.97 ND 15966 under RLRA S 1.00 0.988 98.8 myKy 14208 rev 14 recheck mgie 17266 ND 17463 ND 17779 ND 102 1.15 112.7 1.19 1.7R 16/10 ND ND 16171 16172 ND 16173 ND : A - Analytical spike or duplicate MN-COMP 0044098 M - Matrix spike or duplicate

FOR CLP USE ONLY?

| ATOMIC ABS |           |           | ANALYZED BY:<br>TIME:<br>CALCULATED BY:<br>DATA REVIEWED BY<br>ENTERED BY:<br>INSTRUMENT ID # | МК<br>20:<br>Ме | 6<br>25<br>G                          | PROJEC<br>PROJEC<br>FILE #<br>DATE R | T NUMBE<br>T NAME.<br>:<br>ECEIVED<br>OLLECTE<br>TD. CON |                                                                                                                       |
|------------|-----------|-----------|-----------------------------------------------------------------------------------------------|-----------------|---------------------------------------|--------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|            |           | Analy     | 212                                                                                           |                 | Spike                                 | Rec                                  |                                                          | 1                                                                                                                     |
| Sample     | Results   | Units     | Comments                                                                                      |                 | True                                  | Found                                | % REC                                                    | Duplicate                                                                                                             |
| 16174      | ND        | mgle      |                                                                                               |                 |                                       |                                      | •                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                 |
| 16175      | ND        |           |                                                                                               |                 |                                       |                                      |                                                          |                                                                                                                       |
| 16176      | ND        |           |                                                                                               |                 |                                       |                                      |                                                          |                                                                                                                       |
| 16177      | ND        | ***       |                                                                                               |                 |                                       |                                      |                                                          |                                                                                                                       |
| 16178      | ND        |           |                                                                                               |                 |                                       |                                      |                                                          |                                                                                                                       |
| 0.100 std  |           |           | 10210%                                                                                        |                 |                                       |                                      |                                                          |                                                                                                                       |
| 1.00 std   | 0.990     |           | 99.0%                                                                                         |                 |                                       |                                      |                                                          |                                                                                                                       |
| 2.00.0td   |           |           | 100.0%                                                                                        | ······          |                                       |                                      |                                                          | <u><u><u>v</u></u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u>v</u><u></u></u> |
| 4.00 Atd   |           |           | 100.0%                                                                                        |                 |                                       |                                      |                                                          |                                                                                                                       |
| EPA 283    |           |           |                                                                                               | 07.8%           |                                       |                                      |                                                          | <                                                                                                                     |
| CP14 201   | 2.00      |           | 1 0.03                                                                                        | 11010           | · · · · · · · · · · · · · · · · · · · |                                      |                                                          |                                                                                                                       |
|            |           |           | -                                                                                             |                 |                                       |                                      |                                                          |                                                                                                                       |
|            | -         |           |                                                                                               |                 |                                       | •                                    |                                                          |                                                                                                                       |
|            | -         |           | -                                                                                             |                 |                                       | <u> </u>                             |                                                          |                                                                                                                       |
|            |           |           | -                                                                                             |                 | ·                                     |                                      |                                                          | یے ۵<br>                                                                                                              |
|            | -         |           |                                                                                               |                 |                                       |                                      |                                                          |                                                                                                                       |
| A _ Analy  | vtlcal sn | lke ör di | l<br>Inlicate                                                                                 |                 | •                                     |                                      |                                                          |                                                                                                                       |

ANALYSIS:

80 - 1 1 1

FOR CLP USE ONLY?

| ATOMIC ABS |                |          | DATE ANALYZED:<br>ANALYZED BY:<br>TIME:<br>CALCULATED BY:<br>DATA REVIEWED BY<br>ENTERED BY:<br>INSTRUMENT ID # | <br><br> | KG<br>):55<br>G | PROJEC<br>FILE #<br>DATE R<br>DATE C | T NUMBE<br>T NAME.<br>:<br>ECEIVED<br>OLLECTE<br>TD. COM | D:       |         |
|------------|----------------|----------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------------------------------|----------------------------------------------------------|----------|---------|
| Sample     | Results        | Analy    |                                                                                                                 |          | Splk            | e_Rec                                |                                                          |          |         |
| Samp re    |                | Units    | Comments                                                                                                        |          | True            | Found                                | % REC                                                    | Duplicat | te<br>  |
| 0.100 otd  | 0.119          | myle     | 119.0%                                                                                                          |          | •••             | ·                                    |                                                          |          |         |
| 1.00.0td   | 0.977          |          | 97.7%                                                                                                           |          |                 |                                      |                                                          |          | •       |
| 2.00.0td   | 2.01           |          | 100.5%                                                                                                          |          |                 |                                      |                                                          |          |         |
| 4.00 std   | 4.04           |          | 101.0%                                                                                                          |          |                 |                                      |                                                          |          |         |
| EPA 283    | 3.48           |          |                                                                                                                 | 07.1%    |                 |                                      |                                                          |          |         |
| 17260      | ND             |          |                                                                                                                 |          |                 |                                      |                                                          |          | ×       |
| 17262      | ND             |          | - <sup>6</sup>                                                                                                  |          |                 |                                      | · · · · · · · · · · · · · · · · · · ·                    |          | • ••••• |
| 17264      | NP             |          |                                                                                                                 |          | 1.00            | 1.09                                 | 109.0%                                                   | 1.10     | 0.46    |
|            |                |          |                                                                                                                 |          |                 | ×                                    |                                                          |          |         |
|            |                |          |                                                                                                                 |          |                 |                                      |                                                          |          |         |
|            |                |          |                                                                                                                 |          |                 |                                      |                                                          |          |         |
|            | •              |          |                                                                                                                 |          |                 |                                      |                                                          |          |         |
|            |                |          |                                                                                                                 |          |                 |                                      |                                                          | *******  |         |
|            |                |          |                                                                                                                 | · ·      |                 |                                      |                                                          |          |         |
|            |                | -        |                                                                                                                 |          |                 |                                      | -{·                                                      |          |         |
|            |                | · ·      |                                                                                                                 |          |                 |                                      |                                                          |          |         |
| A – Analy  | l<br>tical spi | ke or du | plicate                                                                                                         |          | <b>_</b>        | <b></b>                              | _                                                        | I        |         |

M - Matrix spike or duplicate

MN-COMP 0044100

### ANALYSIS:

FOR CLP USE ONLY?

|                        |             |              | 4<br>4                           |                                       |                |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|-------------|--------------|----------------------------------|---------------------------------------|----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATOMIC ABS             | ORPTION     | ELEMENT      | DATE ANALYZED:                   | 5-10-90                               | CLIENT         | NAME:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |             |              | ANALYZED BY:                     | МКЬ                                   | PROJEC         | CT NUMBE | R:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABBREVIATI             | on <u>A</u> | 19=N         | TIME:                            |                                       |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |             | 0            | CALCULATED BY:                   | Meg                                   | FILE /         | 7:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |             |              | DATA REVIEWED BY:                |                                       |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |             |              | ENTERED BY:<br>INSTRUMENT ID # _ | Meg                                   | DATE (         |          | 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |             |              | INSTRUMENT ID # _                | <u> </u>                              | HIGH :<br>ABS: | STU. CUN | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | -           |              | MDL _0                           | .04 mb/e                              | R FAC          | TOR:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |             | <u>Analy</u> | sls                              | Sp1                                   | ke_Rec         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample                 | Results     | Units        | Comments                         | True                                  | Found          | % REC    | Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.040.0td              | 0.040       | myle         | 100.0%                           |                                       |                |          | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.500 AIU              | 0.482       |              | 96.4%                            |                                       |                |          | * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LOD, otd               | .991        |              | 99.1%                            |                                       |                |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.00.0ta               | 202         |              | 101.0º./0                        |                                       |                |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EPA 283                | 3.04        |              | TV=3.00 101.3                    | 5%/0                                  |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>CCPBlunk</u>        | D.002       |              | $\sum$                           |                                       |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u> </u>               | 0.007       |              | SND                              |                                       |                |          | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u> </u>               | 0.003       |              | <u> </u>                         |                                       |                |          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |
| 13061                  | ND          | mgikg        | MDL= 1.0                         |                                       |                |          | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13063                  | ND          |              |                                  |                                       |                |          | * *<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13412                  | ND          |              |                                  | 0.511                                 | 0.484          | 94.7     | 0.487 031E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14686                  | ND          | male         |                                  |                                       |                |          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14687                  | ND          |              |                                  |                                       |                |          | £ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14688                  | ND          |              |                                  | · · · · · · · · · · · · · · · · · · · |                |          | ير ـــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14689                  | ND          | -            |                                  |                                       |                |          | Р 7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14690                  | ND          |              |                                  |                                       |                |          | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A – Analy<br>M – Matri |             |              |                                  | M                                     | N-COMP 004     | 4101     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### ANALYSIS:

~

ş

in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

Ser de s

FOR CLP USE ONLY?

| ATOMIC AB | SORPTION I                            | ELEMENT | DATE ANALYZED:                   | 5-10    | )-90   | CLIENT        | NAME:                     |           |  |
|-----------|---------------------------------------|---------|----------------------------------|---------|--------|---------------|---------------------------|-----------|--|
|           |                                       |         | ANALYZED BY:                     |         |        |               |                           |           |  |
| ABBREVIAT | ION <u>Aq</u>                         | - N     | _ TIME:                          |         |        | PROJECT NAME. |                           |           |  |
|           | J                                     |         | CALCULATED BY:                   | MeG     | Ĵ      | FILE //       | FILE #:<br>DATE RECEIVED: |           |  |
|           |                                       |         | DATA REVIEWED BY:                |         |        | DATE R        | ECEIVEC                   | ):        |  |
|           |                                       |         | ENTERED BY:<br>INSTRUMENT ID # _ | Meg     |        | DATE C        | OLLECT                    | D:        |  |
|           |                                       |         | INSTRUMENT ID # _                | 3       |        | HIGH S        | TD. CON                   | IC.:      |  |
|           |                                       |         |                                  | - + M(- |        | ABS:          |                           |           |  |
|           |                                       |         | MOL(                             | 2.04 "" | L      | R FACT        | OR:                       |           |  |
|           |                                       |         | ysls                             |         | Sp1    | ke_Rec        |                           |           |  |
| Sample    | Results                               | Units   | Comments                         |         | True   | Found         | X REC                     | Duplicate |  |
| 4691      | ND                                    | mgle    |                                  |         | -      |               |                           |           |  |
| 14692     | ND                                    |         |                                  |         |        |               |                           | •         |  |
| 15966     | ND                                    |         | logged under RIRA                | 8 0     | ).507- | 0.480         | 95.6                      |           |  |
| 0.040.0td | 0.038                                 |         | 95.0%                            |         |        |               |                           |           |  |
| 0.500 old | 0.488                                 |         | 97.6%                            |         |        |               |                           |           |  |
| .00 of d  | 1.00                                  |         | 100.0%                           |         |        |               |                           |           |  |
| 2.00.01d  | 2.05                                  |         | 102.5%                           |         |        |               | -                         |           |  |
| PA 283    | 3.02                                  |         | TV=3.00 100                      | ).7%    |        |               |                           |           |  |
|           | •                                     |         |                                  |         |        |               |                           |           |  |
|           | · · · · · · · · · · · · · · · · · · · |         |                                  |         |        |               | -                         |           |  |
| 4         | •                                     |         |                                  |         |        |               |                           |           |  |
|           | -                                     |         |                                  |         |        |               |                           |           |  |
|           |                                       | -       |                                  |         | ****   |               |                           |           |  |
|           | -                                     |         |                                  |         |        |               |                           |           |  |
|           |                                       |         |                                  |         |        |               |                           |           |  |
|           | ź                                     |         |                                  |         |        |               |                           |           |  |

M - Matrix spike or duplicate

MN-COMP 0044102

FOR CLP USE ONLY?

1. 1

## ANALYSIS:

| ATCMIC ABS           | SORPTION E            | LEMENT                 | DATE ANALYZED: 5-<br>ANALYZED BY: |         | CLIENT           |                     | •           | ан н<br>1<br>1<br>1<br>1 |
|----------------------|-----------------------|------------------------|-----------------------------------|---------|------------------|---------------------|-------------|--------------------------|
| ABBREVIATI           | ION CUC               | U-N.                   |                                   |         |                  |                     |             | 1                        |
|                      | •                     | D                      | CALCULATED BY:                    | Meg     | FILE #:          |                     |             |                          |
|                      |                       |                        | DATA REVIEWED BY:                 |         |                  |                     |             |                          |
|                      |                       |                        |                                   | Meg     |                  |                     |             |                          |
|                      |                       |                        | INSTRUMENT ID #                   | <u></u> | HIGH S<br>ABS:   | ID. CONC            | <u> </u>    | 8° 2                     |
|                      |                       |                        | MDL                               | 21 mg/e | R FACT           | OR:                 | <u>0.10</u> | 4 1                      |
|                      | Results               |                        | sisComments                       | Spik    | e_Rec<br>  Found | 17 REC I            | Duplicate   |                          |
| Sample               |                       |                        | COmment CS                        |         |                  |                     |             |                          |
| 0.010.std            | 0.011                 | myle                   | 110%                              |         |                  |                     |             | 1 · 1                    |
| 1.00 std             | 0.978                 |                        | 97.8%                             |         |                  |                     |             | -                        |
| 2.00std              | 1.99                  | -                      | 99.5%                             |         |                  |                     |             | -                        |
| 4.00 otd             | 4.01                  |                        | _100.2%                           |         |                  |                     |             |                          |
| ERA 9973             | 0.117                 |                        | TV=0.171 96.7%                    |         | <u> </u>         |                     | -           | <b>-</b> r -             |
| ICP Blank            | 0.080                 |                        | )                                 |         |                  |                     |             |                          |
| ILP Blank            | 0.084                 |                        | 0.089                             |         |                  |                     | -           | - Josephine -            |
| ICP Blank            | 0.103                 |                        | <u>)</u>                          |         |                  |                     |             | 1 U                      |
| Blank                | 0.039                 |                        | 2                                 |         |                  |                     | •           | Service read             |
| blank                | 0.016                 |                        | 0.023                             |         |                  |                     | ·           | • •                      |
| Blank                | 0.015                 | -                      | )                                 |         |                  |                     |             | and a second             |
| 13061                | 18                    | mglkg                  | ICP MDL=0.75                      | 1.43    |                  | - 94.5              |             |                          |
| 13063                |                       | -                      | ICP                               | 2.43    | _135             | <u>55.6</u><br>81.4 | 1.31 1.4R   | 10                       |
| 13412                | 8.8                   |                        | ICP                               | 1.35    |                  | 50.2                | 1.16 0.79   | <b>f</b> ::              |
| 14686                | ND                    | male                   | ILP                               |         |                  |                     |             |                          |
| 14687_               | ND                    |                        |                                   |         |                  |                     |             | Harrison - Ma            |
| A – Anal<br>M – Matr | ytical sp<br>ix spike | ike or di<br>or duplic | sate                              |         | MN-COMP          | 0044103             |             | Bolin                    |

FOR CLP USE ONLY?

ATOMIC ABSORPTION ELEMENT <u>5-9-90</u> CLIENT NAME: DATE ANALYZED: MKG PROJECT NUMBER:\_\_\_\_\_ ANALYZED BY: ABBREVIATION CU, CU-N, 16:25 TIME: \_\_\_\_\_ PROJECT NAME. EU CALCULATED BY: Meg FILE #: DATA REVIEWED BY: DATE RECEIVED: \_\_\_\_\_ Meg DATE COLLECTED: ENTERED BY: 3 INSTRUMENT ID # \_ HIGH STD. CONC.: ABS: 0.01 Mg/e MDL R FACTOR: Analucie

|           | ]          | Analy    | vsis     | l Spik   | e_Rec |                                       | ]         |
|-----------|------------|----------|----------|----------|-------|---------------------------------------|-----------|
| Sample    | Results    | Units    | Comments | True     | Found | % REC                                 | Duplicate |
| 14688     | ND         | myle     | ICP      |          |       | · · · · · · · · · · · · · · · · · · · |           |
| 14689     | ND         |          | <u> </u> |          |       |                                       |           |
| 14690     | NO         |          |          |          |       |                                       |           |
| 14691     | 0.DI       | -        |          |          |       |                                       |           |
| 14692     | NO         |          |          |          | •     |                                       |           |
| 17127     | 0.05       | -        |          |          |       |                                       |           |
| 17168     | 0.88       |          |          |          |       |                                       |           |
| 17169     | 0.04       |          |          |          |       |                                       |           |
| 17285     | ND         | ,r       |          |          | -     |                                       |           |
| 1.00std   | 0.981      | -        | 98.1%    |          |       |                                       |           |
| 2.00.0td  | 1.97       |          | 98.5%    |          | ·     |                                       |           |
| 17286     | · 0.10     |          | ·        |          |       |                                       |           |
| 17287     | 0.10       | -        |          |          |       |                                       |           |
| 17288     | 7.0        |          |          |          |       |                                       |           |
| 17293     | 0.14       |          |          |          |       |                                       |           |
| 17475     | NO         |          |          | <b>:</b> |       |                                       |           |
| A - Analy | ytical spi | ke or du | plicate  |          |       |                                       |           |

M = Matrix spike or duplicate

MN-COMP 0044104

### ANALYSIS:

FOR CLP USE ONLY?

| ATOMÍC ABS      | SORPTION | ELEMENT | DATE ANALYZED:                        | 5-9  | -90   | CLIENT | NAME:                                   |           |            |
|-----------------|----------|---------|---------------------------------------|------|-------|--------|-----------------------------------------|-----------|------------|
|                 |          |         | ANALYZED BY:                          | МК   | 6     | PROJEC | T NUMBE                                 | R:        |            |
| ABBREVIATI      | ION CU.  | CU-N,   | TIME:                                 | 16'. | 25    | PROJEC |                                         |           |            |
|                 | 6Ú-      | +)- (3) | CALCULATED BY:                        | Me   | 4     | FILE # | ł:                                      |           |            |
|                 |          | 0       | DATA REVIEWED BY:                     |      |       |        | RECEIVED                                | ):        |            |
|                 |          |         | ENTERED BY:                           | Meg  | ý     | DATE ( | COLLECT                                 | D:        | • • • • •  |
|                 |          |         | INSTRUMENT ID #                       | 3    |       |        | STD. CON                                |           | 1          |
|                 |          |         |                                       | M/r  | 1     | ABS:   |                                         |           |            |
|                 |          |         | MDL                                   | 2.01 | 12    | R FAC  | FOR:                                    |           | <br>; >    |
|                 |          |         | sis                                   |      | Spike | Rec    |                                         |           |            |
| Sample          | Results  | Units   | Comments                              |      | True  | Found  | % REC                                   | Duplicate |            |
| 11417           | ND       | myle    |                                       |      |       |        | 1 · · · · · · · · · · · · · · · · · · · |           |            |
| 17479           | ND       |         |                                       |      |       |        |                                         |           |            |
| 17481           | ND       |         |                                       |      |       |        |                                         |           | i .        |
| 17519           | 11,000   | mglkg   |                                       |      |       |        |                                         |           |            |
| 17520           | 18       | myle    |                                       |      |       | ·      |                                         |           |            |
| 11557           | 35       | mgkg    | · · · · · · · · · · · · · · · · · · · |      | 1,72  | 1.76   | 107.3                                   | 1.74 0.5  | 1k.        |
| 0.010 std       |          | male    | 100.0%                                |      |       |        |                                         |           | ţ *        |
| 1.00, Atd       | 984      |         | 98,4 %                                |      |       | Ň      |                                         |           | \$ Z       |
| 2.00 std        | 2.00     |         | 100.00%                               |      |       |        |                                         |           | Sila i and |
| 4.00.0td        | 3.97     |         | 99.2-0/0                              |      |       | ·      |                                         |           | ••••       |
| E <u>RA9933</u> | 0.116    |         | TV=0.121 95.9"                        | 10   |       |        |                                         |           |            |
|                 |          | _       |                                       |      |       |        |                                         |           | ( *        |
|                 |          |         |                                       |      | ·     |        |                                         |           |            |
|                 |          | -       |                                       |      |       |        |                                         |           | б ж        |
|                 |          |         |                                       |      |       |        |                                         |           | L 24       |
|                 | ż        |         |                                       |      |       |        |                                         |           |            |

A – Analytical spike or duplicate M – Matrix spike or duplicate

MN-COMP 0044105

8 8 1111

s 37

FOR CLP USE ONLY?

| АТОМІС АВ                             | SORPTION                                | ELEMENT | DATE ANALYZED:                                     |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
|---------------------------------------|-----------------------------------------|---------|----------------------------------------------------|------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | Δ                                       |         | ANALYZED BY:                                       | MKG        |       | PROJECT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | ER:                                                                                                            |
| ABBREVIAT                             | ION <u>C</u>                            |         | _ TIME:                                            |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
|                                       |                                         | (       | 4) CALCULATED BY:                                  | 0          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | and a second second second second second second second second second second second second second second second |
|                                       |                                         |         | DATA REVIEWED BY                                   | :          |       | DATE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECEIVEI                               | ):                                                                                                             |
|                                       |                                         |         | DATA REVIEWED BY<br>ENTERED BY:<br>INSTRUMENT ID # | - Mch<br>2 |       | DATE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLLECT                                | ED:                                                                                                            |
|                                       |                                         |         | INSTRUMENT ID #                                    |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | NC.: <u>400</u>                                                                                                |
|                                       | •                                       |         | MDL(                                               | 0.01 mg    | le    | R FACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR:                                   | 0.70                                                                                                           |
|                                       |                                         |         | is la                                              |            |       | e_Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                |
| Sample                                | Results                                 | Units   | Comments                                           |            | True  | Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X REC                                 | Duplicate                                                                                                      |
| 0.010 otd                             | 0.009                                   | myle    | 90.0%                                              | · · · ·    |       | •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                                                                          |
| 100 ord                               | 0.983                                   | -       | 98.3%                                              |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
| 2.00 std                              | 1.99                                    |         | 99.5%                                              |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
| 4.00 atd                              | 4.01                                    | •       | 100.2%                                             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                     |                                                                                                                |
| ERA 9923                              | 0.115                                   |         | TV=0.12.1 95.                                      | 0%         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | ·                                                                                                              |
| 17260                                 | ND                                      | -       |                                                    |            |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                |
| 17762                                 | ND                                      |         |                                                    |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | -                                                                                                              |
| 172.64                                | ND                                      |         |                                                    |            | 1.00  | 0,976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.6                                  | 0.975 0.10R                                                                                                    |
|                                       |                                         | -       |                                                    |            | ····· |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                     |                                                                                                                |
|                                       |                                         | -       | -                                                  |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
|                                       | ••••••••••••••••••••••••••••••••••••••• |         |                                                    |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
|                                       | •                                       | -       |                                                    |            |       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                |
| <b></b>                               |                                         | ,       | -                                                  |            | ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |
|                                       | _                                       | _       |                                                    |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | -                                                                                                              |
| <b></b>                               |                                         |         |                                                    |            |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                |
|                                       |                                         |         |                                                    |            | :     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                |

A - Analytical spike or duplicate M - Matrix spike or duplicate

MN-COMP 0044106

38 WPPLABFM pg 1

ANALYSIS:

An and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

14 - 1 - 1 14 - 1 - 1

State in the

· · · · · ·

100

к. л Малтан ласки

haran an said

1

jari - Lia

i ŝ

÷

# FOR CLP USE ONLY?

| ANA | LYSIS | :: |
|-----|-------|----|
|     |       |    |
|     |       |    |
|     |       |    |
|     | -•    |    |

| •                 |          |                         |                                |                      |                       |                                        | · · · · · · · · · · · · · · · · · · · |
|-------------------|----------|-------------------------|--------------------------------|----------------------|-----------------------|----------------------------------------|---------------------------------------|
| ATOMIC AB         | SORPTION | ELEMENT                 | DATE ANALYZED:                 | 5-9-90               | CLIENT                | NAME:                                  |                                       |
|                   |          |                         | ANALYZED BY:                   | МКЬ                  |                       |                                        | R:                                    |
| ABBREVIAT         | ION Zn,  |                         | TIME:                          | 23:20                | PROJEC                | CT NAME.                               | -                                     |
|                   |          | ()                      |                                | • •                  | FILE /                |                                        |                                       |
|                   |          |                         | DATA REVIEWED BY               |                      |                       |                                        |                                       |
| 3                 |          |                         | ENTERED BY:<br>INSTRUMENT ID # | U                    |                       |                                        | D:                                    |
| ,                 |          |                         |                                | .10" Rigested        | ABS:                  | STD. CON                               | C.:                                   |
|                   | •        |                         | MDL Ø                          | .0.1 mg/e undigested |                       | TOR:                                   |                                       |
|                   |          |                         |                                | •                    |                       |                                        |                                       |
| Sample            | Results  | <u>Analy</u><br>  Units | <u>Sis</u><br>Comments         | Splk                 | e <u>Rec</u><br>Found | 17 REC                                 | Duplicate                             |
|                   |          |                         |                                |                      |                       |                                        |                                       |
| 0.10.std          | 0.09     | myle                    | 90.0%                          |                      |                       | ·· · · · · · · · · · · · · · · · · · · |                                       |
| 5.00 Atd          | 4.90     | -                       | 98.0%                          |                      |                       |                                        |                                       |
| 10.0std           | 9.86     |                         | 98.6%                          |                      |                       |                                        |                                       |
| 20.0.0td          | 20.0     | -                       | 100.0                          |                      |                       |                                        |                                       |
| ERA 9923          | 0.27     |                         | TV=0.28 96.4%                  | 0                    |                       |                                        | -                                     |
| I <u>CP Blunk</u> | 0.10     |                         | )                              |                      |                       |                                        |                                       |
| ICP Blunk         | 0.11     |                         | 5 0.09                         |                      |                       |                                        |                                       |
| ICP Blank         | 0.05     | -                       | <u>}</u>                       | ·                    |                       |                                        |                                       |
| Blank             | 0.06     |                         | 2                              |                      |                       |                                        |                                       |
| Blank             | 0.05     |                         | 0.05                           |                      |                       |                                        |                                       |
| blank             | 0,03     | <br>                    | )                              |                      |                       |                                        |                                       |
| -13()61           | . 26     | mglkg                   | ICP MDL= a.S                   |                      | -                     |                                        |                                       |
| -13063            | 150      |                         | ICP                            | 9,97                 | 10.41                 | 104.4                                  | 10.21 0.97                            |
| +7519             | 260      |                         |                                |                      | • -                   |                                        |                                       |
| 17520             | 11       | myle                    | MDL = 0.10                     |                      |                       |                                        |                                       |
| 17557             | 65       | mg/kg                   | MDL= 2.5                       |                      |                       |                                        |                                       |
|                   |          | ike or du<br>or duplic  | plicate                        |                      | MN-COMF               | 004410                                 | )7                                    |

M - Matrix spike or duplicate

MN-COMP 0044107

a j

ANALYSIS:

<u>;</u> <u>a</u>\_\_\_;

and the second

i i

FOR CLP USE ONLY?

| ATOMIC AB                              |                    | , <u>Zn-N</u><br>(7)    | TIME: 2<br>CALCULATED BY: <u>Ma</u><br>DATA REVIEWED BY: <u>Ma</u><br>ENTERED BY: <u>Ma</u><br>INSTRUMENT ID # <u>3</u><br>0.10 <sup>mg</sup> /a<br>MDL 0.01 <sup>mg</sup> /a | KG<br>3: H<br>G<br>G<br>digeste U      | PROJEC<br>PROJEC<br>FILE A<br>DATE F<br>DATE C | CT NAME<br>7:<br>RECEIVED<br>COLLECTI<br>STD. COM | ER:                                     |
|----------------------------------------|--------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------------------|-----------------------------------------|
| Sample                                 | Results            | <u>Analy</u><br>  Units | <u>comments</u>                                                                                                                                                               | Spik                                   | e_Rec<br>  Found                               | 17 050                                            | Dupliests                               |
| ······································ |                    | 1 1                     |                                                                                                                                                                               | 1100                                   |                                                | /* KEC                                            | Duplicate                               |
| 0.10 old_                              | 0.11               | myle                    | 110%                                                                                                                                                                          |                                        |                                                |                                                   |                                         |
| 5.00.std                               | 4.94               |                         | 98.8%                                                                                                                                                                         |                                        |                                                |                                                   |                                         |
| 10.0 std                               | 9.87               |                         | 98.7%                                                                                                                                                                         |                                        |                                                |                                                   |                                         |
| 20.0 rid                               | 20.5               |                         | 107.5%                                                                                                                                                                        |                                        |                                                |                                                   |                                         |
| E <u>RA 9923</u>                       | 1                  |                         | 96.4%                                                                                                                                                                         | -                                      | •                                              | -                                                 |                                         |
|                                        |                    | mu                      |                                                                                                                                                                               |                                        | -                                              |                                                   |                                         |
| 0,10,0td                               | 0.009              | myle                    | 90.0%                                                                                                                                                                         |                                        |                                                | -                                                 |                                         |
| 0.25001d                               | 0.246              | .                       | 98.4%                                                                                                                                                                         |                                        | -                                              |                                                   |                                         |
| 0.500 ord                              | 0.502              | ·                       | 100.4%                                                                                                                                                                        |                                        |                                                |                                                   |                                         |
| LODSIA                                 | 0.996              |                         | 99.6%                                                                                                                                                                         |                                        |                                                | -                                                 | · · · · · · · · · · · · · · · · · · ·   |
| ERA 9923                               | 0.393              |                         | TV=0.780 104.6%                                                                                                                                                               |                                        | · · · · · · · · · · · · · · · · · · ·          |                                                   | ····                                    |
| blunr ICP                              |                    |                         | )                                                                                                                                                                             | ананананананананананананананананананан |                                                | -                                                 |                                         |
|                                        | D.067              |                         | 0.061                                                                                                                                                                         |                                        |                                                | •                                                 | ••••••••••••••••••••••••••••••••••••••• |
|                                        | 0.058              |                         |                                                                                                                                                                               |                                        | •                                              | •                                                 |                                         |
| -13412-                                | 17                 | mgikg                   | ICP MDL= 2.5                                                                                                                                                                  | 4.69                                   | 4.74                                           | 101.2-                                            | 4.55 2.0R                               |
| 16554<br>A - Analy                     | 0,07<br>tical spil | migle                   | MDL = 0.01                                                                                                                                                                    |                                        |                                                |                                                   |                                         |

M - Matrix spike or duplicate

MN-COMP 0044108

# FOR CLP USE ONLY?

| ANAL | YCI   | · C • |
|------|-------|-------|
| വ്ഥ  | للالد | • يى  |

|                           |                       |                                       |                   |                                       |                | • •              |  |  |
|---------------------------|-----------------------|---------------------------------------|-------------------|---------------------------------------|----------------|------------------|--|--|
| ATOMIC ABSORPTION ELEMENT |                       | DATE ANALYZED: <u>5-9-90</u>          |                   | CLIENT                                | _ CLIENT NAME: |                  |  |  |
|                           |                       |                                       | ANALYZED BY:      | ЧКБ                                   | PROJĖC         | PROJECT NUMBER:  |  |  |
| ABBREVIATIO               | DN ZN,                | Zn-N                                  |                   |                                       |                | PROJECT NAME.    |  |  |
|                           |                       | 3                                     |                   | Meg                                   | FILE #         |                  |  |  |
|                           |                       |                                       | DATA REVIEWED BY: | · · · · · · · · · · · · · · · · · · · | DATE F         | RECEIVED:        |  |  |
|                           |                       |                                       | ENTERED BY: _/    | <u>leg</u>                            | DATE C         |                  |  |  |
|                           |                       |                                       |                   | ngle digestru                         |                | SID. CONC.:      |  |  |
|                           |                       |                                       |                   | 201                                   | R FAC          |                  |  |  |
|                           |                       |                                       | MUL <u>0.01</u>   | The inspected                         | K TAC          |                  |  |  |
|                           | -                     |                                       | ils               | Spike                                 | Rec            | 1% REC Duplicate |  |  |
| Sample                    | Results               | Units                                 | Comments          | True                                  | Found          |                  |  |  |
| 17781                     | 0.08                  | myle                                  | MDL=0.01          |                                       |                |                  |  |  |
| 17282                     | 0.03                  |                                       |                   |                                       |                |                  |  |  |
| 15207                     | 0.25                  |                                       |                   |                                       | ·              |                  |  |  |
| 5457                      | 0.76                  |                                       |                   |                                       |                |                  |  |  |
| 15458                     | 0.01                  |                                       |                   |                                       |                |                  |  |  |
| 17127                     | 0.13                  |                                       | MDL = 0.10        |                                       |                |                  |  |  |
| 17169                     | ND                    |                                       |                   |                                       |                |                  |  |  |
| 172.93                    | 0.95                  |                                       |                   |                                       |                |                  |  |  |
| Blank                     | 0.057                 |                                       | )                 |                                       |                |                  |  |  |
| Blank                     | 0.043                 | · · · · · · · · · · · · · · · · · · · | (0.05             |                                       |                |                  |  |  |
| Blunk                     | 0.045                 |                                       | )                 |                                       | -              |                  |  |  |
| 0.250 otd                 | 0.245                 |                                       | 98.0%             |                                       |                |                  |  |  |
| 0.500 otd                 | 0.498                 |                                       | 99.6%             |                                       | -              | ·····            |  |  |
| -14686                    | ND                    |                                       | ICP MDL = 0.01    | · · · · · · · · · · · · · · · · · · · |                |                  |  |  |
| 14687                     | ND                    |                                       |                   |                                       | _              |                  |  |  |
| -14688                    | ND                    | <u> </u>                              |                   |                                       |                |                  |  |  |
| A - Analy<br>M - Matri    | /tical sp<br>ix spike | lke or du<br>or dupllc                | piicate<br>ate    |                                       | MN-CO          | MP 0044109       |  |  |

38 WPPLABFM pg 1

2 2

## ANALYSIS:

FOR CLP USE ONLY?

| · ·        |            |         |            |            |             |              |                |                 |         |               |
|------------|------------|---------|------------|------------|-------------|--------------|----------------|-----------------|---------|---------------|
| ATOMIC ABS | SORPTION I | ELEMENT | DATE       | ANALYZED:  | 5-0         | 1-90         | CLIENT         | NAME:           |         |               |
|            |            |         |            | ZED BY:    | MI          | <u> </u>     | PROJEC         | PROJECT NUMBER: |         |               |
| ABBREVIATI | ION Zn.    | , Zn-N  | TIME       | :          |             |              | PROJEC         |                 |         |               |
|            |            | Ä       | /          | JLATED BY: |             |              | FILE #         |                 |         |               |
|            |            |         |            | REV1EWED   |             |              | DATE R         |                 |         |               |
|            |            |         |            | RED BY:    | _ <u></u> 2 | J            | DATE C         | COLLECI         | 0:      |               |
|            |            |         | 14211      |            |             |              | HIGH S         | SHD. CON        | IC.:    |               |
|            |            |         |            | MDL        | 0.10 mg     | 2 Augeste (1 | ABS:<br>R FACT | FOR:            |         |               |
|            |            |         | <u>sis</u> |            |             |              | e_Rec          |                 | •       |               |
| Sample     | Results    | Units   |            | Comments   |             | True         | Found          | X REC           | Duplica | ate           |
| -14689     | _ND        | mgle    | TCP        | MDL=0.1    | 01          | · · ·        |                | ······          |         |               |
| 74690      | ND         |         |            |            |             |              |                |                 | -       |               |
| -14691     | ND         |         |            |            |             | 0.750        | 0.252          | 100.8           | 0.252   | <u>0.0R</u> ī |
| -14692-    | ND         |         |            |            |             |              |                |                 | ****    |               |
| 0.010.010  | 0.011      |         | 10.0       | °/0        |             | •            |                |                 | <br>    |               |
| 0.250 old  | 0.251      | -       | 100.4      | u/u        |             |              | ·              |                 |         |               |
| 0.500.01d  | 0.507      |         | 101.40     | lo         |             |              |                |                 |         |               |
| 1.00 otd   | 1.011      | • • •   | 101.1      | olu        |             |              |                |                 |         |               |
| ERA 9923   | D.296      |         | TV=        | 0.280 1    | 05.7%       |              | ·····          |                 |         |               |
|            |            |         | •          |            |             |              |                |                 |         | · · · · ·     |
|            |            |         | -          | 19         |             |              |                |                 |         |               |
|            |            |         | -          |            |             |              |                |                 |         |               |
|            |            |         | -          |            |             |              |                |                 |         |               |
|            |            |         |            |            |             |              |                |                 |         |               |
|            |            |         | -          |            |             |              |                |                 |         |               |
|            | i i        |         |            |            |             |              |                |                 |         |               |

38 WPPLABEM pg I

#### ANALYSIS:

FOR CLP USE ONLY?

ATOMIC ABSORPTION ELEMENT 5-9-90 DATE ANALYZED: CLIENT NAME: MK6 ANALYZED BY: PROJECT NUMBER: ABBREVIATION Cd, Cd-N 15:30 TIME: PROJECT NAME. Meg CALCULATED BY: FILE #: tem DATA REVIEWED BY: DATE RECEIVED: Meg ENTERED BY: DATE COLLECTED: INSTRUMENT ID # HIGH STD. CONC.: L.D\_ ABS: 0.67 MOL 0.01 mg/e R FACTOR: Analysis Spike Rec Results Sample Units Comments % REC Duplicate True Found myle 0.010.0td 0.010 100.0% 0.250 old 0.252 100.8% 0.500010 0.498 99.6°/0 100.0% 1.00 std 1.00 EPA 283 0.610 TV= 0.650 93.8% ICP Blank 0.011 0.011 0,011 0.010 Blank 0.005ND 0.002 6002 mglky ND 13061 ICP MDL= 0.25 0.35 13063 0.414 396 95.5 397 0.12 13412 1.0 0.441 0,407 91.5 0.393 1.8R myle -14686 ND MDL = 0.01ND. 14687

A - Analytical spike or duplicate M - Matrix spike or duplicate

II - Matrix spike of uppilt

38 WPPLABFM pg 1

MN-COMP 0044111

## FOR CLP USE ONLY?

|        | IVC   | * ~ | ~ |
|--------|-------|-----|---|
| ANA    | 1 1 5 | 1 \ | č |
| THUR T | -LN   | موج | • |

1975 - 1 1975 - 1

i in the second

| ATOMIC AB                  |             |                | TIME:                                   | 4 <u>K6</u><br>15:30                  | PROJE   | CT NUMB<br>CT NAME | •         |
|----------------------------|-------------|----------------|-----------------------------------------|---------------------------------------|---------|--------------------|-----------|
|                            |             |                | ) CALCULATED BY:<br>• DATA REVIEWED BY: | JEW_                                  | DATE    | RECEIVE            | D:        |
|                            | •           |                | ENTERED BY:                             | Meg                                   | DATE    | COLLECT            | ED:       |
|                            |             |                | INSTRUMENT ID #                         | <u>3</u>                              | HIGH    | STD. CO            | NC.:      |
|                            |             |                |                                         |                                       | ABS:    |                    |           |
| •                          | •           |                | MDL <u>0.0</u>                          | · · · · · · · · · · · · · · · · · · · | R FAC   | TOR:               |           |
|                            |             | Analy          |                                         |                                       | ke_Rec  |                    |           |
| Sample                     | Results     | Units          | Comments                                | True                                  | Found   | % REC              | Duplicate |
| 14688                      | ND          | male           | ICP                                     |                                       |         | ····               |           |
| 14689                      | ND          |                |                                         |                                       |         |                    | •         |
| -14690                     | ND          |                |                                         | / .                                   |         |                    |           |
| -14691                     | ND          |                |                                         |                                       | ******* |                    |           |
| 14692-                     | ND          |                |                                         |                                       |         | -                  |           |
| Q.250 Dtd                  | 0.248       | ·              | 99.2°/3                                 |                                       |         | -                  |           |
| 0,500 std                  | 0.498       |                | 99.6%                                   |                                       |         |                    | 4         |
| -15966                     | ND          |                | logged in under RCRA                    | 0.250                                 | 0.252   | 100.8              | -         |
| -14208 rev                 | 2.8         | markg          | MDL = 0.25                              |                                       |         | 10.0-0-            |           |
| 17521                      | <u>0.50</u> | 1 Kar          |                                         |                                       |         |                    | •         |
| 17293                      | 0.04        | le             |                                         |                                       |         |                    |           |
| 17519                      | 3.1         | mylig          |                                         |                                       |         |                    |           |
| 17520                      | 0.04        | mgle           |                                         |                                       |         | -                  | **        |
| 17331                      | 0.50        | melky          |                                         |                                       |         | -                  | • •• •    |
| 17309                      | 0.82        |                |                                         | 0.483                                 | 0.417   | 96.3               | 391 3.2.R |
| <u>17535</u><br>A - Analyi | 0.30        | l<br>ke or dup | licate                                  |                                       |         |                    |           |

M - Matrix spike or duplicate

MN-COMP 0044112

# FOR CLP USE ONLY?

# ANALYSIS:

| ATOMIC ABSORPTION ELEMENT<br>ABBREVIATION <u>Cd, Cd-N</u><br>(3)                            |  | ANALYZED BY: <u>MKb</u><br>TIME: <u>15:30</u><br>CALCULATED BY: <u>Meg</u><br>DATA REVIEWED BY: <u>Meg</u><br>ENTERED BY: <u>Meg</u> |       | CLIENT NAME:<br>PROJECT NUMBER:<br>PROJECT NAME.<br>FILE #:<br>DATE RECEIVED:<br>DATE COLLECTED:<br>HIGH STD. CONC.:<br>ABS:<br>R FACTOR: |       |           |
|---------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| Sample Results                                                                              |  | Comments                                                                                                                             | Splke | Rec<br>Found                                                                                                                              | % REC | Duplicate |
| 0.010 otri 0.010<br>0.250 otri 0.249<br>0.500 otri 0.498<br>1.00 otri 1.00<br>EPA 283 0.611 |  | 100.0°%<br>99.6%<br>99.6%<br>100.0°%<br>TV = 0.650 94.0%                                                                             |       |                                                                                                                                           |       |           |

| FUN | ししょ | 056 | Unci |
|-----|-----|-----|------|

| ATOMIC ABSORPTION ELEMENT | DATE ANALYZED:                   | 5-9-90 | CLIENT NAME:                            |
|---------------------------|----------------------------------|--------|-----------------------------------------|
| ABBREVIATION PD PD-N      | ANALYZED BY:<br>TIME:            |        | PROJECT NUMBER:                         |
| (1)                       | CALCULATED BY:                   | Meg    | PROJECT NAME                            |
|                           | DATA REVIEWED BY:                |        | DATE RECEIVED:                          |
|                           | ENTERED BY:<br>INSTRUMENT ID # _ |        | DATE COLLECTED:<br>HIGH STD. CONC.: 4.0 |
|                           | MDL _(                           | ) mg/e | ABS: <u>0.12</u><br>R FACTOR:           |

| •                  |                 | Analy    |               | Spike Rec |           |       |                                       |
|--------------------|-----------------|----------|---------------|-----------|-----------|-------|---------------------------------------|
| Sample             | Results         | Units    | Comments      | True      | Found     | % REC | Duplicate                             |
| 0.10001d           | 0.090           | mgle     | 90.0%         |           |           |       | · · · · · · · · · · · · · · · · · · · |
| 100 std            | 0.989           |          | 98,9%,        |           |           |       |                                       |
| 2.00.0td           | 2.01            |          | 100.5%        |           |           |       |                                       |
| 4.00 otd           | 3.94            |          | 98.5%         |           |           |       |                                       |
| EPA 283            | 3.90            |          | TV=4.00 97.5% | . <u></u> |           |       |                                       |
| Blank-TCP          | 0.049           |          | )             |           |           |       |                                       |
| ·                  | 0.050           |          | \$ND          |           |           |       |                                       |
| ·                  | 0.045           | -        | <u>}</u>      |           |           |       |                                       |
| Blank              | 0.049           |          | )             |           |           | <br>  | • •                                   |
|                    | 0.028           |          | 2ND           |           |           |       |                                       |
|                    | 0.002           |          | )             |           | · · · · · |       |                                       |
| -13061             | 1.3             | mylky    | ICP MDL=2.5   |           |           |       |                                       |
| 13063              | 15              |          |               | 4.61      | 4,19      | 90.8  | 4.12 0.08 R                           |
| 13412              | 7.9             |          |               | 4,37      | 3.67      | 83,8  | 347 2.1RI                             |
| 14686              | ND              | mgle     | MDL=0.1       |           |           |       |                                       |
| 14687<br>A - ADaly | ND<br>tical spi | ka or du |               | :         |           |       |                                       |

A - Analytical spike or duplicateM - Matrix spike or duplicate

-1 - TV

MN-COMP 0044114

38 WPPLABFM pg 1

à.

# ANALÍSIS?

FOR CLP USE ONLY?

| ATOMIC ABSORPTION ELEMENT |                       |              |                      |        |                                              | CLIENT NAME:                          |               |  |
|---------------------------|-----------------------|--------------|----------------------|--------|----------------------------------------------|---------------------------------------|---------------|--|
| ABBREVIATION Pb, Pb-N     |                       |              | TIME: <u>20</u>      |        | PROJECT NAME.                                |                                       |               |  |
|                           |                       | (2           | ) CALCULATED BY: Meg | j      | FILE #                                       | FILE #:<br>DATE RECEIVED:             |               |  |
|                           |                       |              | DATA REVIEWED BY:    | -<br>- |                                              | OLLECIED:                             |               |  |
|                           |                       |              | INSTRUMENT ID # $3$  | )      |                                              | TD. CONC.:                            |               |  |
|                           |                       |              |                      |        | ABS:                                         |                                       |               |  |
|                           | •                     |              | MDL                  |        | R FACT                                       | OR :                                  | <b></b> g 2.  |  |
|                           |                       | <u>Analy</u> | slsComments          | Spli   | se Rec                                       | 1% REC Duplicate                      | £ 4           |  |
| Sample                    | Results               | Units        | Comments             |        |                                              |                                       |               |  |
| 14688                     | ND                    | myle         | ICP MDL=0.1          |        |                                              |                                       |               |  |
| 14689                     | ND                    |              |                      | -      |                                              |                                       |               |  |
| 14690                     | ND                    |              |                      | -      |                                              |                                       |               |  |
| 14691                     | ND                    |              |                      | •      |                                              |                                       | -             |  |
| 14692                     | ND                    |              | .                    |        |                                              |                                       |               |  |
| 1.00 Atd                  | 0.968                 | _            | 96.8%                |        |                                              |                                       | د ±<br>       |  |
| 2.00.0td                  | 2.03                  |              | 101.5%               |        |                                              |                                       |               |  |
| 159.66                    | ND                    |              | logged under RCRA 8  | 1.03   | 1.03                                         | 100.0 1.07 1.91                       | <u>2PD</u>    |  |
| 17521                     | 43                    | mglkg        | MDL = 2.5            |        |                                              |                                       | à à           |  |
| 17531                     | 13                    | mgikg        |                      |        |                                              |                                       | · · ·         |  |
| 17532                     | 63                    |              |                      |        |                                              |                                       | i j           |  |
| 17570                     | 9.4                   |              |                      |        |                                              | · · · · · · · · · · · · · · · · · · · |               |  |
| 17572                     |                       |              | -                    |        |                                              | ·                                     | <br>4 7       |  |
| 17573                     | 12                    |              |                      |        |                                              |                                       | <br>k 3       |  |
| 17574                     | 42                    |              |                      |        |                                              |                                       | ••••••••••    |  |
| 17575                     | 5.5                   |              |                      |        | <u>.                                    </u> |                                       |               |  |
| A – Anal<br>M – Matr      | ytical sp<br>ix spike | or dupli     | cate                 |        | MN-COM                                       | P 0044115                             | ykas – E-roda |  |

38 WPPLABFM pg 1

ş

## ANALYSIS:

ş P

1 

Development

FOR CLP USE ONLY?

| ATOMIC AB              | SORPTION         | ELEMENT   | DATE ANALYZED:              | 5-9-90 | CLIEN      | NAME:                                 |                                        |
|------------------------|------------------|-----------|-----------------------------|--------|------------|---------------------------------------|----------------------------------------|
| ABBREVIAT              | TON Ph           | Dh-N      |                             | MK6    |            |                                       |                                        |
| NOOKLVINT              | 104 <u>4 0</u> , | (?        | _ TIME:<br>D CALCULATED BY: | 20:30  | PROJE      | CT NAME                               |                                        |
|                        |                  | Ċ         | DATA REVIEWED BY:           | Mey    |            |                                       | D:                                     |
|                        |                  |           | ENTERED BY:                 | Meiz   |            |                                       | J:                                     |
|                        |                  |           | INSTRUMENT ID #             |        |            |                                       |                                        |
|                        |                  |           | •••••••••••                 |        | ABS:       | 510.00                                |                                        |
|                        | •                |           | MDL                         | 1 mg/e | R FAC      | TOR:                                  |                                        |
|                        |                  | Analy     | vs1s                        | Sp1    | ke_Rec     |                                       | I                                      |
| Sample                 | Results          | Units     | Comments                    | True   | Found      | % REC                                 | Duplicate                              |
| 17576                  | 26               | mylkg     |                             |        |            | · · · · · · · · · · · · · · · · · · · |                                        |
| 17577                  | 26               |           |                             | 5,05   | 4.56       | 90.3                                  | 4.82 2.8                               |
| 100 sta                | 1.00             | myle      | 100.0%                      |        |            |                                       |                                        |
| 2.00.std               | 1.99             |           | 99.5%                       |        |            |                                       |                                        |
| 4.00 std               | 4.00             |           | 100.0%                      |        |            |                                       |                                        |
| 17468                  | 2,500            | mg/kg     | MOL= 2.5                    |        |            |                                       |                                        |
| 17470                  | 57               |           |                             |        |            |                                       |                                        |
| 17519                  | 13,000           |           |                             |        |            |                                       |                                        |
| 17520                  | 0.28             | myle      | MDL= 0.1                    |        |            |                                       | -                                      |
| 17533                  | 15               | mg        | MDL = 2.5                   |        |            |                                       |                                        |
| 17534                  |                  |           |                             |        |            |                                       |                                        |
| 17535                  | 4.2              |           | -                           |        |            |                                       | ***** ******************************** |
| 17536                  | 13               | · · · · · |                             |        |            |                                       |                                        |
| 17537                  | 6.3              |           |                             |        |            |                                       |                                        |
| 11557                  | 6.0              | -         |                             |        |            |                                       |                                        |
| 17558                  | 12               |           |                             | 4.46 : | 3.91       | 86,2                                  | 4.04                                   |
| A – Analy<br>M – Matri |                  |           |                             |        | OMP 004411 |                                       |                                        |

MN-COMP 0044116

## ANALYSIS:

FOR CLP USE ONLY?

? <u>~</u>

| ATOMIC ABSORPTI                                                                |                   | ANALYZED BY: <u>M</u>                                          | ANALYZED BY: MK6 |                       | CLIENT NAME:<br>PROJECT NUMBER: |  |  |
|--------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|------------------|-----------------------|---------------------------------|--|--|
| ABBREVIATION <u>P</u>                                                          | <u>b, Pb-N</u> (4 |                                                                | leg.<br>2        | FILE #<br>DATE R      | OLLECTED:<br>TD. CONC.:         |  |  |
| Sample Resul                                                                   |                   | Lysls<br>  Comments                                            | Splk<br>True     | e <u>Rec</u><br>Found | Z REC Duplicat                  |  |  |
| 0.100.041<br>1.00.01d 0.99<br>2.00.01d 2.00<br>4.00.010 4.0<br>EPA 283 3.9<br> | 2<br>2            | 96.0%<br>98.0%<br>100.0%<br>100.5%<br>100.5%<br>1V= 4.00 98.8% |                  |                       |                                 |  |  |

| FOR CLP USE ONL | Y. | : |
|-----------------|----|---|
|-----------------|----|---|

|                           |                       |        | •                |   |
|---------------------------|-----------------------|--------|------------------|---|
| ATOMIC ABSORPTION ELEMENT | DATE ANALYZED:        | 5-7-90 | CLIENT NAME:     |   |
| A                         | ANALYZED BY:          | TEM    | PROJECT NUMBER:  | - |
| ABBREVIATION <u>NI</u>    | TIME:                 | 14:00  | PROJECT NAME.    |   |
|                           | CALCULATED BY:        | Meg    | FILE #:          |   |
|                           | DATA REVIEWED BY      | :_Neg  | DATE RECEIVED:   |   |
|                           | ENTERED BY:           | Meg    | DATE COLLECTED:  |   |
|                           | INSTRUMENT ID #       | 0      | HIGH STD. CONC.: |   |
|                           | ана стала стала.<br>• | _      | ABS:             |   |
| •                         | MDL ().               | .05    | R FACTOR:        |   |
|                           |                       |        |                  |   |

morrses.

|        | Analysis                             |          |    | Spike Rec                             |                                        |           |        |           |
|--------|--------------------------------------|----------|----|---------------------------------------|----------------------------------------|-----------|--------|-----------|
| Sample | Results                              | Uni      |    | Comments                              | True                                   | Found     | 1% REC | Duplicate |
| 17145  | ND                                   | my       | 12 |                                       |                                        |           |        |           |
| 17146  | 0.59                                 |          |    |                                       |                                        |           | ·.     |           |
| 17147  | ND_                                  |          |    | -<br>-                                | •••••••••••••••••••••••••••••••••••••• |           |        |           |
| 17148  | 0.46                                 |          |    |                                       | 1.23                                   | 1.25      | 101.6  | 1.22      |
| 17149  | 0.23                                 |          |    |                                       |                                        |           |        |           |
| 17168  | ND                                   |          |    |                                       |                                        |           |        |           |
| 17285  | ND                                   | ļ        |    |                                       |                                        |           |        |           |
| 17286  | ND                                   |          |    |                                       |                                        |           |        |           |
| 17287  | ND                                   |          |    |                                       |                                        |           |        | ¢         |
| 17288  | 0.08                                 |          |    |                                       |                                        |           |        |           |
| 14686  | ND                                   |          |    | entered under Ni-                     | N                                      |           |        |           |
| 14687  | ND                                   | <u> </u> |    |                                       |                                        |           |        |           |
| 14688  | ND                                   |          |    | · · · · · · · · · · · · · · · · · · · |                                        |           |        |           |
| 14689  | ND                                   |          |    |                                       |                                        |           |        |           |
| 14690  | ND                                   |          |    |                                       | 1.00                                   | 1.04      | 104.0  | 1.07      |
| 4691   | ŇD                                   |          | •  |                                       | :                                      |           |        |           |
|        | vtical spi<br>ix spike c<br>SFM pg i |          |    |                                       | MN-C                                   | OMP 00441 | 118    |           |

| ANALYSIS:                                           | •                     |                                         |                                                     |        | FOR CLP                             | USE ONLY?       |
|-----------------------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------------------|--------|-------------------------------------|-----------------|
| ATOMIC ABSORPTION ELEMENT<br>ABBREVIATION <u>N1</u> |                       | ANALYZED BY:<br>TIME:<br>CALCULATED BY: | 5-7-90<br>TEM<br>14:00<br>Meg                       | PROJEC | T NUMBER:                           |                 |
|                                                     |                       |                                         | DATA REVIEWED BY:<br>ENTERED BY:<br>INSTRUMENT ID # | Neg-   | DATE C                              | COLLECTED:      |
|                                                     |                       |                                         | MDL _0.0                                            | Ś      | ABS:<br>R FACT                      | TOR:            |
|                                                     | l                     | Analy                                   |                                                     |        | e_Rec                               |                 |
| Sample                                              | Results               | Units                                   | Comments                                            | True   | Found                               | % REC Duplicate |
| plank_                                              | 0.012                 | mgle                                    | $\mathcal{T}$                                       |        |                                     |                 |
| blunk                                               | 0.008                 | 1                                       | (0.007=ND                                           |        |                                     | •               |
| blank                                               | ND                    |                                         |                                                     |        |                                     |                 |
| 16934                                               | 0.18                  |                                         | <b>/</b>                                            |        | •                                   |                 |
| 13212                                               | 1.036                 | migikg                                  | MDL= 1.3 Mg/Kg                                      |        |                                     |                 |
| 132-13                                              | 15                    | I ING                                   |                                                     |        |                                     |                 |
| 16390                                               | 5.15                  | MG                                      | MDL= 2.5mg                                          |        | -                                   |                 |
|                                                     | 5.60                  |                                         | MDL- u.sug                                          |        | · · · · · · · · · · · · · · · · · · |                 |
| 16391                                               |                       | -                                       |                                                     |        | -                                   |                 |
| 16392                                               | 8.35                  |                                         |                                                     |        | -                                   |                 |
| 16393                                               | ND                    | mgle                                    |                                                     |        |                                     |                 |
| 16758                                               | 0.82                  | 1. ole                                  | •                                                   |        | -                                   |                 |
| 16759                                               | 4.5                   |                                         | -                                                   |        |                                     |                 |
| 16023                                               | 0.20                  |                                         |                                                     |        | 1.13                                | _ 107.7         |
| 16814                                               |                       |                                         |                                                     | 1.10   | 1.13                                |                 |
| 16935                                               | 0.41                  |                                         |                                                     |        |                                     |                 |
| 17127                                               | 6.12                  | -                                       |                                                     |        |                                     |                 |
| A – Anal<br>M – Matr                                | ytical sp<br>Ix spike | ike or du<br>or duplic                  | uplicate<br>cate                                    |        | MN-CC                               | OMP 0044119     |

# Entered 4/26/40 LmR

\$

PROGRAM 2 Se Furnace #)

| SAMPLE           | CONC                            | %RSD                     | MEAN           |        | READINGS                                   |
|------------------|---------------------------------|--------------------------|----------------|--------|--------------------------------------------|
|                  | ug/L                            |                          | ABS            |        | ا تينا ٿيو ٿا ٿي ٿيو ٿيو ۽ اندينو ٿا.<br>- |
|                  | in a transformer and the second |                          | 1 Marine Sand  | •      |                                            |
| TOL ANK          | 00                              |                          | 0.000          | -0.001 | A AA4                                      |
| STANDARD 1       | 12.5                            | n n                      | 0.084          |        | 0.001                                      |
|                  | 25.0                            |                          |                | 0.090  | 0.079                                      |
| TANDARD 2        |                                 | 5.6                      |                | 0.157  | 0.170                                      |
| JIANDARD 3       | 50.O                            |                          | 0.290          | 0.292  | 0.288                                      |
| EPA 378 28.0     | 33.11182                        |                          | 0.209          | 0.215  | 0.204                                      |
| (S. 00           | 4,4                             |                          | 0.029          | 0.031  | 0.028                                      |
| 3721             | ND -0, 7mg1L                    |                          | -0.004         | -0.004 | -0.005                                     |
| 13721A TX= 20.0  | 19.3962                         | 2-2                      | 0.128          | 0.126  | 0.130                                      |
| ,1 <b>3722</b> · | NO -0.7 mg1L                    | $\phi \phi_{a}^{*} \phi$ | -0,004         | -0.001 | -0,008                                     |
| 3723             | NO -0.7)                        |                          | -0.005         | -0.005 | -0,005                                     |
| 3724             | MO -0.2                         | òò"ò                     | -0.001         | 0.000  | -0.003                                     |
| 13725            | NO 1.2                          | óð ó                     | 0.008          | 0.002  | 0.014                                      |
| 13726            | ND $-0.6$ $\Lambda$             | 0.0                      | -0.006         | -0.006 | -0.006                                     |
| -3726AJV>2010    | 12,764%                         | 0.8                      | 0.085          | 0.085  | 0,086                                      |
| 13727            | NO -1.2 mg/L                    | 35.3                     | -0.008         | -0.010 | -0.004                                     |
| 14686            | ND -0.3                         | 70.7                     | -0.002         | -0.001 | -0.003                                     |
| 4687             | NO -0.5V                        |                          | -0.003         | -0.004 | -0.003                                     |
| i 25.0           | 22.3                            |                          | 0.147          | 0.144  | 0.150                                      |
| EPA 378 28.0     | 29.2io4 <b>2</b>                |                          | 0.188          | 0.186  | 0.190                                      |
| 4.488            | NP -0.8 myl                     |                          | -0.005         | -0.005 | -0.005                                     |
| 4689             | 40 -0.5 J                       | 20.2                     | -0.003         | -0.003 | -0.004                                     |
| 146890 74=20.0   | 12,160%                         |                          | 0.082          | 0.079  | 0.084                                      |
| 4-4-09-0-14690   | NO -0, 7 mg1L                   |                          | -0.005         | -0.004 | -0.006                                     |
| .4691            | NO -0.4                         |                          | -0.003         | -9.001 | -0.005                                     |
| 14692            | NO -0.6                         |                          | -0.004         | -0.004 | -0.004                                     |
| 14788            | ND 0.2                          |                          | 0.004          | -0.004 |                                            |
| 4789             | NO -0.7                         |                          | -0.001         |        | 0.004                                      |
| 4839             | NO 0.1                          |                          | 0.000          | -0.005 | -0.005                                     |
| 1483927220.2     | 15.477%                         |                          | 0.103          | -0.002 | 0.003                                      |
| 124840           | NO -0. 4 mgil                   |                          | -0.003         | 0.105  | 0.102                                      |
| 4841             | NO 0.0)                         |                          | 0.000<br>0.000 | -0.003 | -0.003                                     |
| 14842            | NO -0.64                        |                          | -0.004         | 0.000  | 0.000                                      |
| 25.0             | 21.5                            |                          | 0.142          | 0.000  | -0.008                                     |
| ERA 378 28.0     | 29.81062                        |                          |                | 0.140  | 0.144                                      |
| 14843            | NO -0.2mg12                     |                          | 0.191          | 0.189  | 0.193                                      |
| 14864            | -0.9                            |                          | -0.001         | -0.003 | 0.000                                      |
| 4854071=20.0     |                                 |                          | -0.006         | -0.005 |                                            |
| 4854DA           | 1.0                             |                          | 0.006          | 0.002  | 0.011                                      |
|                  | 0.1                             |                          | 0.001          | -0.001 | 0.003                                      |
| 14866            | -0.7                            |                          | -0.004         |        |                                            |
|                  | -0.4                            |                          | -0.003         |        | -0.002                                     |
| 4870             | -0.3                            |                          | -0.002         | -0.003 | -0.001 0                                   |
| 14:374           | -0.4                            |                          | -0.002         | -0.005 | 0.000 } K                                  |
| 14876            | -0.4 ·                          |                          |                | -0.005 | 0.000                                      |
| 14376AM=20.0     | 1.3                             |                          | 0.009          | 0.007  | 0.010                                      |
| 4878             | -0.4                            |                          | -0.003         |        | -0.002                                     |
| 14990            | -0.1                            |                          | -0.001         | 0,000  | -0.002                                     |
|                  |                                 |                          | 0.082          | 0.088  | 0.076                                      |
| 2PA 378 28.0     | 30.1                            |                          | 0.193          |        | 0,195                                      |
| 5.00             | and as and                      |                          | 0.022          |        |                                            |
| ę                |                                 |                          |                |        |                                            |

.

kerun at dx or Sx

MN-COMP 0044120

#### ANALYSIS: . FOR CLP USE ONLY? ATOMIC ABSORPTION ELEMENT 5-8-90 DATE ANALYZED: CLIENT NAME: PROJECT NUMBER:\_\_\_\_\_ ANALYZED BY: TEM ABBREVIATION Ba 9:45 PROJECT NAME. TIME: Meg CALCULATED BY: FILE #: DATE RECEIVED: DATA REVIEWED BY: Noa ENTERED BY: DATE COLLECTED: 30 \_ HIGH STD. CONC.: **INSTRUMENT ID #** ABS: MOL 0.2 mg/2 R FACTOR: Spike Rec\_\_\_\_ Analysis % REC Duplicate Results Units Sample Found Comments True myle 14687 ND 5.00 5.10 102.0 5.19 0.87 RP. 14688 ND

2.50

250

7.66

2.60

5.0 otd 5.16 103.2% 10.0 otd 10.24 102.4% EPA 686 10.18 101.8%

listed under subset

115.0%

RCRA-8

103.2%

A – Analytical spike or duplicate M – Matrix spike or duplicate

MN-COMP 0044121

106.4 2.63 OSTRP.

04.0

38 WPPLABFM pg 1

14689

14690

14691

14692

15966

0.2 otd

2.5 std

ND

ND

0.2

ND

ND

0.23

2.58

dino du manda

ANALYSIS:

FOR CLP USE ONLY?

| ATOMIC ABS                | ION P              | 5a_<br>1 Ba-N                         | ANALYZED BY:<br>TIME:9.<br>CALCULATED BY:<br>DATA REVIEWED BY:<br>ENTERED BY:<br>INSTRUMENT ID #3<br>MDL3 m | eg<br>eg                              | PROJECT<br>FILE #:<br>DATE RE<br>DATE CO | NUMBER:<br>NAME<br>CCEIVED:<br>DLLECTED:<br>D. CONC.: |
|---------------------------|--------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------------|
| Sample                    | Results            |                                       | Comments                                                                                                    | Spike                                 | Rec<br>Found                             | % REC Duplicate                                       |
| 0.2 otd                   | 0.71               | mgle                                  | 95.24 105.0%                                                                                                |                                       |                                          |                                                       |
| 2.5 otd                   | <i><b>∂</b>.61</i> |                                       | 104.4%                                                                                                      |                                       |                                          |                                                       |
| 5.0 std                   | 5.04               |                                       | 100.8 %                                                                                                     |                                       |                                          |                                                       |
| 10.0 std                  | 10.21              |                                       | 107.1%                                                                                                      |                                       |                                          |                                                       |
| EPA 686                   | 10.06              |                                       | TV=10.00 100.6%                                                                                             |                                       | •                                        |                                                       |
| Blank                     | ND                 |                                       |                                                                                                             | · · · · · · · · · · · · · · · · · · · |                                          |                                                       |
| Blank                     | ND                 |                                       |                                                                                                             |                                       |                                          |                                                       |
| Blank                     | ND                 |                                       |                                                                                                             |                                       |                                          |                                                       |
| 15044                     | 1.0                |                                       |                                                                                                             | ·                                     |                                          |                                                       |
| Blank-TIP                 | ND                 |                                       |                                                                                                             |                                       |                                          |                                                       |
| Blank-ICP                 | ND                 | · · · · · · · · · · · · · · · · · · · |                                                                                                             |                                       |                                          |                                                       |
| Blank-TUP                 | ND                 |                                       |                                                                                                             |                                       | · · · · · · · · · · · · · · · · · · ·    |                                                       |
| 13061                     | 20                 | mg <sub>lkg</sub>                     | MDL= 5.0                                                                                                    |                                       | -                                        |                                                       |
| 13063                     | 100                |                                       |                                                                                                             | · · · · · · · · · · · · · · · · · · · |                                          | · · · · · · · · · · · · · · · · · · ·                 |
| 13412                     | 27                 |                                       | <u> </u>                                                                                                    |                                       |                                          |                                                       |
| <u> 4686</u><br>A - Analy | ND<br>tical spi    | mgle<br>ke or du                      | plicate                                                                                                     |                                       | 0044199                                  |                                                       |

M - Matrix spike or duplicate

MN-COMP 0044122

|                   |                                       |                                                        |                     | •        | SHIF   | _     | •              | aborato    |              | -                                            |                                        |
|-------------------|---------------------------------------|--------------------------------------------------------|---------------------|----------|--------|-------|----------------|------------|--------------|----------------------------------------------|----------------------------------------|
|                   | ESTOGA-ROV<br>colby Drive, Water      |                                                        |                     |          |        | Pa    | И              | La         | b -          | 5                                            |                                        |
| CH                | AIN OF<br>REC                         |                                                        | FODY                | PROJECT  |        |       | DECT NA        |            | i+           | e C                                          | •                                      |
| SAM               | PLER'S SIGNATU                        | 35 70                                                  | r M                 | (SIGN)   |        |       |                | IPLE<br>PE | OF<br>ANERS  | RE                                           | MARKS                                  |
| SEG.              | SAMPLE Nº.                            |                                                        | ПМЕ                 | SAMPLE   | LOCAT  | OIN   | 11             |            | CONT         |                                              |                                        |
| J-                | 041990-JM                             | -01                                                    | 14686               |          |        |       | Wg             | kr         | 4,           | Sil                                          | Bilow                                  |
| 4                 | 11                                    | -DZ                                                    | 87                  |          |        |       |                |            | 4,           |                                              |                                        |
| H                 | 4 -                                   | 03                                                     |                     |          |        |       |                |            | 4            |                                              |                                        |
| <u>l</u>          | - 11                                  | -04                                                    | <u>89</u><br>90     |          |        |       |                |            | 4            |                                              |                                        |
| 11                | <i>II</i><br><i>II</i>                | -05                                                    | $\frac{70}{91}$     |          |        |       |                |            | 7            | :                                            |                                        |
| <u>  </u><br>   - |                                       | 06                                                     | 92                  |          |        |       | $\neg \forall$ |            | 3            |                                              |                                        |
| μ                 |                                       | -0/                                                    | <u> </u>            |          |        |       |                |            |              |                                              |                                        |
|                   | Anglyze                               | For!                                                   | · · ·               |          |        |       |                |            |              |                                              |                                        |
|                   |                                       |                                                        | ,                   |          |        |       |                |            |              |                                              |                                        |
| シー                | loc's Via 2                           | PA MUY                                                 | hods 6              | 01:60    | DZ, 7  | L CI  | 5-1,2          | ,dich      | lore         | ethy                                         | lent                                   |
|                   | + ethyla                              | cety+                                                  | ٢.                  | <u> </u> |        |       |                |            | ļ            |                                              |                                        |
| <u>A</u> -        | , , , , , , , , , , , , , , , , , , , |                                                        | (0)                 | ļ        |        |       | <u></u>        |            | ļ            |                                              |                                        |
| <u>Z</u>          | As, Se,                               | Ity Vi                                                 | <u>i 214</u>        | atomi    | c Ab   | sorp  | tion           | mer        | hØa          | 5.                                           |                                        |
| 4                 | Rada                                  |                                                        | 1. DL               | 1        | to t   | 17    |                | TTL        |              | - 1.0                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 3)                | EPA M                                 |                                                        | 4,Pb                |          | M. N   | 14    | 19             |            | 9            | nsly-                                        | ·· _                                   |
|                   | ZIA III                               | Fride                                                  | 00                  | 10.      |        |       |                |            | <u> </u>     |                                              |                                        |
| K1                | all. Jon (                            | hristo                                                 | Alerson             | or       | Jon    | MiE   | has            | for        | <u> </u>     | ques                                         | tions.                                 |
|                   | <u></u>                               | 1                                                      |                     | TOTAL N  | JMBER  | OF CO | TAINER         | S          | 27           |                                              |                                        |
| ANT               | ICIPATED CHEMI                        | CAL HAZAR                                              | DS:                 |          |        |       |                |            |              |                                              |                                        |
|                   | · •                                   | A                                                      | <u>илл</u>          |          |        |       |                |            |              |                                              |                                        |
| REL               | INQUISHED BY:                         | 1 and                                                  | $\mathbb{N}_{\leq}$ |          | DATE/T | IME / | RE             | CEIVED I   | BY:          | I a                                          | Fricie                                 |
|                   |                                       | (SIGN)                                                 | //                  | - 4-     | 19-70  | 143   | 50             |            | Æ            | terry 1                                      | SIGN)                                  |
| REL               | INQUISHED BY                          |                                                        |                     |          | DATE/T | IME   | RE             | CEIVED I   | BY:          |                                              | <i>i</i> /                             |
|                   | 2-                                    | (SIGN)                                                 |                     | <u> </u> |        |       | _              |            | 3-           | (                                            | SIGN)                                  |
| RFI               | INQUISHED BY:                         |                                                        |                     |          | DATE/T | IME   | RE             | CEIVED     | BY:          |                                              |                                        |
| 1164              | 3-                                    | (0.001)                                                |                     |          | 1      | . *   |                |            | <b>(4)</b> - | (                                            | SIGN)                                  |
|                   |                                       | (SIGN)                                                 |                     |          |        |       |                |            |              | <u>`````````````````````````````````````</u> |                                        |
|                   | DITIONAL SIGNATI<br>ET REQUIRED       |                                                        |                     |          |        |       |                |            |              |                                              |                                        |
| -                 | HOD OF SHIPNE                         | NT:<br>PGQ)                                            | SHIPP               | ED BY:   |        | REC   |                | OR LAB     | ORAT         | ORY BY:                                      |                                        |
|                   | NDITION OF SEAL                       |                                                        |                     |          |        |       |                | PENED E    | <u>ال</u> اح |                                              | DATE/TIM                               |
|                   | IERAL CONDITION                       |                                                        |                     |          |        |       |                |            |              |                                              |                                        |
| GEN               |                                       |                                                        |                     |          |        | (SIG) | ()             |            |              |                                              |                                        |
| Y<br>P            | ELLOW<br>PINK -                       | - CRA OFFIC<br>- RECEIVING<br>- CRA LABC<br>- SHIPPERS | LABORATO            | DRY COPY | N      | 1N-CC | OMP 0          | 044123     |              | Nº C                                         | 08930                                  |

Allow Contraction of the second

1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1

. 1. –

Bon in constraints

Si i i

\* \* \*

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

and the second

z n d is

i a

#### MEMORANDUM

TO: Jon Christofferson

REFERENCE NO.: 2853

FROM: David Dempsey

DATE: June 7, 1990

RE: Data Quality Assessment and Validation for Seven Groundwater Samples Collected During the April 1990 Sampling Event at the Ford Site C Project Site

The following details a data quality assessment and validation for seven groundwater samples collected on April 19, 1990 at the Ford Site C Project Site. The samples were analyzed for site-specific parameters, namely, volatile organic compounds (VOC) and metals by Pace Laboratories, Inc. (Pace).<sup>1</sup> Quality assurance criteria were established by the analytical methods.<sup>2</sup>

#### Holding Time Periods

Holding time periods were established by the analytical methods and are summarized below:

VOC -14 days from sample collection to completion of analysis

Metals -6 months from sample collection to completion of analysis, except for mercury -28 days from sample collection to completion of analysis for mercury

As all samples met the above criteria, the data were found to be acceptable based upon the holding time periods.

#### Method Blank Samples

The potential for sample contamination through laboratory protocols was measured by means of method blank samples. The VOC method blank sample contained methylene chloride at a concentration of 1.42  $\mu$ g/l. Methylene chloride data for samples

<sup>1</sup>Analytical methods were taken from 40 CFR Part 136 Appendix A and "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, revised March 1983 and are summarized below:

| VOC    | -601/602    |
|--------|-------------|
| Metals | -200 Series |

<sup>2</sup>Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988 and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, July 1, 1988.

MN-COMP 0044124

W-041990-JM-01, W-041990-JM-02 and W-041990-JM-03 were qualified as non-detect (U), as a result. Similarly, the metals method blank sample was found to contain analytes copper and zinc at concentrations of 0.023 mg/l and 0.05 mg/l, respectively. Sample W-041990-JM-06 had its copper datum qualified as non-detect (U), while no action upon the zinc data was required. Of interest was the fact that no method blank sample was reported for selenium. However, as all samples were reported to be free of selenium, no action upon the selenium data was necessary.

#### Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was to be monitored via surrogate recoveries. To date, no surrogate data have been received from Pace. Therefore, matrix spike/matrix spike duplicate data were solely used to judge the VOC data.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy was monitored by MS/MSD analyses. An in-house sample at Pace underwent MS/MSD analyses for VOC. Therefore, direct application of these data was not possible. The method was shown to have been precise as the percent recoveries were within control limits established by Pace.

Sample W-041990-JM-04 underwent a matrix spike analysis for the metal analyte selenium, while sample W-041990-JM-06 had matrix spike analyses performed for metal analytes arsenic and zinc. All remaining metal analytes had matrix spike analyses performed upon in-house samples. Arsenic and selenium percent recoveries fell below the control limits set by Pace; therefore, the results for all samples for these analytes were qualified as estimated (UJ). As the percent recoveries for the remaining metals were within limits, the methods were shown to be accurate.

#### Laboratory Duplicate Analyses

The level of analytical precision for metals analyses was measured through laboratory duplicate analyses. The duplicate analysis for barium was performed upon sample W-041990-JM-02, while in-house samples at Pace were used for the remaining analytes duplicate analyses. Only lead analyses were shown to have an unacceptable level of precision. Therefore, all lead data were qualified as estimated (UJ).

#### <u>Rinsate Sample</u>

Cleanliness of sampling equipment was checked by collection of rinsate sample W-041990-JM-03. The only analyte detected within the sample was methylene chloride. However, this methylene chloride datum was qualified as non-detect (U) based upon the method blank sample. Therefore, the sampling equipment was properly cleaned prior to collection of samples.

MN-COMP 0044125

1-12 12

źż

#### Field Duplicate Samples

Overall precision of this sampling event was monitored by collection of field duplicate samples W-041990-JM-04 and W-041990-JM-05. Both samples were found to be free of all target analytes, indicating that an acceptable level of precision was achieved.

#### **Overall Assessment**

Methylene chloride data for sample W-041990-JM-01, W-041990-JM-02 and W-041990-JM-03 were qualified as non-detect (U) based upon method blank sample data. Metals analytes arsenic, lead and selenium had all results qualified as estimated (UJ). The remaining data were found to be acceptable for the quanitative assessment of analytes within the groundwater at the project site.

cc: Bruce Clegg

# MN-COMP 0044126



July 13, 1990

# Waterloo File Copy

Rec'd CRA

на на стана Порта на стана Порта на стана а стана на стана на стана на стана на стана на стана на стана на стана на стана на стана на стана на стана на с

1

e v

; å ù

\$ E

á .

1. 1.

4. 3

MR. Jon Christofferson Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

RE: PACE Project No. 900607.552 2853

Dear Mr. Christofferson:

Enclosed is the report of laboratory analyses for samples received June 07, 1990.

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

Idia Ø,

Helen L.S. Addie Project Manager

Enclosures

MN-COMP 0044127

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania

An Equal Opportunity Employer



B3

Conestoga Rovers & Associates, Inc. 382 West County Road D St. Paul, MN 55112

July 13, 1990 PACE Project Number: 900607552

Attn: Mr. Jon Christofferson

2853

| PACE Sample Number:<br>Date Collected:<br>Date Received: |       |        | 10 0219118<br>06/06/90<br>06/07/90 | 06/06/90<br>06/07/90 | 06/06/90<br>06/07/90 |
|----------------------------------------------------------|-------|--------|------------------------------------|----------------------|----------------------|
| Parameter                                                | Units | _MDL   | W-060690-<br>RE-01                 | W-060690-<br>RF-02   | W-060690-<br>RE-03   |
| INORGANIC ANALYSIS                                       |       |        |                                    |                      |                      |
| INDIVIDUAL PARAMETERS                                    |       |        |                                    |                      |                      |
| Arsenic                                                  | mg/L  | 0.002  | ND                                 | ND                   | ND                   |
| Barlum                                                   | mg/L  | 0.006  | ND                                 | 0.18                 | 0.060                |
| Cadmium                                                  | mg/L  | 0.006  | ND                                 | ND                   | ND                   |
| Chromium                                                 | mg/L  | 0.010  | ND                                 | ND                   | ND                   |
| Copper                                                   | mg/L  | 0.005  | ND                                 | ND                   | ND                   |
| Lead                                                     | mg/L  | 0.045  | ND                                 | ND                   | ND                   |
| Mercury                                                  | mg/L  | 0.0002 | ND                                 | ND                   | ND                   |
| Nickel                                                   | mg/L  | 0.021  | ND                                 | ND                   | ND                   |
| Selenium                                                 | mg/L  | 0.005  | ND                                 | ND                   | ND                   |
| Silver                                                   | mg/L  | 0.005  | ND                                 | ND                   | ND                   |
| Zinc                                                     | mg/L  | 0.006  | 0.024                              | 0.019                | ND                   |

#### ORGANIC ANALYSIS

| PURGEABLE HALOCARBONS AND AROMATICS |      |     |          |            |              |
|-------------------------------------|------|-----|----------|------------|--------------|
| Date Analyzed                       |      |     | 06/14/90 | F 06/14/90 | F 06/14/90 F |
| Chloromethane                       | ug/L | 1.0 | ND       | ND         | ND           |
| Bromomethane                        | ug/L | 1.5 | ND       | ND S       | ND           |
| Dichlorodifluoromethane             | ug/L | 1.5 | ND       | ND         | ND           |
| Vinyl chloride                      | uq/L | 1.5 | ND       | ND         | ND           |
| Chloroethane                        | ug/L | 1.0 | ND       | ND         | ND           |
| Methylene chloride                  | ug/L | 1.0 | ND       | ND         | ND           |
| Trichlorofluoromethane              | ug/L |     | ND ·     | ND         | ND           |
| 1,1-Dichloroethylene                |      | 0.4 | ND       | ND         | ND           |
|                                     | ug/L | 0.3 | 0.6      | ND         | ND           |
| 1,1-Dichloroethane                  | ug/L | 0.2 | ND       | ND         | ND           |
| trans-1,2-Dichloroethylene          | ug/L | 0.3 | ND       | ND         | ND           |
| Chloroform                          | ug/L | 0.5 | ND       | ND         | ND           |

MDL Method Detection Limit ND Not detected at or above the MDL.

MN-COMP 0044128

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittshurnh Pennsulvania

An Equal Opportunity Employer



900607552

Mr. Jon Christofferson Page 2

2853

| 2000                                |       |       |            |            |            |                |
|-------------------------------------|-------|-------|------------|------------|------------|----------------|
| PACE Sample Number:                 |       |       | 10 0219118 | 10 0219126 | 10 0219134 | ŧ ≞ ≞          |
| Date Collected:                     |       |       | 06/06/90   | 06/06/90   | 06/06/90   |                |
| Date Received:                      |       |       | 06/07/90   | 06/07/90   | 06/07/90   |                |
|                                     |       |       | W-060690-  | W-060690-  | W-060690-  | ę r            |
| Parameter                           | Units | _MDL_ | RE-01      | RF-02      | RF-03      | -              |
| ORGANIC ANALYSIS                    |       |       |            |            |            | 1 - T          |
| PURGEABLE HALOCARBONS AND AROMATICS |       |       |            |            |            | 4 2            |
| 1,2-Dichloroethane                  | ug/L  | 0.2   | ND         | ND         | ND         |                |
| 1,1,1-Trichloroethane               | ug/L  | 0.5   | 6.9        | ND         | ND         | ç ş            |
| Carbon tetrachloride                | ug/L  | 0.3   | ND         | ND         | ND         | <del>. 7</del> |
| Bromodichloromethane                | ug/L  | 0.2   | ND         | ND 🦌       | ND         | ÷. 4           |
| 1,2-Dichloropropane                 | ug/L  | 0.2   | ND         | ND         | ND         | ς ν.           |
| cis-1,3-Dichloro-1-propene          | ug/L  | 0.5   | ND .       | ND         | ND         |                |
| 1,1,2-Trichloroethylene             | ug/L  | 0.5   | ND         | ND         | ND         | έ .            |
| Benzene                             | ug/L  | 1.0   | ND         | ND         | ND         | 8 · ·          |
| Dibromochloromethane                | ug/L  | 1.0   | ND         | ND         | ND         |                |
| 1,1,2-Trichloroethane               | ug/L  | 1.0   | ND         | ND         | ND         | 4              |
| trans-1,3-Dichloro-1-propene        | ug/L  | 0.3   | ND         | ND         | ND         |                |
| 2-Chloroethylvinyl ether            | ug/L  | 5.0   | ND         | ND         | ND         |                |
| Bromoform                           | ug/L  | 1.0   | ND         | ND         | ND         | * >            |
| 1,1,2,2-Tetrachloroethane           | ug/L  | 1.0   | ND         | ND         | ND         | 4 Y            |
| 1,1,2,2-Tetrachloroethylene         | ug/L  | 1.0   | 2.8        | ND         | ND         |                |
| Toluene                             | ug/L  | 1.0   | ND         | ND         | ND         |                |
| Chlorobenzene                       | ug/L  | 1.0   | ND         | ND         | ND         | 8 17<br>7 #    |
| Ethyl benzene                       | ug/L  | 1.0   | ND         | ND         | ND         | 9              |
| 1,3-Dichlorobenzene                 | ug/L  | 4.0   | ND         | ND         | ND         |                |
| 1,2-Dichlorobenzene                 | ug/L  | 4.0   | ND         | ND         | ND         | 5 5<br>-       |
| 1,4-Dichlorobenzene                 | ug/L  | 4.0   | ND         | ND         |            |                |
| cis-1,2-Dichloroethylene            | ug/L  | 0.5   | ND         | ND         | ND         |                |
| ~                                   |       |       |            |            |            | ali e c        |

July 13, 1990 PACE Project

Number:

| MDL | Method Detection Limit            |
|-----|-----------------------------------|
| ND  | Not detected at or above the MDL. |

## MN-COMP 0044129

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377 Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania An Equal Opportunity Employer

1.1

ŝ



# **REPORT OF LABORATORY ANALYSIS**

| THE ASSURANCE OF QUALITY               | ***** |           |              |            |              |
|----------------------------------------|-------|-----------|--------------|------------|--------------|
| Mr. Jon Christofferson                 | 77    | 10 1000   |              |            |              |
| Page 3                                 | JULY  | 13, 1990  |              |            |              |
|                                        | PACE  | Project   |              |            |              |
| 2052                                   |       | Number: 9 | 900607552    |            |              |
| 2853                                   |       |           | - (          |            | a hour       |
|                                        |       |           | B6           | BORA       | upstrein     |
| PACE Sample Number:                    |       |           | 10 0219142   |            |              |
| Date Collected:                        |       |           |              | 10 0219150 | 10 0219169   |
| Date Received:                         |       |           | 06/06/90     | 06/06/90   | 06/06/90     |
|                                        |       |           | 06/07/90     | 06/07/90   | 06/07/90     |
| Parameter                              |       |           | W-060690-    | W-060690-  | W-060690-    |
| LALAMELEL                              | Units | MDL       | <u>RE-04</u> | RE-05      | <u>RF-06</u> |
| THODOLUTO AND MOTO                     |       |           |              |            |              |
| INORGANIC ANALYSIS                     |       |           |              |            |              |
|                                        |       |           |              |            |              |
| INDIVIDUAL PARAMETERS                  |       |           |              |            |              |
| Arsenic                                | mg/L  | 0.000     | ND           |            |              |
| Barium                                 |       | 0.002     | ND           | ND         | ND           |
| Cadmium                                | mg/L  | 0.006     | 0.073        | 0.083      | 0.058        |
| Chromium                               | mg/L  | 0.006     | ND           | ND         | ND           |
|                                        | mg/L  | 0.010     | ND           | ND         | ND           |
| Copper                                 | mg/L  | 0.005     | ND           | ND         | ND           |
| Lead                                   | mg/L  | 0.045     | ND           | ND         | ND           |
|                                        |       | 0.045     | no           | ND         | NU           |
| Mercury                                | ma /1 | 0.0000    | ND           |            |              |
| Nickel                                 | mg/L  | 0.0002    |              | ND         | ND           |
| Selenium                               | mg/L  | 0.021     | ND           | ND         | ND           |
| Silver                                 | mg/L  | 0.005     | ND           | ND         | ND           |
|                                        | mg/L  | 0.005     | ND           | ND         | ND           |
| Zinc                                   | mg/L  | 0.006     | 0.007        | 0.006      | 0.009        |
|                                        | •     |           |              | 0.000      | 0.003        |
| ORGANIC ANALYSIS                       |       |           |              |            |              |
|                                        |       |           |              |            |              |
| PURGEABLE HALOCARBONS AND AROMATICS    |       |           |              |            |              |
| Date Analyzed                          |       |           |              |            |              |
| Chloromethane                          |       | 1         | 06/14/90 F   | 06/14/90 F | 06/14/90 F   |
| Bromomethane                           | ug/L  | 1.0       | ND           | ND         | ND           |
|                                        | ug/L  | 1.5       | ND           | ND         | ND           |
| Dichlorodifluoromethane                | ug/L  | 1.5       | ND           | ND         | ND           |
| Vinyl chloride                         | ug/L  | 1.5       | ND           | ND         | ND           |
| Chloroethane                           | ug/L  | 1.0       | ND           |            |              |
|                                        | ug/L  | 1.0       | NU           | ND         | ND           |
| Methylene chloride                     |       | 1 0       |              |            |              |
| Trichlorofluoromethane                 | ug/L  | 1.0       |              | ND         | 1.0          |
| 1 Dichloroothulana                     | ug/L  | 0.4       |              | ND         | ND           |
| 1,1-Dichloroethylene                   | ug/L  | 0.3       | ND           | ND         | ND           |
| 1,1-Dichloroethane                     | ug/L  | 0.2       |              |            | ND           |
| trans-1,2-Dichloroethylene             | ug/L  | 0.3       |              |            |              |
| Chloroform                             | ug/L  | 0.5       |              |            | ND           |
|                                        |       | 0.5       | NU           | ND         | ND           |
| 1,2-Dichloroethane                     |       | 0 0       |              |            |              |
| 1,1,1-Trichloroethane                  | ug/L  |           |              |            | ND           |
| ·, ·, ································ | ug/L  | 0.5       | ND           |            | ND           |
|                                        |       |           |              |            |              |
|                                        |       |           |              |            |              |

MDL Method Detection Limit ND Not detected at or above the MDL.

MN-COMP 0044130

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittchurch, Pagesulusaia An Equal Opportunity Employer



# **REPORT OF LABORATORY ANALYSIS**

| THE ASSURANCE OF QUALITY<br>Mr. Jon Christofferson |              | 13, 1990<br>Project | х                    |                        |            | · .                     |
|----------------------------------------------------|--------------|---------------------|----------------------|------------------------|------------|-------------------------|
| Page 4                                             | FACE         | Number:             | 900607552            |                        |            |                         |
| 2853                                               |              |                     |                      |                        |            | 1.                      |
| PACE Sample Number:                                |              |                     |                      | 10 0219150<br>06/06/90 | 10 0219169 | 9                       |
| Date Collected:<br>Date Received:                  |              |                     | 06/06/90<br>06/07/90 | 06/07/90               | 06/07/90   | ι.                      |
| Date Received.                                     |              |                     | W-060690-            | W-060690-              | W-060690-  |                         |
| Parameter                                          | Units        | _MDL                | <u>RF_04</u>         | <u>RF-05</u>           | RF-06      | - i .                   |
| ORGANIC ANALYSIS                                   |              |                     |                      |                        |            | 4 ×                     |
| PURGEABLE HALOCARBONS AND AROMATICS                |              |                     |                      |                        |            | ÷                       |
| Carbon tetrachloride                               | ug/L         | 0.3                 | ND                   | ND                     | ND         |                         |
| Bromodichloromethane                               | ug/L         | 0.2                 | ND                   | ND                     | ND<br>ND   |                         |
| 1,2-Dichloropropane                                | ug/L         | 0.2                 | ND<br>ND             | ND<br>ND               | ND         | 1                       |
| cis-1,3-Dichloro-1-propene                         | ug/L         | 0.5                 | 0.5                  | 0.6                    | ND         | -                       |
| l,l,2-Trichloroethylene<br>Benzene                 | ug/L<br>ug/L | 1.0                 | ND                   | ND                     | ND         |                         |
| Dibromochloromethane                               | ug/L         | 1.0                 | ND                   | ND                     | ND         | á -                     |
| 1,1,2-Trichloroethane                              | ug/L         | 1.0                 | ND                   | ND                     | ND         | т.<br>Т.                |
| trans-1,3-Dichloro-1-propene                       | ug/L         | 0.3                 | ND                   | ND                     | ND         |                         |
| 2-Chloroethylvinyl ether                           | ug/L         | 5.0                 | ND                   | ND                     | ND         |                         |
| Bromoform                                          | ug/L         | 1.0                 | ND                   | ND<br>ND               | ND<br>ND   |                         |
| 1,1,2,2-Tetrachloroethane                          | ug/L         | 1.0                 | ND                   | NU                     | ND         |                         |
| 1,1,2,2-Tetrachloroethylene                        | ug/L         | 1.0                 | ND                   | ND                     | ND         |                         |
| Toluene                                            | ug/L         | 1.0                 | ND                   | ND                     | ND         |                         |
| Chlorobenzene                                      | ug/L         | 1.0                 | ND                   | ND                     | ND         | ŕ.,                     |
| Ethyl benzene                                      | ug/L         | 1.0                 | ND                   | ND                     | ND         |                         |
| 1,3-Dichlorobenzene                                | ug/L         | 4.0                 | ND                   | ND                     | ND<br>ND   | n <sup>n</sup> st.<br>N |
| 1,2-Dichlorobenzene                                | ug/L         | 4.0                 | ND                   | ND                     | NU         | i.                      |

4.0

0.5

ND

5.5

1,4-Dichlorobenzene cis-1,2-Dichloroethylene

Method Detection Limit MDL Not detected at or above the MDL. ND

## MN-COMP 0044131

ND

5.5

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices Serving: Minneapolis, Minnesota Tampa, Florida lowa City, Iowa San Francisco, California Kansas City, Missouri

ug/L

ug/L

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania

An Equal Opportunity Employer

5

έ. Δ

4. 22

14

ź s

ND

ND



| Mr. Jon Christofferson<br>Page 5<br>2853                 | PACE PI |              | 00607552                                        |
|----------------------------------------------------------|---------|--------------|-------------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received: |         |              | 10 <sup>0</sup> 0219177<br>06/06/90<br>06/07/90 |
| Parameter                                                | Units   | MDL          | W-060690-<br>RF-07                              |
| INORGANIC ANALYSIS                                       |         |              |                                                 |
| INDIVIDUAL PARAMETERS<br>Arsenic                         |         |              |                                                 |
| Barium                                                   | mg/L    | 0.002        | ND                                              |
| Cadmium                                                  | mg/L    | 0.006        | 0.055                                           |
| Chromium                                                 | mg/L    | 0.006        | ND                                              |
| Copper                                                   | mg/L    | 0.010        | ND                                              |
| Lead                                                     | mg/L    | 0.005        | ND                                              |
| Leau                                                     | mg/L    | 0.045        | ND                                              |
| Mercury                                                  | mg/L    | 0.0002       | ND                                              |
| Nickel                                                   | mg/L    | 0.021        | ND                                              |
| Selenium                                                 | mg/L    | 0.005        | ND                                              |
| Silver                                                   | mg/L    | 0.005        | ND                                              |
| Zinc                                                     | mg/L    | 0.005        | ND                                              |
| ORGANIC ANALYSIS                                         |         |              |                                                 |
| PURGEABLE HALOCARBONS AND AROMATICS                      |         |              |                                                 |
| Date Analyzed                                            |         |              | 06/14/90 F                                      |
| Chloromethane                                            | ug/L    | 1.0          | ND                                              |
| Bromomethane                                             | ug/L    | 1.5          | ND                                              |
| Dichlorodifluoromethane                                  | ug/L    | 1.5          | ND                                              |
| Vinyl chloride                                           | ug/L    | 1.5          | ND                                              |
| Chloroethane                                             | ug/L    | 1.0          | ND                                              |
| Methylene chloride                                       | ug/L    | 1.0          | ND                                              |
| Trichlorofluoromethane                                   | ug/L    | 0.4          | ND                                              |
| l,l-Dichloroethylene                                     | ug/L    | 0.3          | ND                                              |
| 1,1-Dichloroethane                                       | ug/L    | 0.2          | ND                                              |
| trans-1,2-Dichloroethylene                               | ug/L    | 0.3          | ND                                              |
| Chloroform                                               | ug/L    | 0.5          | ND                                              |
| 1,2-Dichloroethane                                       | ug/L    | 0.2          | ND                                              |
| 1,1,1-Trichloroethane                                    | ug/L    | 0.5          | ND                                              |
|                                                          | ug/ L   | <b>U • J</b> |                                                 |

MDL Method Detection Limit ND Not detected at or above the MDL. MN-COMP 0044132

- -

Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania ٠,



## **REPORT OF LABORATORY ANALYSIS**

1.1

₽ 3) } }

1 4

5 7

ê 1

£. .£

1.3

4 24

i iz

ά e

| THE ASSURANCE OF QUALITY                                                                                                                                                       |                                              |                                        |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------|
| Mr. Jon Christofferson<br>Page 6                                                                                                                                               |                                              | 13, 1990<br>Project<br>Number:         | 900607552                                       |
| 2853                                                                                                                                                                           |                                              | Number.                                | 900007552                                       |
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                                                                       |                                              |                                        | 10 0219177<br>06/06/90<br>06/07/90<br>W-060690- |
| Parameter                                                                                                                                                                      | Units                                        | _MDL                                   |                                                 |
| ORGANIC ANALYSIS                                                                                                                                                               | 1                                            |                                        |                                                 |
| PURGEABLE HALOCARBONS AND AROMATICS<br>Carbon tetrachloride<br>Bromodichloromethane<br>1,2-Dichloropropane<br>cis-1,3-Dichloro-1-propene<br>1,1,2-Trichloroethylene<br>Benzene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 0.3<br>0.2<br>0.2<br>0.5<br>0.5<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                |
| Dibromochloromethane<br>1,1,2-Trichloroethane<br>trans-1,3-Dichloro-1-propene<br>2-Chloroethylvinyl ether<br>Bromoform<br>1,1,2,2-Tetrachloroethane                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>0.3<br>5.0<br>1.0<br>1.0 | ND<br>ND<br>ND<br>ND<br>ND                      |
| 1,1,2,2-Tetrachloroethylene<br>Toluene<br>Chlorobenzene<br>Ethyl benzene<br>1,3-Dichlorobenzene<br>1,2-Dichlorobenzene                                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1.0<br>1.0<br>1.0<br>4.0<br>4.0        | ND<br>ND<br>ND<br>ND<br>ND                      |
| l,4-Dichlorobenzene<br>cis-l,2-Dichloroethylene                                                                                                                                | ug/L<br>ug/L                                 | 4.0                                    | ND<br>ND                                        |

MDL Method Detection Limit ND Not detected at or above the MDL.

## MN-COMP 0044133

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377

Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania

An Equal Opportunity Employer

9



Mr. Jon Christofferson Page 7

#### 2853

## **REPORT OF LABORATORY ANALYSIS**

July 13, 1990 PACE Project Number: 900607552

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my supervision.

ngh

Starla Enger Inorganic Chemistry Manager

jusa Shanahan

Liesa A. Shanahan Organic Chemistry Manager

MN-COMP 0044134

1710 Douglas Drive North Minneapolis, MN 55422 TEL: 612-544-5543 FAX: 612-525-3377 Offices Serving: Minneapolis, Minnesota Tampa, Florida Iowa City, Iowa San Francisco, California Kansas City, Missouri

Los Angeles, California Charlotte, North Carolina Asheville, North Carolina New York, New York Pittsburgh, Pennsylvania An Equal Opportunity Employer

## CONESTOGA-ROVERS & ASSOCIATES 382 West County Road D St. Paul, Minnesota 55416

ANALYTICAL REPORT SUBMISSION CHECK LIST

Ġ Date Samples Received

Date Report Sent to CRA

| Items Included |                                      |         |
|----------------|--------------------------------------|---------|
| 1              | Summary List of Samples Analyzed     |         |
| 2V             | Date of Sample Receipt               |         |
| 3. <u>NA</u>   | Date of Sample Extraction            | · · · · |
| 4              | Date of Sample Analysis              |         |
| 5. <u> </u>    | Method Blank Data for all Parameters |         |
| 6/             | Matrix Spike Recoveries              |         |
| 7.             | Matrix Spike Duplicate Recoveries    |         |
| 8              | QC Check Sample Data                 |         |
| 9.             | Surrogate Spike Recoveries           |         |
|                |                                      | •       |

All samples extracted and analyzed within specified holding times:

Yes

| ۵ | No |
|---|----|
|   |    |

Method

Overnight
 Regular Mail
 Fax

Other

If no is checked please list CRA sample IDs of any samples that exceeded their holding times.

| •   |               |                                               |
|-----|---------------|-----------------------------------------------|
| Lab | Check ]       | List Completed by $\underline{\mathcal{MKG}}$ |
| •   | CRA USE       | ONLY                                          |
|     | Date Received | Complete: 🗆 Yes 🗆 No                          |
|     | Received by   | Copies to                                     |

MN-COMP 0044135

PACE LABORATORIES, INC.

SUBSET ABBREVIATION: 455C

PAGE 2

| PARAMETED NAME                                                                                                                                                  | ARBREY UNITS                                                                                                                                             | Calib Std<br>: ug/L<br>DATE:<br>DIL:<br>INST:                | <i>True</i><br><i>Value</i><br>DATE:<br>DIL:<br>INST: | Method<br>Blank<br>FINAL<br>RESULIS |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|
| Dichloroacetonitrile<br>2.3-Dichloro-1-propene<br>1.2-Dichloropropane<br>1.1-Dichloro-1-propene<br>cis-1.3-Dichloro-1-propene<br>1.1.2-Trichloroethylene        | DCACETONIT 1.0<br>23DCPENE 0.5<br>12DCPANE 0.2<br>11DCPENE 1.0<br>CIS13DCP 0.5<br>TCE 0.5                                                                | 80,6<br>19,3<br>14,3<br>17,4<br>17,4<br>19,2<br>19,2<br>19,2 | 80.0                                                  |                                     |
| Benzene<br>.3-Dichloropropane<br>Dibromochloromethane<br>.1.2-Trichloroethane<br>rans-1.3-Dichloro-1-propene<br>.2-Dibromoethane                                | BENZENE       1.0         13DCPANE       0.6         DBCMETHANE       1.0         112TCEANE       1.0         TRANS13DCP       0.3         EDB       4.0 | 18.5<br>18.2<br>18.7<br>19.0<br>19.2<br>19.2<br>18.7         |                                                       |                                     |
| <pre>P-Chloroethylvinyl ether<br/>romoform<br/>.1.1.2-Tetrachloroethane<br/>lethyl isobutyl ketone<br/>.2.3-Trichloropropane<br/>.1.2.2-Tetrachloroethane</pre> | 2CEVETHER 5.0<br>BROMOFORM 1.0<br>1112TTEANE 0.3<br>MIBK 1.0<br>123TCPANE 4.0<br>1122TTEANE 1.0                                                          |                                                              |                                                       |                                     |
| .1.2.2-Tetrachloroethylene<br>entachloroethane<br>oluene<br>hlorobenzene<br>thyl benzene<br>umene                                                               | 1122TTEENE 1.0<br>PENTACEANE 2.0<br>TOLUENE 1.0<br>CHLOROBENZ 1.0<br>ETHYLBENZ 1.0<br>CUMENE 1.0                                                         | 19,5<br>18,1<br>18,5<br>18,5<br>18,6<br>18,6<br>17,8         |                                                       |                                     |
| -Xylene<br>-Xylene<br>-Xylene<br>.3-Dichlorobenzene<br>.2-Dichlorobenzene<br>.4-Dichlorobenzene                                                                 | M-XYLENE 1.0<br>P-XYLENE 1.0<br>O-XYLENE 1.0<br>13DCBENZ 4.0<br>12DCBENZ 4.0<br>14DCBENZ 4.0                                                             | 18.6<br>17:7<br>17:8<br>17:8<br>17:8<br>17:6<br>19:8         |                                                       |                                     |
| ichlorofluoromethane                                                                                                                                            | FREON21 1.0                                                                                                                                              | 17.9                                                         |                                                       |                                     |

OK! 6/24/90

COMMENTS: (H3 Cl high - watch for trend.

MN-COMP 0044136

DATE: 08/22/89

## DAILY HATRIX SPKIE/HATRIX SPIKE DUPLICATE RECOVERY

| ANALYSIS: 601, 602, 4658 | FILE NUHBER:                                 |               |
|--------------------------|----------------------------------------------|---------------|
| INSTRUHENT: <u>F</u>     | DAJE PREPED:                                 | CLIENT NAHE:  |
| SAMPLE SPIKED: 21 (AIC)  | ANALYZED BY: 1514<br>DATE ANALYZED 10-124-90 | PROJECT NAME: |
| SAHPLE HATRIX:           |                                              |               |

| Compound                | True<br>Value | Sample<br>Result | HS                 | Z REC | HSD  | I REC | RÞD  | Accuracy<br>Limits | Precision<br>Limit | Associated<br>Samples |
|-------------------------|---------------|------------------|--------------------|-------|------|-------|------|--------------------|--------------------|-----------------------|
| Chloromethane           | 20.0          | ND               | 38.7.              | 194   | 31,5 | 158   | 20.4 |                    | 30%                | 21699                 |
| Bromomethane            |               | 1                | <i><i>al.</i>0</i> | 105   | 19.7 | '99   | 5.9  |                    | 30%                | 81700                 |
| Vinyl Chloride          |               | Í                | 24.2               | 121   | 32.7 | 114   | 6.0  |                    | 30%                | 81701                 |
| Chloroethine            |               |                  | 271                | 134   | 26.2 | 131   | 3.7  |                    | 30%                | 2.1702,               |
| Hethylene Chloride      |               |                  | 20,1               | 101   | 18.7 | 94    | 7,2  | 136 <u>-</u> 33    | 30%                | 21703                 |
| 1,1-Dichloroethylene    |               |                  | 24.2               | 121.  | 23.2 | 114   | 4:2  | 159 - 24           | 30%                | 21704                 |
| 1,1-D1chloroethane      |               |                  | 21.8               | 109   | 20,2 | 111   | 7.6  | 128 - 72           | 301                | 2911                  |
| Chloroform              |               |                  | 18.2               | 91    | 17.3 | 87    | 4.5  | 150 - 51           | 30%                | 21912                 |
| Carbon Tetrachloride    |               |                  | 20.8               | 104   | 18,8 | 94    | 10.1 | 155 - 44           | 30%                | 21913                 |
| 1,2-Dichloropropane     |               |                  | 18.4               | 92    | 17.3 | 87    | 5.4  | 131 - 63           | 30%                | 21914                 |
| 1,1,2-Trichloroethylene |               |                  | 17.2               | (11   | 15.7 | -19   | 8.5  | 128 - 61           | 30%                | 21915                 |
| Benzene                 |               |                  | 18:7               | 95    | 18.0 | 90    | 5.4  | 133 - 68           | 30%                | 219/4                 |
| Dibromochioro Hethane   | · 1           | $\mathbf{V}$     | 14.6               | 83    | 15.2 | -16   | 8.8  | 133 - 64           | 30%                | 21917                 |

MN-COMP 0044137

Page 1 of 2

## DAILY HATRIX SPKIE/HATRIX SPIKE DUPLICATE RECOVERY

| AHALYSIS: 601, 602, 465B       | FILE NUMBER:            |                 |
|--------------------------------|-------------------------|-----------------|
| INSTRUMENT: F                  | PREPED BY:              |                 |
| STANDARD: A                    | DATE PREPED:            | CLIENT NAME:    |
| SAMPLE SPIKED: Marthat & 11099 | ANALYZED BY: LETT       | PROJECT NAHE:   |
| SAMPLE MATRIX UN INATEL        | DATE ANALYZED 11-14-410 | PROJECT NUHBER: |
|                                |                         |                 |

| True<br>Value | Sample<br>Result | нs                                                                             | 7 REC                                                                                                                                    | HSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z REC                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accuracy<br>Limits                                                                                                                                                                                                                                                                                                                                                      | Precision<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                               | Associated<br>Samples                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| £0.0          | NIN              | 17.1                                                                           | 86                                                                                                                                       | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,5                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | 30X                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                  |                                                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         | 30I                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | ND               | 19.0                                                                           | 95                                                                                                                                       | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                   | 132 - 55                                                                                                                                                                                                                                                                                                                                                                | 302                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                  | 18,1                                                                           | 91                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119 - 58                                                                                                                                                                                                                                                                                                                                                                | . 30%                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                  | 1179                                                                           | 1                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                | H:3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117 - 57                                                                                                                                                                                                                                                                                                                                                                | 30%                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | $\checkmark$     | 17.6                                                                           |                                                                                                                                          | The second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116 - 57                                                                                                                                                                                                                                                                                                                                                                | 30%                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                  |                                                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                  | Value Result<br><u><u><u>R</u>O</u>,O<u>N</u><u>D</u><br/><u><u>N</u>D</u></u> | Value         Result         HS           GOO         ND         17.1           I         I         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Value         Result         HS         Z REC           GOO         ND         17.1         86           MD         19.0         95           ND         19.0         95           ND         19.0         90           ND         19.0         95           ND         19.0         90           ND         19.0         95           ND         19.0         90           ND         19.0         90 | Value       Result       HS       Z REC       HSD $\dot{K}O.0$ ND $17.1$ $86/5.7$ $I$ | Value       Result       HS       Z REC       HSD       Z REC $\hat{K}O,O$ ND $17.1$ $86$ $15.7$ $79$ $M$ $D$ $17.1$ $86$ $15.7$ $79$ $M$ $D$ $19.0$ $95$ $16.8$ $84$ $M$ $D$ $19.0$ $95$ $78$ $80$ $M$ $M$ $179$ $90$ $5.5$ $78$ $78$ | Value       Result       HS       Z REC       HSD       Z REC       RPD $\hat{H}O.0$ ND $17.1$ $86$ $15.7$ $79$ $8.5$ $$ $$ $$ $$ $$ $$ $$ $MD$ $19.0$ $95$ $16.8$ $84$ $12.3$ $12.3$ $MD$ $19.0$ $95$ $16.8$ $84$ $12.3$ $MD$ $19.0$ $95$ $16.8$ $84$ $12.3$ $MD$ $19.0$ $95$ $16.8$ $84$ $12.3$ $III$ $IIII$ $5.9$ $80$ $12.9$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$ | Value       Result       HS       Z REC       HSD       Z REC       RPD       Limits $\hat{H}O.0$ ND $17.1$ $86$ $57$ $79$ $8.5$ $I$ $I$ $I$ $86$ $57$ $79$ $8.5$ $I$ $I$ $I$ $86$ $15.7$ $79$ $8.5$ $I$ $I$ $I$ $84$ $12.3$ $132 - 55$ $I$ $I$ $I$ $9.5$ $I6.8$ $8.4$ $I2.3$ $132 - 55$ $I$ $I$ $I$ $9.5$ $I6.8$ $8.4$ $I2.3$ $132 - 55$ $I$ $I$ $I$ $9.7$ $80$ $I2.7$ $119 - 58$ $I$ $I7.9$ $90$ $I5.7$ $78$ $I4.3$ $117 - 57$ | Value         Result         HS         Z REC         HSD         Z REC         RPD         Limits         Limit $\hat{H}O.0$ $ND$ $17.1$ $86$ $57$ $79$ $8.5$ $30x$ $I$ $I$ $I$ $86$ $57$ $79$ $8.5$ $30x$ $I$ $I$ $I$ $86$ $57$ $79$ $8.5$ $30x$ $I$ $I$ $I7.1$ $86$ $15.7$ $79$ $8.5$ $30x$ $I$ $I9.0$ $95$ $16.8$ $84$ $12.3$ $132 - 55$ $30x$ $I$ $I8.1$ $91$ $5.9$ $80$ $12.9$ $119 - 58$ $30x$ $I$ $I7.9$ $90$ $I5.5$ $78$ $I4.3$ $117 - 57$ $30x$ |

| * Asteriske<br>RPD: VOAs<br>Recovery: VOAS<br>Blank: | d Value are outside QC limits.<br>out of outside of<br>out of outside of | QC Reviewed by: |
|------------------------------------------------------|--------------------------------------------------------------------------|-----------------|
| Comments:                                            |                                                                          | 74HPPLAS        |

MN-COMP 0044138

Page 2 of 2

| PACE LABORATORIES, INC.                                                                                              |                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUBSET AGBREVIATION: 465C                                                                                            |                                                                                                                                                                                           |
| SUBSET HAME: MDH VOLA                                                                                                | TILE ORGANICS-465C                                                                                                                                                                        |
| DATE COLLECTED:                                                                                                      | CLIENT NAME:                                                                                                                                                                              |
| DATE RECEIVED:                                                                                                       | PROJECT NUMBER:                                                                                                                                                                           |
| MATRIX:                                                                                                              | DATA REVIEWED BY:                                                                                                                                                                         |
| DATE EXTRACTED/BY:                                                                                                   | ENTERED BY:                                                                                                                                                                               |
| INITIAL VOL:                                                                                                         | SAMPLE NAME: 6-14-90-F                                                                                                                                                                    |
| FINAL VOL:                                                                                                           | SAMPLE NUMBER: Daily Calibration Check                                                                                                                                                    |
| ANALYZED BY:                                                                                                         |                                                                                                                                                                                           |
| PARAMETER NAME                                                                                                       | ABBREY LINITS: Calib Stas True Value M<br>DATE: 6-14-90 DATE: E<br>DIL: DIL: FI                                                                                                           |
|                                                                                                                      | MOL INST: O INST: RE                                                                                                                                                                      |
| Date Analyzed<br>Chloromethane<br>Bromomethane<br>Dichlorodifluoromethane<br>Vinyl chloride<br>Chloroethane          | 465C DA $(-14-90)$ $(-14-90)$ CHLOROMETH 1.0 $443$ $20.0$ $1$ BROMOMETH 1.5 $20.3$ $20.0$ $1$ FREON12       1.5 $25.3$ $20.0$ $1$ VINYLCHLOR 1.5 $23.6$ $24.7$ $20.0$ $1$                 |
| Methylene chloride<br>Acetone<br>Trichlorofluoromethane<br>Allyl chloride<br>1.1-Dichloroethylene<br>Tetrahydrofuran | MECL $1.0$ $18.7$ $$ ACETONE       40 $189$ $200$ $=$ FREON11 $0.4$ $19.2$ $20.0$ $=$ ALLYL       CHL $4.0$ $17.9$ $=$ $=$ 11CCEENE $0.3$ $19.2$ $=$ $=$ $=$ THF       15 $=$ $=$ $=$ $=$ |

11DCEANE

CIS12DCE

FREON113

12DCEANE

DIBROMETH

**111TCEANE** 

CARBONTET

BDCMETHANE 0.2

MEK

TRANSIZDCE 0.3

ETHYLETHER 0.3

CHLOROFORM 0.5

0.2

0.5

0.7

20

0.2

1.5

0.5

0.3

1.1-Dichloróethane trans-1.2-Dichloroethylene cls-1.2-Dichloroethylene Ethyl ether Chloroform 1.1.2-Trichlorotrifluoroethane

Methyl ethyl ketone 1.2-Dichloroethane Dibromomethane 1.1.1-Trichloroethane Carbon tetrachloride Bromodichloromethane

COMMENTS:

MN-COMP 0044139

20.0

80.0

20.0

V.

10 P

Met Bl FIN... RESU: PACE LABORATORIES, INC.

# SUBSET ABBREVIATION: 465C

# PAGE 2

SAMPLE NO: \_\_\_\_\_

| ARAMETED NAME                                                                                                                                        | Calib Std True Metho<br>ARBREY_UNIIS: ug/L Value Blank<br>DATE: DATE:                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dichloroacetonitrile<br>.3-Dichloro-1-propene<br>.2-Dichloropropane<br>1.1-Dichloro-1-propene<br>is-1.3-Dichloro-1-propene<br>.1.2-Trichloroethylene | DIL: DIL: FINAL<br>MOL INST: INST: RESULTS<br>DCACETONIT 1.0 80.6 80.0 ND<br>23DCPENE 0.5 19.3 20.0 10<br>12DCPANE 0.2 19.3 20.0 10<br>11DCPENE 1.0 17.4 10<br>CIST3DCP 0.5 19.2 10<br>TCE 0.5 19.2 10                                                           |
| Senzene<br>3-Dichloropropane<br>bromochloromethane<br>.1.2-Trichloroethane<br>ans-1.3-Dichloro-1-propene<br>2-Dibromoethane                          | BENZENE       1.0 $18.5$ 13DCPANE       0.6 $18.2$ DBCMETHANE       1.0 $18.7$ 112TCEANE       1.0 $19.0$ TRANS13DCP       0.3 $161.2$ EDB       4.0 $18.7$                                                                                                      |
| -Chloroethylvinyl ether<br>omoform<br>.1.1.2-Tetrachloroethane<br>ethyl isobutyl ketone<br>2.3-Trichloropropane<br>1.2.2-Tetrachloroethane           | 2CEVETHER $5.0$ $-$ BROMOFORM $1.0$ $18.1$ 1112TTEANE $0.3$ $17.8$ MIBK $1.0$ $18.3$ 123TCPANE $4.0$ $18.7$ 1122TTEANE $1.0$ $18.3$                                                                                                                              |
| 1.2.2-Tetrachloroethylene<br>itachloroethane<br>Diuene<br>ilorobenzene<br>iyl benzene<br>iyl benzene<br>iylene                                       | 1122TTEENE       1.0 $19.5$ PENTACEANE       2.0 $18.1$ TOLUENE       1.0 $18.5$ CHLOROBENZ       1.0 $18.5$ ETHYLBENZ       1.0 $18.6$ CUMENE       1.0 $17.8$                                                                                                  |
| ylene<br>Xylene<br>3-Dichlorobenzene<br>-Dichlorobenzene<br>-Dichlorobenzene<br>hlorofluoromethane                                                   | M-XYLENE       1.0       18.6         P-XYLENE       1.0       17.7         O-XYLENE       1.0       17.8         I3DCBENZ       4.0       19.8         I2DCBENZ       4.0       17.6         I4DCBENZ       4.0       19.8         FREON21       1.0       17.9 |
|                                                                                                                                                      | V V                                                                                                                                                                                                                                                              |

XIP 6/24/90

MN-COMP 0044140

IMENTS: CH3Cl high - watch for trend.

### VOLATILE ORGANICS BY GC

| INSTRUMENT: | F        |  |
|-------------|----------|--|
| STANDARD:   |          |  |
|             | 1 10 - 0 |  |

ANALYZED BY: LITH DATE ANALYZED: 6-14-90

SAMPLE MATRIX: WATER

Surrogates

|     | LAB          |                                       |               |
|-----|--------------|---------------------------------------|---------------|
|     |              | FLUORO-                               | #             |
| •   | SAMPLE NO.   | BENZENE                               | +             |
| 01  | DEXTRAS STD  | 9.5                                   |               |
| 02  | 0 602 STD    | 10.0                                  |               |
| 03  | METHOD R/ANK | - 10,1                                |               |
| 04  | 21911,8      | _10,1                                 |               |
| 05  | 21912.6      | 99                                    |               |
| 06  | 21913.4      | 9.8                                   |               |
| 07  | 21914.2      | 10,1                                  |               |
| 08  | 21915.0      | 9.5                                   |               |
| 09. | 21916.9      | 913                                   |               |
| 11  | £1917.7      | 9,5                                   |               |
| 12  |              |                                       |               |
| 13  |              |                                       |               |
| 14  |              |                                       |               |
| 15  |              |                                       |               |
| 16  | ······       |                                       | 4             |
| 17  |              |                                       | 4             |
| 18  |              |                                       | <b>_</b>      |
| 19  |              |                                       |               |
| 20  |              |                                       | - <b> </b>    |
| 21  |              |                                       |               |
| 22  |              |                                       | - <b>  </b> - |
| 23  |              |                                       | - <b>  </b> - |
| 24  |              | ·                                     | <b>+</b>  -   |
| 25  |              |                                       | <b>_____</b>  |
| 26  |              |                                       | <b>+</b>      |
| 27  |              | ·                                     | +             |
| 28  |              | · · · · · · · · · · · · · · · · · · · |               |
| 29  |              |                                       |               |
| 30  | l            |                                       |               |

Advisory QC Limits ± 20%

#### Sample = Fluorobenzene

## MN-COMP 0044141

10 10

-

3 8

# Column to be used to flag recovery values  $\mbox{*}$  Values outside of QC limits  $\mbox{\cdot}$ 

D Surrogates diluted out

Project Name

(5 - 1) No.1-1

900607552

# SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

|              |                     |                    |                               |                 |          | •             |             |                  |      |              |
|--------------|---------------------|--------------------|-------------------------------|-----------------|----------|---------------|-------------|------------------|------|--------------|
| Parameter    | Date of<br>Analysis | Mthd<br><u>B]k</u> | Check<br>Std.<br><u>% Rec</u> | Sp1ked<br>Value | %<br>Rec | Acc.<br>Range | Sample<br>A | Sample<br>A_Dup_ | RPD  | RPD<br>Range |
| Arsenic      | 6/12/90             | 0.0                | 102                           | 7,83            | 78       | 85-115        | NA          | NA               |      | -            |
| PACE Sample# |                     |                    |                               | 21915           |          |               |             |                  |      |              |
| Mercury      | 6/21/90             | ND                 | 68                            | 4.70            | 94       | 85-115        | 4.70        | 3,79             | 21   | ±3           |
| PACE Sample# |                     |                    |                               | 21913           |          |               | 21913       |                  |      |              |
| Selenium     | 7/8/90              | 0.0                | 102                           | 14.7            | 74       | 85-115        | 14.7        | 15.2             | 3,3  | ±30          |
| PACE Sample# |                     |                    |                               | 21916           |          |               | 21911       |                  |      |              |
| Barium       | 7/11/90             | ND                 | 93                            | 1.06            | 106      | 85-115        | NA          | NA               | -    |              |
| PACE Sample# |                     |                    |                               | 21917           |          |               |             |                  |      |              |
| Cadmium      | 7/11/90             | 20,004             | .92                           | 1.05            | 105      | 85-115        | NA          | NA               | _    |              |
| PACE Sample# |                     |                    |                               | 21917           |          |               |             | ¥11              |      |              |
| Chromium     | 7/11/90             | 20.010             | .94                           | 1.06            | 106      | 85-115        | NA          | NA               | -    |              |
| PACE Sample# | •                   |                    | 2<br>                         | 21917           |          |               |             |                  |      |              |
| Copper       | 7/11/90             | L0.005             | 93                            | 1.01            | 101      | 85-115        | NA          | NA               | NA.  |              |
| PACE Sample# |                     |                    |                               | 21917           |          |               |             |                  | //// | ·            |
| Lead         | 7/11/90             | (O.04jg            |                               | 1.02            | 10-      | 85-119        | NA.         | NA               | _    |              |
| PACE Sample# |                     |                    |                               | 21917           | 1 2 9    | <u> </u>      |             |                  |      |              |
|              |                     |                    |                               |                 |          |               |             |                  |      |              |
|              |                     |                    |                               |                 |          |               |             |                  |      |              |

NA Not Analyzed ND Not Detected at or above the method detection limit

MN-COMP 0044142

Project Name \_\_\_\_\_

•

# SUMMARY OF INORGANIC ACCURACY AND PRECISION DATA

.

.

| Parameter                             | Date of<br>Analysis | Mthd<br><u>Blk</u> | Check<br>Std.<br>7 <u>Rec</u> | Spiked<br><u>Value</u> | %<br><u>Rec</u> | Acc.<br>Range | Sample<br>A | Sample<br>A_Dup_ | RPQ | RPD<br>R <u>a</u> ng |
|---------------------------------------|---------------------|--------------------|-------------------------------|------------------------|-----------------|---------------|-------------|------------------|-----|----------------------|
| Nickel                                | 7/11/20             | 20.02              | 88                            | 1.01                   | 101             | 85-115        | NA          | NA               |     |                      |
| PACE Sample#                          | · · ·               |                    |                               | 21917                  |                 |               |             | •                |     |                      |
| Siver                                 | 7/11/90             | 20.005             | 94                            | 01637                  | 64              | 85-115        | NA          | MA               |     |                      |
| PACE Sample#                          |                     |                    |                               | 21917                  |                 |               |             |                  |     |                      |
| Zinc                                  | 7/11/90             | 0.040              | 94                            | 1.04                   | 104             | 85-115        | NA          | NA               |     |                      |
| PACE Sample#                          |                     |                    |                               | 21917                  |                 |               |             |                  |     |                      |
| •                                     |                     |                    |                               |                        |                 |               |             |                  |     |                      |
| PACE Sample#                          |                     |                    |                               |                        |                 | •             |             |                  |     |                      |
|                                       |                     |                    |                               |                        |                 |               |             | £.               |     |                      |
| PACE Sample#                          |                     |                    |                               |                        |                 |               |             |                  |     |                      |
|                                       |                     |                    |                               | ·                      |                 |               |             |                  |     |                      |
| PACE Sample#                          |                     |                    |                               |                        |                 |               |             |                  |     |                      |
| · · · · · · · · · · · · · · · · · · · | · .                 |                    |                               |                        |                 |               |             |                  |     |                      |
| PACE Sample#                          |                     |                    |                               |                        |                 |               |             |                  |     |                      |
|                                       |                     |                    |                               |                        |                 |               |             |                  | ŀ   |                      |
| PACE Sample#                          |                     | 1                  |                               |                        |                 |               |             |                  |     |                      |
| <b></b>                               |                     |                    |                               |                        |                 |               |             |                  |     |                      |
|                                       | ]                   | <u> </u>           |                               |                        |                 | L             | <u> </u>    |                  |     | <u> </u>             |

NA

Not Analyzed Not Detected at or above the method detection limit ND

MN-COMP 0044143

| CRA Consulting Er<br>CONESTOGA-ROVEL<br>651 Colby Drive, Waterlo | RS & ASSOCIAT                                                                 | ES<br>12V 1C2                                   | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | TO (Labord                                 | atory      | / name):           |      |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------|--------------------|------|
| CHAIN OF CRECO                                                   | · ··· ••                                                                      | PROJECT                                         | Nº:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRO               | DJECT NAME:                                |            |                    |      |
| SAMPLER'S SIGNATURE                                              | Pohnt Fil                                                                     | d, h                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · ·         | SAMPLE                                     | ERS        |                    |      |
| SEQ. SAMPLE Nº.                                                  | DATE TIME                                                                     | SAMPLE L                                        | OCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DIN               | TYPE                                       | Nº OF      | REMARKS            | æ    |
| W-060690-                                                        | RF- 01                                                                        | 8191                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | WATER                                      | 4          | GOI, 602 Voc's; M  |      |
|                                                                  | - 02                                                                          | <u> </u>                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | WATER                                      | 4          | 601,602 VC's; M    | ETH  |
|                                                                  | - 03                                                                          | 1                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | NATER                                      | 4          | 601,602 WCS; ME    | mu < |
|                                                                  | - 04                                                                          | 14                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | WATER                                      | 4          | 601,602 WCS : ME   |      |
|                                                                  | - 05                                                                          | 1                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | WATER                                      | 4          | 601,602 Vocs; M    |      |
|                                                                  | - 06                                                                          | 11                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | WATER                                      | 3          | 601,602. VOC'S ;ME | THIS |
| ¥                                                                | -07                                                                           | 1                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | WATER                                      | 4          | 601,602 Vocs ; M   | ETH  |
| MOTE: METAL                                                      | LS SAMPLES                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01                |                                            |            |                    |      |
|                                                                  | (90-RF-05                                                                     | Have BE                                         | -kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Ittell                                     | <u> </u>   |                    |      |
| Auron                                                            | ED. THE OTH                                                                   | TR THE SE                                       | AMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TELD              | ETT. ()                                    |            |                    |      |
| AREN                                                             |                                                                               | 10 100 21                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 (7              | CIHCY                                      |            |                    |      |
| Auryzar                                                          |                                                                               |                                                 | C131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | -                                          |            | LIDURE             |      |
| B Baild, Cr, C                                                   | <u>метнооз 601,6</u><br>А ЕРА АТот<br>Си, РЬ, Ад, <del>2</del><br>ISTOFFERSON | OZ & CIS-1<br>IC AOSON<br>IN NI VI<br>FOR QUEST | 2 01<br>2 0<br>2 01<br>2 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 | CHUE<br>ME<br>CPI | DETHLENE<br>THODS.<br>ANALYSIS. E<br>07891 |            |                    | 0.   |
|                                                                  |                                                                               | TOTAL NUMB                                      | ER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONT              | <b>TAINERS</b>                             | 27         |                    |      |
| ANTICIPATED CHEMICAL                                             | HAZARDS:                                                                      | · · ·                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                            |            |                    |      |
| RELINQUISHED BY:                                                 | 1. 17. 110                                                                    | DAT                                             | E/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | RECEIVED B                                 | Y:         |                    |      |
|                                                                  | (SIGN)                                                                        | - 6/7/90                                        | 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                |                                            | <u>_</u>   |                    |      |
| RELINQUISHED BY:                                                 |                                                                               | DAT                                             | E/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                 | RECEIVED B                                 | Y.         | (SQN)              |      |
| 2                                                                | (SIGN)                                                                        |                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |                                            | ".<br>3—   |                    |      |
| RELINQUISHED BY:                                                 | ()                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                            |            | (SIGN)             | 1.   |
| [3]                                                              | (0)01                                                                         |                                                 | e/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | RECEIVED B                                 | ~          |                    |      |
| ADDITIONAL SIGNATURE                                             | (SICN)                                                                        |                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                            | <b>(4)</b> | (SGN)              |      |
| SHEET REQUIRED                                                   |                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                            |            |                    |      |
| METHOD OF SHIPMENT:<br>AND DEUVERED                              | SHIPPET<br>R. F.                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RECEIY            | FOR JABOR                                  |            | ATE/TIL            | ME   |
| CONDITION OF SEAL UPON<br>GENERAL CONDITION OF C                 |                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | ER OPENED BY                               |            | DATE/TIN           | Æ    |
| TELLOW - RECE                                                    | OFFICE COPY<br>IVING LABORATORY<br>LABORATORY COP                             | Y COPY MN                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sign)             | 944144                                     | N          | <u> </u>           |      |

•

the second second

Service From

Bang and a second

And the second second

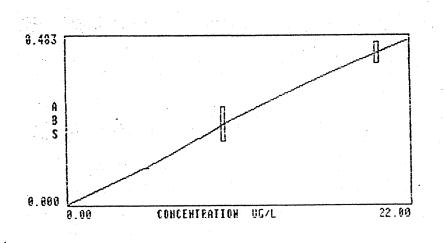
for an and state

s i

participation control of

рания на ст. Карания на ст.

5 - 1 -


# Varian DS-15 AA-1275/1475 Report

Pace Laboratory 1710 Douglas Drive Minneapolis, MN 55422 (612) 544-5543 Calculated: 6/13/90 By: LMP4P Entered: 6/13/90 By: PAS Reviewed: / By:

| OPERATOR | PAS_           |
|----------|----------------|
| DATE     | 06-12-90 07:00 |
| BATCH    | As FURNACE #2  |
|          | 1 A A          |

PROGRAM 1 As FURNACE

| SAMPLE                                          | CONC<br>UG/L                   | %RSD              | MEAN<br>ABS                       |                                   | READINGS                          |
|-------------------------------------------------|--------------------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| BLANK<br>STANDARD 1<br>STANDARD 2<br>STANDARD 3 | 0.00<br>5.00<br>10.00<br>20.00 | 0.0<br>9.9<br>6.2 | -0.072<br>0.108<br>0.235<br>0.440 | -0.078<br>0.108<br>0.218<br>0.420 | -0.066<br>0.108<br>0.251<br>0.459 |



## mpl=0.007 myll

| EPA287 TV5.0   | 5.09 102%         | 7.7           | 0.110  | 0.116  | 0.104          |                             |
|----------------|-------------------|---------------|--------|--------|----------------|-----------------------------|
| MDL 2.00PPB    | 1.64              | 17.9          | 0.035  | 0.040  | 0.031          |                             |
| 21171-D        | 13.97             | 8.8           | 0.319  | 0.339  | ा उ⊸े <i>)</i> | - 1-1                       |
| 21171 AW-D     | OVER              | 3.2           | 0.483  | 0.472  | 0.494          | Rerun 2x dilution           |
| 21172-D        | 7.98              | 2.4           | 0.234  | 0.230  | 0.238          | low spk recovery            |
| 21173-D        | 11.62             | 4.9           | 0.269  | 0.260  | 0.279/         |                             |
| 21174-D        | -0.14             | 47.1          | -0.003 | -0.002 | -0.004         |                             |
| P8-25X 5/31    | -0.23             | 56.5          | -0.005 | -0.003 | -0.007 m       | )1=1.3 mg/kg                |
| 20976 25X      | 7.8 12.53 mg 1Kg  | 1.4           | 0.289  | 0.292  | 0 00/ M        | <n (1<="" (1<)="" p=""></n> |
|                | 2.0 3.17 847.     | 9.2           | 0.069  | 0.073  | 0.06403        | 1.1)(25)(5%)(Ynor)=2.0      |
| 20977 25X AS1  | TV-10-011.08 HOTO | 3.2           | 0.258  | 0.252  | 0.264          |                             |
| 20978 25X      | OVER              | 1.0           | 0.675  | 0.680A | 0.670A         |                             |
| 20978 25XMS    | OVER              | 26.7          | 0.563  | 0.669A | 0.456A         |                             |
| 20978 25XMSD   | OVER              | 15.4          | 0.647  | 0.576A | 0.717A         |                             |
| EPA287 TV5.0   | 4.07 8190         | 0.0           | 0.088  | 0.088  | 0.088          | MN-COMP 0044145             |
| 21866          | 0.07              | 99 <b>.</b> e | 0.001  | 0.003  | 0.000          |                             |
| 21868          | 0.07              | 99.9          | 0.001  | 0.005  | -0.002         |                             |
| 21369          | 0.16              | 99.9          | 0.003  | -0.003 | 0.010          |                             |
| 21870          | -0.30             | 76.1          | -0.006 | -0.010 | -0.003         |                             |
| -1270 All turi | 0.0 5.87 CG90     | 27            | 01128  | 0.126  | 0.171          |                             |
|                |                   |               |        |        |                |                             |

| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                      | CONC<br>UG/L                                                                                                                                                                                                                                                                                                                                    | AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                    | READINGS                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| 21.912       ND $21913$ ND $21913$ ND $21913$ ND $21915$ ND $21915$ AW $21915$ AW $21915$ AW $21915$ AW $21915$ AW $21915$ AW $21917$ NO $21917$ NO $21917$ NO $21917$ NO $21249$ $28178 = 50$ $21268$ $4W$ $21248$ $4W$ $21248$ $4W$ $22346$ $4W$ $21787$ $NO$ $21787$ $NO$ $21787$ $NO$ $21787$ $NO$ $21787$ $NO$ $10.0$ $PPP$ $19.0$ $PPP$ | $\begin{array}{c} -0.14 \text{ mg/l} \\ -0.25 \\ 0.02 \\ -0.39 \\ -0.39 \\ -0.39 \\ 17.83 \\ 7.83 \\ 769 \\ 0.28 \\ 4.75 \\ 959 \\ 17.69 \\ -0.19 \\ -0.19 \\ -0.19 \\ -0.30 \\ -0.12 \\ \text{mg/l} \\ 8.58 \\ 869 \\ -0.05 \\ \text{mg/l} \\ 8.58 \\ 869 \\ -0.05 \\ \text{mg/l} \\ 8.58 \\ 869 \\ -0.35 \\ 4.65 \\ 1.55 \\ 3.54 \end{array}$ | 99.9 -0.<br>38.5 -0.<br>97.9 0.<br>41.5 -0.<br>54.3 -0.<br>0.7 0.<br>24.9 0.<br>97.9 0.<br>35.3 -0.<br>97.9 0.<br>35.3 -0.<br>97.9 -0.<br>8.2 0.<br>97.9 -0.<br>8.2 0.<br>97.9 -0.<br>5.4 -0.<br>2.0 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.9 0.<br>97.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -0.006<br>-0.004<br>0.176.<br>0.007<br>0.011<br>0.099 |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.078                                                | 0.079                                                 |

MN-COMP 0044146

#### ANALYSIS: •

FOR CLP USE ONLY?

•

| ATCHIC ABSORPTION ELEMENT |             |       | DATE ANALYZED:     | 6-21-90         | CLIENT NAME: |                           |        |  |  |
|---------------------------|-------------|-------|--------------------|-----------------|--------------|---------------------------|--------|--|--|
|                           |             |       | ANALYZED BY:       | PROJECT NUMBER: |              |                           |        |  |  |
| ABBREVIATI                | ON H-       | -4    | TIME:              | 11:00           | PROJECT      | NAME.                     | (      |  |  |
|                           |             | •     |                    | CAT/JEM         | _ FILE #:    |                           |        |  |  |
| :                         |             |       | DATA REVIEWED BY:  | Kicy            | DATE RE      | CEIVED: _                 |        |  |  |
|                           |             |       | ENTERED BY:        | (1              |              | LLECTED:_                 |        |  |  |
|                           |             |       | INSTRUMENT ID #    | 3               | _ HIGH ST    | D. CONC.:                 | 10     |  |  |
|                           |             |       |                    |                 | ABS:         |                           | 0.230  |  |  |
| •                         | •           |       | MOL <u>00</u>      | 2002            | R FACTO      | DR:                       | Lintey |  |  |
|                           |             | Analy | sis                | Spike_          | Rec          | 7. REC Dup                | licite |  |  |
| Sample                    | Results     | Units | Comments           | True            | Found        |                           |        |  |  |
|                           |             | . /:  |                    |                 |              |                           |        |  |  |
| BLK                       | <u>C</u> M_ | ngli  |                    |                 |              |                           | :      |  |  |
| Stdo.Z                    | 0.22        |       |                    |                 |              | - <b> </b>   <sub>1</sub> |        |  |  |
| 5111.00                   | 0.96        |       |                    |                 |              |                           |        |  |  |
| 5 to 3.00                 |             |       | -                  |                 | •            |                           |        |  |  |
| · · · · ·                 | 5.13        |       |                    |                 |              |                           |        |  |  |
| 5417.00                   | 1           |       |                    |                 |              |                           | -<br>  |  |  |
|                           | 4.42        |       |                    |                 |              |                           |        |  |  |
| EPA                       |             |       | EPA 555            | 502             |              | 63                        | k.     |  |  |
| EPA                       |             | V<br> | EPA 283            | 7.50            | -            | 101                       |        |  |  |
| 19111                     | N.D.        | mall  | 0.000g<br>Leachute | 5,00            | 0            |                           |        |  |  |
| 19797                     | 5           |       |                    | 5.00            | 4.02         | 40                        |        |  |  |
| 19800                     |             |       |                    | -\$.00          | 4.83         | 97.                       |        |  |  |
| 19863                     |             |       |                    | 5.00            | 5.09         | 102                       |        |  |  |
|                           |             |       |                    | 5.00            | 4.87         | 47                        | ę      |  |  |
| 19800                     |             |       |                    | 5.00            | 4.48         | •                         | 4.     |  |  |
| 19922                     | ND ND       |       |                    |                 | ·            |                           |        |  |  |

ND <u>19923</u><u>ND</u> A - Analytical spike or duplicate M - Matrix spike or duplicate

MN-COMP 0044147

< .72

5.00.

.

 $\checkmark$ 

95

6. 6

ť . . . 1. j.

38 WPPLABFM pg 1

### ANALYSIS:

FOR CLP USE ONLY?

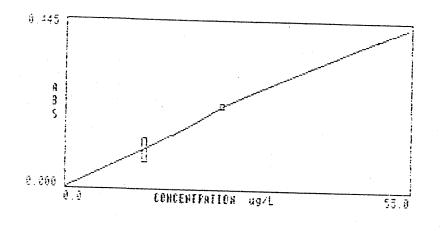
|           | *          |          |                                     |         | , i on cer | USC UNCI                                | •                                      |
|-----------|------------|----------|-------------------------------------|---------|------------|-----------------------------------------|----------------------------------------|
| ATOMIC AB | SORPTION   | ELEMENT  |                                     | 2-21-90 | CLIENT     |                                         | ······································ |
| ABBREVIAT | TON 140    | -11      | ANALYZED BY: <u>CA</u><br>. TIME: ) | •       |            |                                         | -                                      |
|           |            | )        | •                                   | TITEM   |            |                                         |                                        |
| · · · ·   |            |          |                                     | TITEM   |            |                                         |                                        |
|           |            |          | DATA REVIEWED BY:<br>ENTERED BY:    |         |            |                                         |                                        |
| *         | -          |          | INSTRUMENT ID #                     | 2       | DATE (     | COLLECTED:                              |                                        |
| *         |            |          |                                     |         |            |                                         |                                        |
|           |            |          | MOL 0.00                            | 0?      | ABS:       |                                         | <u>0.23</u> C                          |
|           |            |          |                                     |         | K FAU      | FOR:                                    | Linreg                                 |
| Sample    | Results    |          | ysis                                |         | e_Rec      |                                         |                                        |
| * <u></u> |            | Units    | Comments                            | True    | Found      | X REC Du                                | plicate                                |
| 5710 5    | 4.83       | ugil     |                                     |         |            | •••                                     |                                        |
| 20230     | ND         | mg/L-    | C.COOR<br>Lencinto                  | .5.00   | 4.71       | 95                                      |                                        |
| 20231     | ND         | ·        |                                     | 5.00    | 4.79       | 96                                      |                                        |
| 20232     | ND         |          |                                     | 5.00    | 4.6        | 92                                      |                                        |
| 20277     | 0.0009     |          |                                     | 2.50    | 2.09       | 84                                      |                                        |
| 22333     | ND         |          | 0.0002                              |         |            |                                         |                                        |
| 22588     | ND         |          |                                     | -       |            | ·· [                                    |                                        |
| 22898     | ND         |          |                                     | 5.00    | 4,53       | 91                                      |                                        |
| 72360     | ND         | ·        |                                     | .5.00   | 4,92       | 98.                                     |                                        |
| 23362     | ND         |          | · ·                                 |         |            |                                         |                                        |
| 23363     | ND         |          |                                     | -       |            | • • • • • • • • • • • • • • • • • • • • |                                        |
| 23364     | ND         |          | p.:                                 |         |            | · · · · · · · · · · · · · · · · · · ·   |                                        |
| 23133     | ND         |          |                                     | :       |            |                                         |                                        |
| 20823     | ND         |          |                                     |         |            |                                         | ************                           |
| EPA       | 1.53       | ug/L     | EPA 989                             | 2.02    |            | 126                                     |                                        |
| 20824     | 0:002      | mg/L     | 0.0002                              | ,       |            | ·                                       |                                        |
| A - Analy | tical spil | ke or du | plicate                             |         | <b></b>    |                                         |                                        |

M - Matrix spike or duplicate

MN-COMP 0044148

38 WPPLABFM pg 1

ANALYSIS:


FOR CLP USE ONLY?

| ATOMIC ABS           | ORPTION E              | EMENT          | DATE ANALYZED:<br>ANALYZED BY: | 10-21-90<br>CAT/ TEM | CLIENT     |          | · · · · · · · · · · · · · · · · · · ·  |
|----------------------|------------------------|----------------|--------------------------------|----------------------|------------|----------|----------------------------------------|
| ABBREVIATION HQ-11   |                        |                |                                | 11:00                | PROJECT    |          |                                        |
| ABBREVIATI           | ON <u>FIG</u>          | <u>-M</u>      | TIME:<br>CALCULATED BY:        | CAT/TEM              | FILE #     |          |                                        |
|                      |                        |                | DATA REVIEWED BY:              |                      |            |          |                                        |
|                      |                        |                | ENTERED BY:                    |                      | DATE C     | OLLECTED | •                                      |
| •                    | •                      |                | ENTERED BY:                    | 3                    | HIGH S     | TD. CONC | .: 10                                  |
|                      |                        |                | •                              |                      |            |          | 0.230                                  |
| · ·                  |                        |                | MOL O.C                        | 002                  | R FACT     | OR:      | LINKEG                                 |
| -                    |                        |                | 1                              | l Snik               | e_Rec      | i_       |                                        |
| Sample               | Results                | Analy<br>Units | Comments                       | True                 | Found      | % REC D  | uplicate                               |
| 20825                | 0.0018                 | MgjL           | 0.(2+2                         | .5.00                | 3.13       | 75       |                                        |
| <u>51d 5</u>         |                        | mg/L           |                                |                      |            |          |                                        |
| 2082b                | 0.0020                 | maj            | 6.0002                         |                      |            |          | -                                      |
| 20829                | 0.0007                 |                |                                |                      |            |          |                                        |
| 21911                | ND                     |                |                                |                      | <u>.</u>   |          |                                        |
| 21912                | IND                    |                |                                | 5.60                 | 4.40       | -94-     |                                        |
| 21913                | ND                     |                |                                | .5.00                | 3:79       | 76       | ۳<br>                                  |
| 21914                | ND                     |                | -                              |                      | _          |          |                                        |
| 21915                | -                      | _              | -                              |                      |            |          | •                                      |
| 21916                | ND.                    |                |                                |                      |            |          | ************************************** |
| 21917                |                        |                | _                              |                      |            |          | ÷.                                     |
| <u>BLK</u>           |                        |                |                                |                      |            |          |                                        |
| _BLK                 | ND                     | 11.91          |                                |                      |            | ME       | 4.                                     |
| EPA                  | 1.52                   | Jug/L          | EPA 981                        | 2.02                 |            | 45       | ε.                                     |
|                      | · · ·                  | _              |                                |                      |            |          |                                        |
|                      |                        |                |                                |                      |            |          | i                                      |
| A – Anal<br>M – Matr | lytical sp<br>ix spike | or dupli       | cate                           | Ν                    | IN-COMP OC | )44149   |                                        |

38 WPPLABFM pg 1

,

|                                                  | LMR 7                       | 18/20 13          | :50                              |                                  | Entered 119/20 imp               |
|--------------------------------------------------|-----------------------------|-------------------|----------------------------------|----------------------------------|----------------------------------|
| •                                                | GRAM 2 St                   | Furnace           | #2                               |                                  |                                  |
| Charles 1                                        | CONC<br>US/L                | %RSD              | MEAN<br>ABS                      |                                  | READINGS                         |
| FBLANK<br>STANDARD 1<br>STANDARD 2<br>STANDARD 3 | 0.0<br>12.5<br>25.0<br>50.0 | ₹.5<br>1.5<br>0.0 | 0.002<br>0.102<br>0.222<br>0.405 | 0.004<br>0.097<br>0.219<br>0.405 | 0.000<br>0.108<br>0.224<br>0.405 |



MOL= 0.005 mg1L

| EFA 378 28.6                                  | 28.7.02                  | 0.2 0.250                              | <b>0.25</b> 0      | 0 or -        |                 |
|-----------------------------------------------|--------------------------|----------------------------------------|--------------------|---------------|-----------------|
|                                               | 4.7                      | 1.8 0.03                               | 7 0.230<br>7 0.039 | 0.251         |                 |
| 2011269.5 50X N                               | 0 -0. 2mjiL              | 99.9 -0.00                             | 0.002              | 0.038         | · · · · ·       |
|                                               | 20.31022                 | 6.0 0.17                               |                    | -0.005 mDL=   | 0.25            |
| 077761.7 N                                    | 0 -0.5 mil               | 35.3 -0.004                            |                    | 0.182         |                 |
| 422242.5 N                                    | 0.21                     | 99.9 0.001                             |                    | -0.005        |                 |
| NOLUZAN.Z N                                   | 0.1 C                    | 99.9 0.000                             |                    | 0.000         |                 |
|                                               | w <sub>0.7</sub> /       | 12.2 0.005                             |                    | 0,001         |                 |
| 0219:1.8 <sup>×</sup> N                       | VE.O C.                  | 35.3 0,004                             |                    | 0.005         |                 |
| 021911. BAWN= 20.0                            | 23. 41182                | 4.0 0.207                              |                    | 0.003         |                 |
| 021712.6 <b>u</b>                             | 0 -0. Chail              | 40.4 -0.007                            |                    | 0.213         |                 |
|                                               | D -0_2                   | · ···· ··· · ··· · · · · · · · · · · · | · · · <del>·</del> | -0.000        |                 |
|                                               | 0-1.3                    | - 7747                                 |                    | -0.007        |                 |
|                                               | 13.3                     | 20.2 -0.011                            |                    | -0.000        |                 |
| <u>- 17</u> 278 28.0                          | ૧૪૦                      | <b>3.8</b> 0.205<br>2.7 0.240          |                    | 0.210         |                 |
| 021915.0 NO                                   |                          |                                        |                    | C.245         |                 |
| A 1 PH                                        | -0.7                     | 35.3 -0.012                            | · •                | -0.015        | MN-COMP 0044150 |
| 021516. 7AK W= 20.0                           |                          | 47.1 -0.005                            | -0.004             |               | 0044150         |
| 021915,9DAW                                   |                          | 8.1 0.122                              |                    | 0.115         |                 |
|                                               | 1                        | 15.7 0.127                             |                    | 0.112         |                 |
| <b>A</b>                                      |                          | \$4.3 -9.007                           |                    | -0.012        |                 |
| 011475.9AU                                    |                          | 41.5 -0.009                            |                    | - <u>.</u>    |                 |
|                                               |                          | 47.1 0.012                             |                    | 0.005 S Kerw  | nat Sxdil       |
| 3                                             | )-1. (myll)<br>)-0.91    | 0.0 -0.008                             |                    | -0.008        |                 |
| 011787. 5AWW+20.0                             |                          | 54.3 -0.006                            |                    | -0.009        |                 |
|                                               |                          | 11.9 0.088                             |                    | 0.096         |                 |
| a fair an an an an an an an an an an an an an |                          | 99.9 -0.002                            |                    | -0.006)       |                 |
| 0222311.0AWTY=20.0                            | 6.1307                   | 31.1 0.050                             |                    | 0.061 / Reruy | at drail.       |
|                                               |                          | 47.1 -0.006                            | -0.00S             | -0.004)       | -               |
| 25.)<br>Jema 378 25.0                         | 25.0                     | 5.4 0.222                              | 0.213              | 0.230         |                 |
| 0135072.0                                     | 24.7 <b>887.</b><br>-0 4 | 0.3 0.218                              | 0.219              | 0.218         |                 |
| and where and mend was been do not            | , 3 ún,                  | 54 5 10 005                            | A 444              |               |                 |

|                                                                                                                                           | ONC %RS                                              | D MEAN<br>ABS         |                                                                          | READINGS                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 025588.2AW7 300<br>024144.0 NO<br>024144.0AW 77 300<br>PD 6/28<br>023975.5<br>023975.5<br>023775.5AW<br>023775.5AW<br>023775.5DAW<br>25.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | .9 -0.001<br>.7 0.188 | -0.003<br>0.193<br>-0.003 -<br>0.115<br>0.142<br>0.155<br>0.188<br>0.200 | 0.031<br>0.000<br>0.183<br>0.006<br>0.112 Renn at Sxdil.<br>0.133 164 - 13.7 = 2.7<br>0.127 16.8 - 13.7 = 3.1<br>0.127 16.8 - 13.7 = 3.1<br>0.191<br>0.219<br>0.029 |

۰.

# MN-COMP 0044151

1. I.

ф. н. т. 1

ę . 5

5 a

÷

janten kun alla L

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

à a

Berrin Land

£. si

ž. j

and the second

7 z

ء ۽

| 11-90 Calc         | ente  | red   | Meg            | Ĩ.             |        |              |           |       | •                       |   |  | -        |
|--------------------|-------|-------|----------------|----------------|--------|--------------|-----------|-------|-------------------------|---|--|----------|
| 15<br>1. dated Swe | (con  | INC   | DRGAN<br>catio | IC Di<br>ns in | ATA R  | EPOR<br>1 or | r<br>mg/k | (g)   |                         |   |  |          |
|                    |       | 1     |                | <u>'</u> ]     | $\sum$ |              | /         | 1     |                         |   |  |          |
| SAMPLE ID          | Ba    |       |                |                | Pb     |              |           | Zn    |                         |   |  |          |
| 1. 22046.9         | 0.086 | 0.007 | 0.031          | 0.12           | 0.085  | NO           | AD        | 0.88  |                         |   |  |          |
| 2. 21911.8         | ND    | ND    | ND             | ND             | ND     | ND           | ND        | 0.024 | •                       |   |  |          |
| 3. 21912.6         | 0,18  |       |                |                | 3      | 1            | 11        |       | -                       |   |  |          |
| 4. 21913,4         | 0.060 |       |                |                | ND     | 1            | 11        |       |                         |   |  |          |
| 5. 21914,2         | 2073  |       |                | ·              |        | 1 · · ·      |           | 0.007 |                         |   |  |          |
| 6· 21915,0         | 0.083 |       |                | 1. Sec. 1.     | 1      |              | ND        | DIRC  |                         |   |  |          |
| 7. 21916.9         | 0.058 |       | 11             |                | 11     |              |           | 0.009 |                         | · |  |          |
| 8.21917.7          | 0.055 |       | []             | 1              | 11     | ND           | 1         | ND    |                         | [ |  |          |
| 9.                 |       |       |                |                |        |              |           |       |                         |   |  |          |
| 10.                |       |       |                |                |        |              |           | • •   |                         |   |  |          |
| 11.                |       |       |                |                |        |              |           | :     |                         |   |  |          |
| 12.                |       |       |                |                |        |              |           |       |                         |   |  |          |
| 13.                |       |       |                |                |        |              |           | ·     |                         |   |  |          |
| 14.                |       |       |                |                |        |              |           |       |                         |   |  |          |
| 15.                |       | -     |                |                |        |              |           |       |                         |   |  |          |
| 16.                |       |       |                |                |        |              |           |       |                         |   |  |          |
| 17.                |       |       |                |                |        |              |           |       | N.<br>The second second |   |  |          |
| 18.                |       |       |                |                |        |              | -         |       |                         |   |  |          |
| 19.                | Ì     | •     |                |                |        |              | -         |       |                         |   |  |          |
| 20.                |       |       |                |                |        | 1            | .#<br>.#  | <br>  | <br>                    | 1 |  | <u> </u> |

BMQL = Below Method Quantitation Limit
MQL = Method Quantitation Limit
ND = Not Detected
mg/kg = ppm (parts-per-million)
ug/l = ppb (parts-per-billion)
< = Indicates concentration less than value detailed</pre>

MN-COMP 0044152

#### MEMORANDUM

TO: Steve Mockenhaupt

REFERENCE NO.: 2853

FROM: Dave Dempsey

DATE: August 1, 1990

RE: Data Quality Assessment and Validation for Seven Groundwater Samples Collected during the June 1990 Sampling Event at the Ford Site C Site

The following details a data quality assessment and validation for seven groundwater samples collected on June 6, 1990, at the Ford Site C site. Samples were analyzed for volatile organic compounds (VOC) and metals by Pace Laboratories Inc. (Pace).<sup>1</sup> Quality assurance criteria were established by analytical methods.<sup>2</sup>

#### Holding Time Periods

Holding time periods are established in analytical methods and are summarized below:

VOC - 14 days from sample collection to completion of analysis

Metals- 6 months from sample collection to completion of analysis, except for mercury - 28 days from sample collection to completion of mercury analysis

Reviewing analysis dates showed that all holding time periods were met.

#### Method Blank Sample

Laboratory contamination of samples was checked for with method blank samples. The VOC method blank sample contained no target analytes. However, zinc was detected at a concentration of 0.066 mg/l within metals method blank sample. Zinc data for samples W-060690-RF-01, W-060690-RF-02, W-060690-RF-04 through W-060690-RF-06 were qualified as non-detect (U).

Surrogate Compound Percent Recoveries

Individual sample results for VOC analyses were assessed using surrogate compound fluorobenzene recoveries. Examining the recoveries revealed that VOC Method 602 was in control. No surrogate compound was used to check the accuracy of Method 601. Hence, MS/MSD recoveries were used to assess Method 601 results.

VOC - 40 CFR 601/602 Metals - USEPA 200 Series

<sup>2</sup>Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988, and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses", July 1, 1988.

MN-COMP 0044153

<sup>&</sup>lt;sup>1</sup>Analytical methods are taken from 40 CFR Part 136, Appendix A, and "Chemical Methods for Analysis of Water and Wastes", USEPA-600/4-79-020, Revised March 1983 and are summarized below:

Reference No. 2853 Page 2

# Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Effects upon the data due to matrix interference were checked via MS/MSD analyses. Pace sample 21699 underwent VOC MS/MSD analyses. As all percent recoveries fell within limits, the level of precision was acceptable.

Sample W-060690-RF-07 underwent matrix spike analysis for target metals. The silver percent recovery was low. Therefore, silver data were qualified as estimated (UJ) for all samples.

# Laboratory Duplicate Analyses

Precision for metals analyses was measured by means of duplicate analyses. Samples W-060690-RF-03 and W-060690-RF-06 had duplicate analyses for analytes mercury and selenium, respectively. Precision for both were acceptable. No other duplicate analyses were performed by Pace, therefore, field duplicate samples were used to assess precision.

#### <u>Rinsate Sample</u>

Cleanliness of sampling equipment was checked with rinsate sample W-060690-RF-01. Target VOC detected were 1,1,1-trichloroethane, tetrachloroethene and 1,1-dichloroethene. As all investigative samples were free of these analytes, no action upon the data was necessary.

Zinc was also detected within this sample. However, the zinc datum was qualified as non-detect (U) based upon the method blank sample.

# Field Duplicate Samples

Precision was measured by collecting field duplicate samples W-060690-RF-04 and W-060690-RF-05. As both sets of data were within limits of agreement, the precision was acceptable.

## **Overall Assessment**

Silver data were qualified as estimated (UJ) for all samples, while five samples had zinc data qualified as non-detect (U). Remaining data are acceptable to quantitatively assess target analyte concentrations.

MN-COMP 0044154

cc: Bruce Clegg

# REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) WORK PLAN

Ford Motor Company St. Paul, Minnesota

15

MN-COMP 0044562

PRINTED ON

FEB 1 5 1991

.

1.i

RECEIVED

FEB 15 91

CA, Grant ' Third Z 'olid

MN-COMP 0044562.01

# REMEDIAL INVESTIGATION/ FEASIBILITY STUDY (RI/FS) WORK PLAN

•

Ford Motor Company St. Paul, Minnesota

August 1990 (Revised February 1991) Ref. No. 2853 MN-COMP 0044563

- - -----

.

**CONESTOGA-ROVERS & ASSOCIATES** 

----



February 15, 1991

Reference No. 2853

Mr. Jerome Amber FORD MOTOR COMPANY Suite 608 15201 Century Drive Dearborn, Michigan 48120

Dear Mr. Amber:

RE: RI/FS Work Plan Ford Motor Company St. Paul, Minnesota

Please find enclose a revised copy of the subject report.

If you should have any questions, please do not hesitate to contact us.

Sincerely,

CONESTOGA-ROVERS, AND ASSOCIATES

Im L Jon L. Christofferson

JLC/kk Enc.

MN-COMP 0044564

# TABLE OF CONTENTS

|     |                                                                          |                 | <u>Page</u> |
|-----|--------------------------------------------------------------------------|-----------------|-------------|
| 1.0 | INTRODUCTION                                                             |                 | 1           |
| 2.0 | BACKGROUND AND SITE HISTORY                                              |                 | 1           |
|     | 2.1 GEOGRAPHIC SETTING                                                   |                 | 1           |
|     | 2.2 GENERAL GEOLOGY                                                      |                 | 1           |
|     | 2.3 SITE DISPOSAL HISTORY                                                |                 | 2           |
|     | 2.3.1 Site A Disposal History                                            |                 | 4           |
|     | 2.3.2 Site B Disposal History                                            |                 | 4           |
|     | 2.3.3 Site C Disposal History                                            |                 | 5           |
|     | 2.4 INVESTIGATIVE WORK COMPLETED TO I                                    | DATE            | 7           |
|     | 2.5 SITE A EVALUATION                                                    |                 | 8           |
|     | 2.6 SITE B EVALUATION                                                    |                 | 8           |
|     | 2.7 SITE C EVALUATION                                                    |                 | 16          |
|     | 2.8 UST SITE - BACKGROUND                                                |                 | 32          |
| 3.0 | SUMMARY OF REMEDIATION TECHNOLOGI                                        | ES              | 1           |
| 4.0 | SITE INVESTIGATION PLAN                                                  |                 | 1           |
|     | 4.1 OBJECTIVES                                                           |                 | 1           |
|     | 4.2 SITE AREA ORGANIZATION                                               |                 | 2           |
|     | 4.3 UST SITE INVESTIGATION WORK PLAN                                     |                 | 3           |
|     | 4.3.1 Overview of Scope of Work                                          |                 | 3           |
|     | 4.3.2 Soil Gas Survey                                                    |                 | 4           |
|     | 4.3.3 Soil Borings/Sampling                                              |                 | 6           |
|     | 4.3.4 Monitoring Well Installation                                       |                 | 7           |
|     | 4.3.5 Groundwater Elevations                                             |                 | 8           |
|     | 4.3.6 Groundwater Sampling                                               |                 | 9           |
|     | 4.3.7 Interim Response Action (IRA)<br>Inspection and Sump Sampling Plan |                 | 10          |
|     | 4.3.7.1 Pumping Operations                                               |                 | 10          |
|     | 4.3.7.2 Sump Inspection                                                  |                 | 11          |
|     | 4.3.8 Reporting                                                          |                 | 12          |
|     | · · · · · · · · · · · · · · · · · · ·                                    | MN-COMP 0044565 |             |

٢

# TABLE OF CONTENTS (CONT'D)

|     |                                                               |                 | <u>Page</u> |  |  |  |
|-----|---------------------------------------------------------------|-----------------|-------------|--|--|--|
|     | 4.4 SITES A AND B INVESTIGATION                               |                 | 13          |  |  |  |
|     | 4.4.1 Overview of Scope of Work                               |                 | 14          |  |  |  |
|     | 4.4.2 Soil Sample Collection                                  |                 | 15          |  |  |  |
|     | 4.4.3 Overburden Monitoring Well Installations                |                 | 17          |  |  |  |
|     | 4.4.3.1 Site A Wells                                          |                 | 17          |  |  |  |
|     | 4.4.3.2 Site B Wells                                          |                 | 17          |  |  |  |
|     | 4.4.4 Bedrock Monitoring Wells                                |                 | 19          |  |  |  |
|     | 4.4.5 Groundwater Sampling                                    |                 | 22          |  |  |  |
|     | 4.4.6 Hydrogeologic Data Collection                           |                 | 22          |  |  |  |
|     | 4.4.7 Surface Water Sampling                                  |                 | 23          |  |  |  |
|     | 4.5 SITE C INVESTIGATION                                      |                 | 24          |  |  |  |
|     | 4.5.1 Overview of Scope of Work                               |                 | 24          |  |  |  |
| 5.0 | PROJECT ORGANIZATION AND RESPONSIBI                           | LITY            | 1           |  |  |  |
|     | 5.1 MINNESOTA POLLUTION CONTROL AGE                           | ENCY (MPCA)     | 5           |  |  |  |
| 6.0 | QUALITY ASSURANCE PROJECT PLAN (QAP)                          | P)              | 1           |  |  |  |
|     | 6.1 QUALITY ASSURANCE (QA)<br>OBJECTIVES FOR MEASUREMENT DATA |                 | 1           |  |  |  |
|     | 6.1.1 Level of QA Effort                                      |                 | 2           |  |  |  |
|     | 6.1.2Sensitivity, Precision<br>and Accuracy of Analysis       |                 | 4           |  |  |  |
|     | 6.1.3Completeness, Representativeness<br>and Comparability    |                 | 5           |  |  |  |
|     | 6.2 FIELD PROTOCOLS                                           |                 | 6           |  |  |  |
|     | 6.2.1 Soil Sample Collection                                  |                 | 6           |  |  |  |
|     | 6.2.2 Overburden Monitoring Well Installation P               | Protocols       | 8           |  |  |  |
|     | 6.2.3 Monitoring Well Development                             |                 | 10          |  |  |  |
|     | 6.2.4 Monitoring Well Sampling                                |                 | 12          |  |  |  |
|     | 6.2.5 Surface Water Sampling                                  |                 | 14          |  |  |  |
|     | 6.3 SAMPLE CUSTODY AND DOCUMENT CONTROL                       |                 |             |  |  |  |
|     | 6.3.1 Chain-of-Custody                                        |                 | 16          |  |  |  |
|     | 6.3.2 Sample Documentation in the Laboratory                  |                 | 17          |  |  |  |
|     | 6.3.3 Storage of Samples                                      | MN-COMP 0044566 | 18          |  |  |  |

# TABLE OF CONTENTS (CONT'D)

-

|                                                                                              | <u>Page</u> |
|----------------------------------------------------------------------------------------------|-------------|
| 6.3.4 Sample Documentation - CRA                                                             | 18          |
| 6.4 CALIBRATION PROCEDURES AND FREQUENCY                                                     | 19          |
| 6.4.1 Instrument Performance                                                                 | 20          |
| 6.4.1.1 Organic Analyses                                                                     | 20          |
| 6.4.2 Calibration                                                                            | 20          |
| 6.4.2.1 Calibration of Gas Chromatograph                                                     | 21          |
| 6.4.2.2 Standard Curves for Inorganic Analysis                                               | 21          |
| 6.4.2.3 Field Instrument Calibration                                                         | 22          |
| 6.5 ANALYTICAL PROCEDURES                                                                    | 26          |
| 6.5.1 Overview                                                                               | 26          |
| 6.5.2 Identification                                                                         | 27          |
| 6.5.3 Quantification                                                                         | 27          |
| 6.5.4 Practical Quantitation Limits (PQLs)                                                   | 28          |
| 6.6 DATA REDUCTION, VALIDATION<br>ASSESSMENT AND REPORTING                                   | 28          |
| 6.7 INTERNAL QUALITY<br>CONTROL CHECKS AND FREQUENCY                                         | 31          |
| 6.7.1 Field QC                                                                               | 31          |
| 6.7.2 Laboratory QC                                                                          | 31          |
| 6.7.2.1 Method Blank                                                                         | 31          |
| 6.7.2.2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)                                       | 32          |
| 6.7.2.3 Surrogate Compounds                                                                  | 32          |
| 6.7.2.4 Check Samples                                                                        | 33          |
| 6.8 PERFORMANCE, SYSTEM AUDITS AND FREQUENCY                                                 | 33          |
| 6.9 PREVENTIVE MAINTENANCE                                                                   | 35          |
| 6.10 SPECIFIC ROUTINE PROCEDURES USED TO ASSESS<br>DATA PRECISION, ACCURACY AND COMPLETENESS | 36          |
| 6.10.1 QA Measurement Quality Indicators                                                     | 36          |
| 6.10.1.1 Precision                                                                           | 36          |
| 6.10.1.2 Accuracy                                                                            | 37          |
| 6.10.1.3 Outliers                                                                            |             |
| 6.11 CORRECTIVE ACTION                                                                       | 37          |
| 6.12 QUALITY ASSURANCE REPORT TO MANAGEMENT                                                  | 39          |
|                                                                                              |             |

MN-COMP 0044567

• - · ·

## TABLE OF CONTENTS (CONT'D)

.

|      |                                                  | <u>Page</u> |
|------|--------------------------------------------------|-------------|
| 7.0  | DATA MANAGEMENT AND DOCUMENTATION                | 1           |
|      | 7.1 DATA MANAGEMENT PLAN                         | 1           |
|      | 7.2 DATA AND DOCUMENT AVAILABILITY AND RETENTION | 2           |
| 8.0  | RISK ASSESSMENT                                  | 1           |
| 9.0  | SITE SECURITY AND SAFETY PLAN                    | 1           |
|      | 9.1 SITE SECURITY                                | 1           |
|      | 9.2 HEALTH AND SAFETY PLAN                       | 2           |
| 10.0 | COMMUNITY RELATIONS PLAN                         | 1           |
| 11.0 | REPORTING AND PROJECT SCHEDULE                   | 1           |
|      | 11.1 MONTHLY SUMMARY/PROGRESS REPORT             | 1           |
|      | 11.2 RI FINAL REPORT                             | 1           |
|      | 11.3 RI/FS SCHEDULE                              | 2           |

MN-COMP 0044568

•••

----

<u>\_\_</u>.

~ · · ·

•

#### LIST OF APPENDICES

- APPENDIX A SCOPE OF WORK LETTERS CRA TO MPCA FORD SITES B AND C
- APPENDIX B BORING AND WELL LOGS FORD MOTOR COMPANY
- APPENDIX C WELL ABANDONMENT LOGS FORD SITE C
- APPENDIX D TEST PIT LOGS FORD SITE C
- APPENDIX E DATA QUALITY ASSESSMENT GROUNDWATER AND SURFACE WATER SAMPLES FORD SITE C
- APPENDIX F SOIL EXPLORATION REPORT AND LOGS, 1984 FORD UST SITE AREA
- APPENDIX G LABORATORY REPORT SOLVENT SHIPMENT SEPTEMBER 1989 FORD UST SITE
- APPENDIX H LABORATORY REPORT SOIL EXCAVATION BY FORD NOVEMBER 6, 1989 FORD UST SITE
- APPENDIX I LABORATORY QA/QC PLAN PACE LABORATORIES INC.
- APPENDIX J HEALTH AND SAFETY PLAN FORD RI/FS

# <sup>(</sup> MN-COMP 0044569

-

## LIST OF TABLES

|                                                                                                             | Following<br><u>Page</u> |
|-------------------------------------------------------------------------------------------------------------|--------------------------|
| TABLE 2.1 SUMMARY OF SOIL SAMPLES - SITE B                                                                  | 10                       |
| TABLE 2.2 SUMMARY OF SOIL ANALYTICAL RESULTS - SITE B                                                       | 10                       |
| TABLE 2.3 SUMMARY OF GROUNDWATER ANALYTICAL<br>RESULTS - SITE B                                             | 11                       |
| TABLE 2.4 GROUNDWATER ELEVATIONS - SITE B                                                                   | 11                       |
| TABLE 2.5 GROUNDWATER AND SURFACE WATER<br>ANALYTICAL RESULTS                                               | 20                       |
| TABLE 2.6 REVISED MONITORING WELL ELEVATION<br>DATA - SITE C                                                | 20                       |
| TABLE 2.7 HAZEN'S PERMEABILITY - SITE C                                                                     | 22                       |
| TABLE 2.8 SUMMARY OF DETECTED INORGANIC<br>PARAMETERS AND SAMPLE CHARACTERISTICS<br>FROM TEST PITS - SITE C | 26                       |
| TABLE 2.9 SUMMARY OF DETECTED ORGANIC PARAMETERS<br>FROM TEST PITS - SITE C                                 | 26                       |
| TABLE 3.1 SUMMARY OF REMEDIAL ACTION TECHNOLOGIES                                                           | 1                        |
| TABLE 4.1 SCOPE OF WORK ANALYTICAL SUMMARY                                                                  | 4                        |
| TABLE 6.1 SUMMARY OF QA SAMPLES FOR SAMPLES<br>COLLECTED DURING TWIN CITIES<br>ASSEMBLY PLANT RI/FS         | 3                        |
| TABLE 6.2 PRACTICAL QUANTITATION LIMITS<br>AND METHOD DETECTION LIMITS<br>FOR VOC ANALYSES                  | 4                        |
| TABLE 6.3 PRACTICAL QUANTITATION LIMITS<br>AND METHOD DETECTION LIMITS<br>FOR TARGET METALS ANALYSES        | 4                        |
| TABLE 6.4 GROUNDWATER CONTAINER, PRESERVATION,<br>SHIPPING AND PACKAGING REQUIREMENTS                       | 7                        |
| TABLE 6.5 ANALYTICAL METHODS FOR ANALYSIS<br>OF SOIL AND AQUEOUS SAMPLES                                    | 26                       |
| TABLE 6.6 PERCENT RECOVERIES AND PRECISION<br>CRITERIA FOR MS/MSD ANALYSES                                  | 32                       |
| TABLE 6.7 PERCENT RECOVERIES FOR VOC<br>SURROGATE COMPOUND                                                  | 33                       |
|                                                                                                             |                          |
|                                                                                                             |                          |

MN-COMP 0044570

• • •

.

## LIST OF FIGURES

|             | ,                                                                     | Following<br>Page |
|-------------|-----------------------------------------------------------------------|-------------------|
| FIGURE 1.1  | LOCATION PLAN                                                         | 1                 |
| FIGURE 1.2  | LOCATION OF INVESTIGATION AREAS                                       | 1                 |
| FIGURE 2.1  | SITE PLAN - FILL SITES A AND B AND UST SITE                           | 4                 |
| FIGURE 2.2  | SITE PLAN - FILL SITE C                                               | 5                 |
| FIGURE 2.3  | GROUNDWATER CONTOURS (8-16-89), SITE B                                | 9                 |
| FIGURE 2.4  | GROUNDWATER CONTOURS (9-13-89), SITE B                                | 11                |
| FIGURE 2.5  | SITE C GROUNDWATER CONTOURS (4-19-90)                                 | 20                |
| FIGURE 2.6  | SITE C GROUNDWATER CONTOURS (6-6-90)                                  | 20                |
| FIGURE 2.7  | LOCATION OF CROSS SECTION                                             | 36                |
| FIGURE 2.8  | GENERALIZED GEOLOGIC CROSS SECTION A-A'                               | 36                |
| FIGURE 4.1  | PROPOSED BORING AND WELL LOCATIONS<br>FILL SITES A AND B AND UST SITE | 4                 |
| FIGURE 4.1a | SCHEMATIC OF SOIL GAS EVALUATION                                      | 6                 |
| FIGURE 4.2  | TYPICAL BEDROCK WELL INSTALLATION                                     | 21                |
| FIGURE 4.3  | SURFACE WATER SAMPLE LOCATIONS                                        | 24                |
| FIGURE 5.1  | PROJECT ORGANIZATION                                                  | 1                 |
| FIGURE 6.1  | TYPICAL OVERBURDEN MONITORING<br>WELL INSTALLATION                    | 9                 |
| FIGURE 6.2  | ANALYTICAL DATA FLOW                                                  | 28                |

MN-COMP 0044571

-----

1

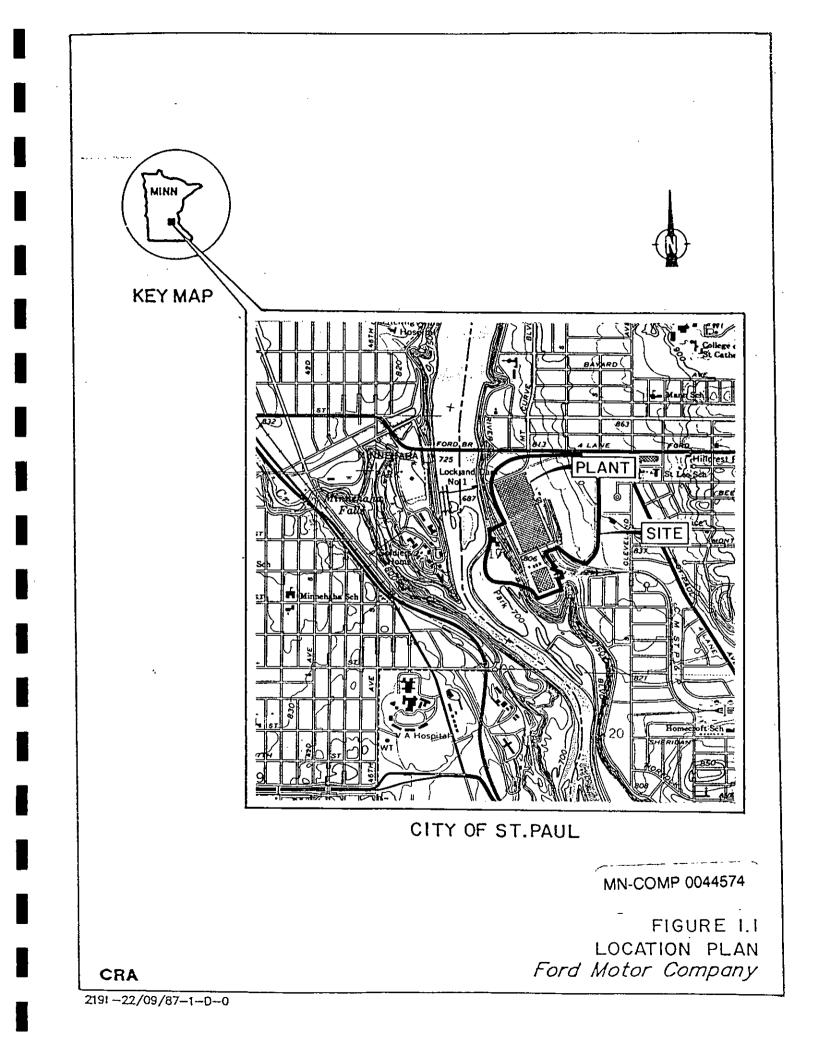
#### LIST OF PLANS

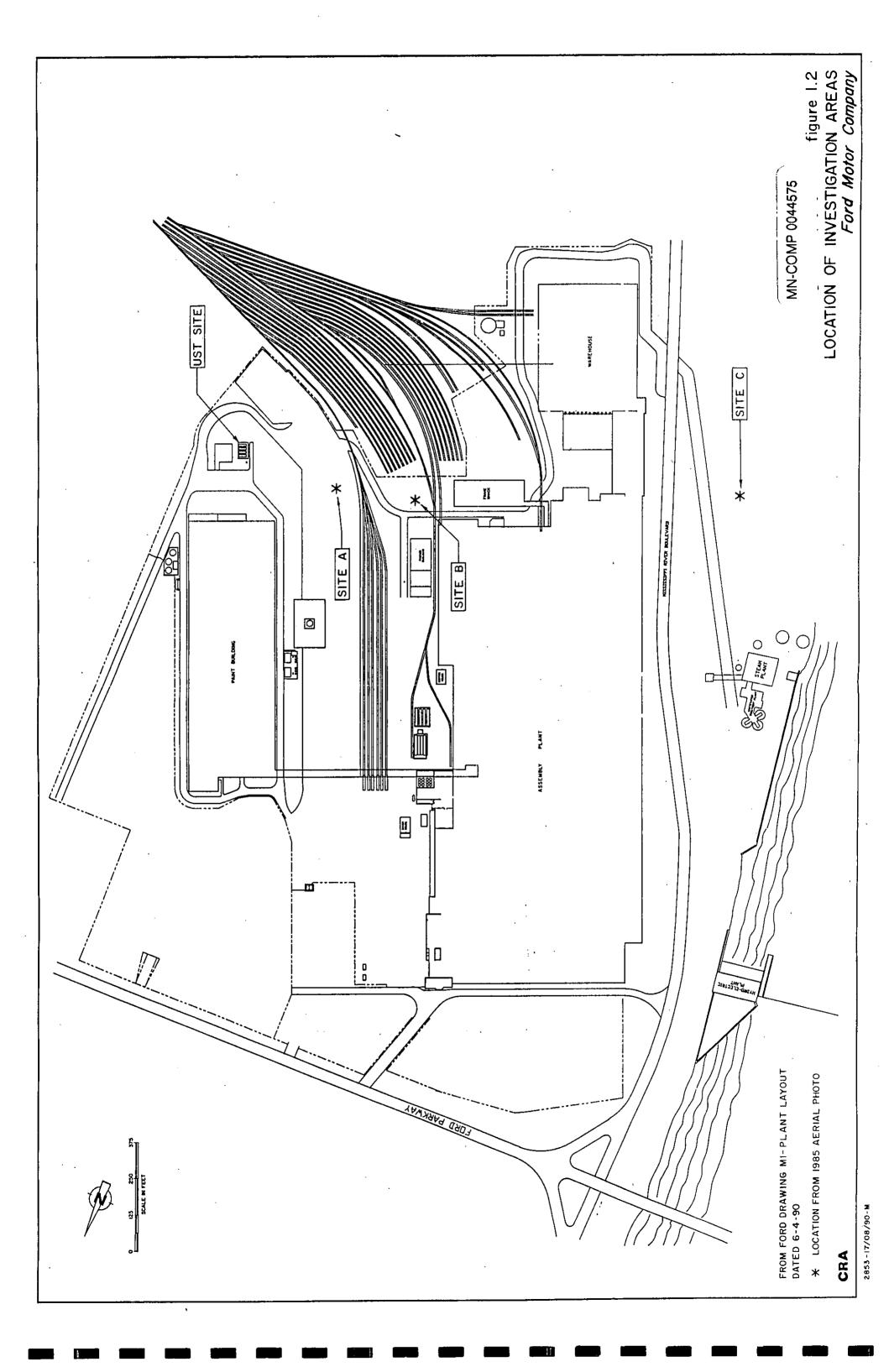
- PLAN 1 FORD MOTOR COMPANY AERIAL PHOTOGRAPHS 1945 AND 1956
- PLAN 2 FORD MOTOR COMPANY AERIAL PHOTOGRAPHS 1958 AND 1962
- PLAN 3 FORD MOTOR COMPANY AERIAL PHOTOGRAPH 1983
- PLAN 4 FORD MOTOR COMPANY AERIAL PHOTOGRAPH 1985
- PLAN 5 FILL SITES A AND B AND UST SITE SITE PLAN
- PLAN 6 UST SITE PLAN
- PLAN 7 FILL SITE C SITE PLAN
- PLAN 8 DRAWING #CE-2 PARTIAL SITE GRADING PLAN
- PLAN 9 DRAWING #TS-3 TOPOGRAPHICAL SURVEY PARTIAL
- PLAN 10 DRAWING #TS-4 TOPOGRAPHICAL SURVEY PARTIAL
- PLAN 11 DRAWING #M-50 SOLVENT TANK FARM LAYOUT
- PLAN 12 DRAWING #M-51 SOLVENT TANK FARM CATHODIC PROTECTION
- PLAN 13 DRAWING #M-52 SOLVENT TANK FARM CATHODIC PROTECTION

MN-COMP 0044572

PLAN 14 DRAWING #M-53 - KEY PLAN SECTIONS

Section No. 1.0 Revision No. 1 Date: 2/11/91 Page 1 of 4


#### 1.0 INTRODUCTION


The Ford Motor Company (Ford), Twin Cities Assembly Plant (Plant) is located in St. Paul, Minnesota, at 966 South Mississippi River Boulevard (Site). The Site complex includes buildings on both sides of Mississippi River Boulevard. Buildings east of Mississippi River Boulevard are located above the river bluff on the adjacent sand plains. The Site location is presented on Figure 1.1.

The Plant was originally used to manufacture glass over 50 years ago. Since then the Plant has been expanded several times and is used to assemble pick-up trucks.

At different times during the Plant's history prior to 1970, paint sludges/wastes were deposited in a relatively small area on Site property, west of Mississippi River Boulevard (Site C). This waste deposit was reported to U.S. EPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since that investigation was completed, additional earth fill has been placed over part of the waste fill. The area is now used as a parking lot for tractor trailer truck units. Excavated materials from two other sites (Sites A and B) were subsequently moved to Site C. The locations of the fill Sites are presented on Figure 1.2. The three fill sites (A, B and C) were subsequently consolidated by MPCA and listed (Class C) as the Ford Twin Cities Assembly Plant during 1983.- 1984 on the Minnesota Pollution Control Agency (MPCA) Permanent List of Priorities.

MN-COMP 0044573





Section No. 1.0 Revision No. 1 Date: 2/11/91 Page 2 of 4

To address environmental issues that may be associated with past waste handling and disposal practices, and to consolidate information related to past investigations, Ford hired Conestoga-Rovers and Associates (CRA) in 1987 to conduct an assessment of the wastes deposited at the Site. This assessment consisted of a file review, hydrogeologic evaluation, test hole excavation (test pits), stadia survey and waste characterization sampling. From these tasks an assessment and evaluation of the Site conditions was conducted and the results reported to MPCA during the fall of 1988.

Supplemental groundwater and surface water monitoring at Site C occurred during 1989 and 1990 at the request of MPCA.

During 1989, at the request of MPCA, a separate

investigation was also conducted at the area designated Site B and subsequently reported to MPCA.

In order to formalize the investigation process, document the extensive work conducted to date and allow for a final decision regarding possible remedial action and/or delisting of the Site from the State's priority list, the MPCA notified Ford during April 1990 of its intention to issue a Request for Response Action (RFRA) for the Site. The RFRA requires Ford to plan and implement a Remedial Investigation and Feasibility Study (RI/FS) at the Site and report the results and recommendations to MPCA. The RFRA was issued on June 26, 1990.

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044576

Section No. 1.0 Revision No. 1 Date: 2/11/91 Page 3 of 4

Since the issuance of the RFRA, MPCA requested Ford on August 13, 1990, to incorporate the scope of work of a separate underground storage tank (UST) investigation being conducted at the Site, under the direction of MPCA's Hazardous Waste Division, into the scope of work for the RI/FS.

The UST Site is an underground storage tank facility used for storage of waste (spent) solvents pending shipment off-site for recycling. The USTs received waste regulated by the Resource Conversation and Recovery Act (RCRA). Figure 1.2 presents the location of the UST Site. A work plan outlining a proposed investigation to determine the nature, extent and magnitude of the possible solvent release from the UST Site was presented to MPCA on April 6, 1990. MPCA now requests the UST Site investigation to be made part of the RI/FS scope of work.

This report provides the Work Plan for the RI/FS and is submitted in accordance with the RFRA Section IV B and C of Exhibit A (RI/FS Work Plan Submittal and Contents). The purpose of this report is to:

- Collect and assemble all existing information and data from work conducted to date at the Site.
- 2. Provide a list of remedial technologies and treatment alternatives to be evaluated by the RI/FS.



**CONESTOGA-ROVERS & ASSOCIATES** 

121

- Provide a scope of field investigation work for the proposed RI/FS program.
- 4. Present a plan for project organization.

5. Provide a quality assurance and control plan in the RI/FS.

6. Present a plan for data management and retention of data and records.

- 7. Provide a summary of tasks to be conducted for a baseline risk assessment.
- 8. Provide a Site Security and Safety Plan.
- 9. Provide a plan to organize the flow of public information about the project.
- 10. Present a schedule for the RI/FS Work Plan tasks.

| MN CONTRACT     |
|-----------------|
| MN-COMP 0044578 |
|                 |

1.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 1 of 41

#### 2.0 BACKGROUND AND SITE HISTORY

#### 2.1 GEOGRAPHIC SETTING

The Site covers an area of approximately 130 acres in the City of St. Paul. It is bordered by the Mississippi River and its gorge to the west, Ford Parkway to the north, Cleveland Avenue to the east and Hampshire Avenue/Mississippi River Boulevard to the south. The Site and plant location are presented on Figure 1.1.

Elevations at the Site range from 690 feet AMSL at the river to 850 feet AMSL on the east side of the property. The main assembly building is at an elevation of 830 feet. The existing topography was developed by a sequence of erosional and depositional events related to the post glacial drainage development of the Mississippi River.

#### 2.2 <u>GENERAL GEOLOGY</u>

Flanking the present river gorge are "terrace features" which consist of level "shoulders" of alluvial sediment which are perched above the present gorge. The Site area exhibits two of these features, one at approximately 830 feet AMSL and one at approximately 850 feet AMSL. These terraces represent alluvial deposits formed during the earliest stages of the Mississippi River's development. Separating this area of alluvial terrace deposits from the

MN-COMP 0044579

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 2 of 41

river gorge bottom is a vertical bedrock bluff. More recent alluvial deposits fill the gorge. The terrace and gorge alluvial deposits consist of primarily medium to coarse grained sand and gravel.

The bedrock underlying the site, and lining the bluff consists of relatively flat lying limestone, shale and sandstone. Bedrock formations which outcrop on the Site are listed in descending order of age as follows: the Decorah Shale, Platteville Formation (mostly limestone and minor shale), Glenwood Shale and St. Peter Sandstone. The Decorah Shale is described as greenish gray, thin bedded and clay rich. Geologic maps of the Site area, supported by past work performed by CRA, indicate that the shale is partially to mostly eroded away towards the river bluff. Underlying the Decorah Shale is the Platteville Formation which is composed of thin to medium bedded limestone containing minor interbeds of shale. The Platteville is underlain by the Glenwood Shale, a greenish gray, clay rich formation. The St. Peter Formation is a well sorted, medium grained sandstone.

#### 2.3 SITE DISPOSAL HISTORY

The Plant began operation over 50 years ago and was originally used to manufacture glass. Since then the Plant has been expanded several times and is presently used to assemble pick-up trucks.

A file review was conducted by CRA to compile information related to the Plant's pre-1965 waste generation, disposal practices, investigations

MN-COMP 0044580

**CONESTOGA-ROVERS & ASSOCIATES** 

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 3 of 41

and activities on or near the Plant facilities. A summary of the file review information was presented in the report "Assessment of Fill Areas", October 1988, CRA. Plant files were reviewed on November 17, 1987. The MPCA files were reviewed on December 4, 1987. The majority of the information and correspondence in the Plant files is dated between and including the years 1980 and 1984. The information in the MPCA files is for the most part duplication of the Ford files with the addition of internal MPCA memos and reports.

Based on previous investigations and the RFRA, three areas at the plant have been identified as former fill sites. The sites have been designated as Site A, Site B and Site C and are shown on Figure 1.2.

During preparation of this work plan, aerial photographs were obtained and studied for the years 1945, 1956, 1958, 1962, 1983 and 1985. These photographs are enclosed under separate cover.

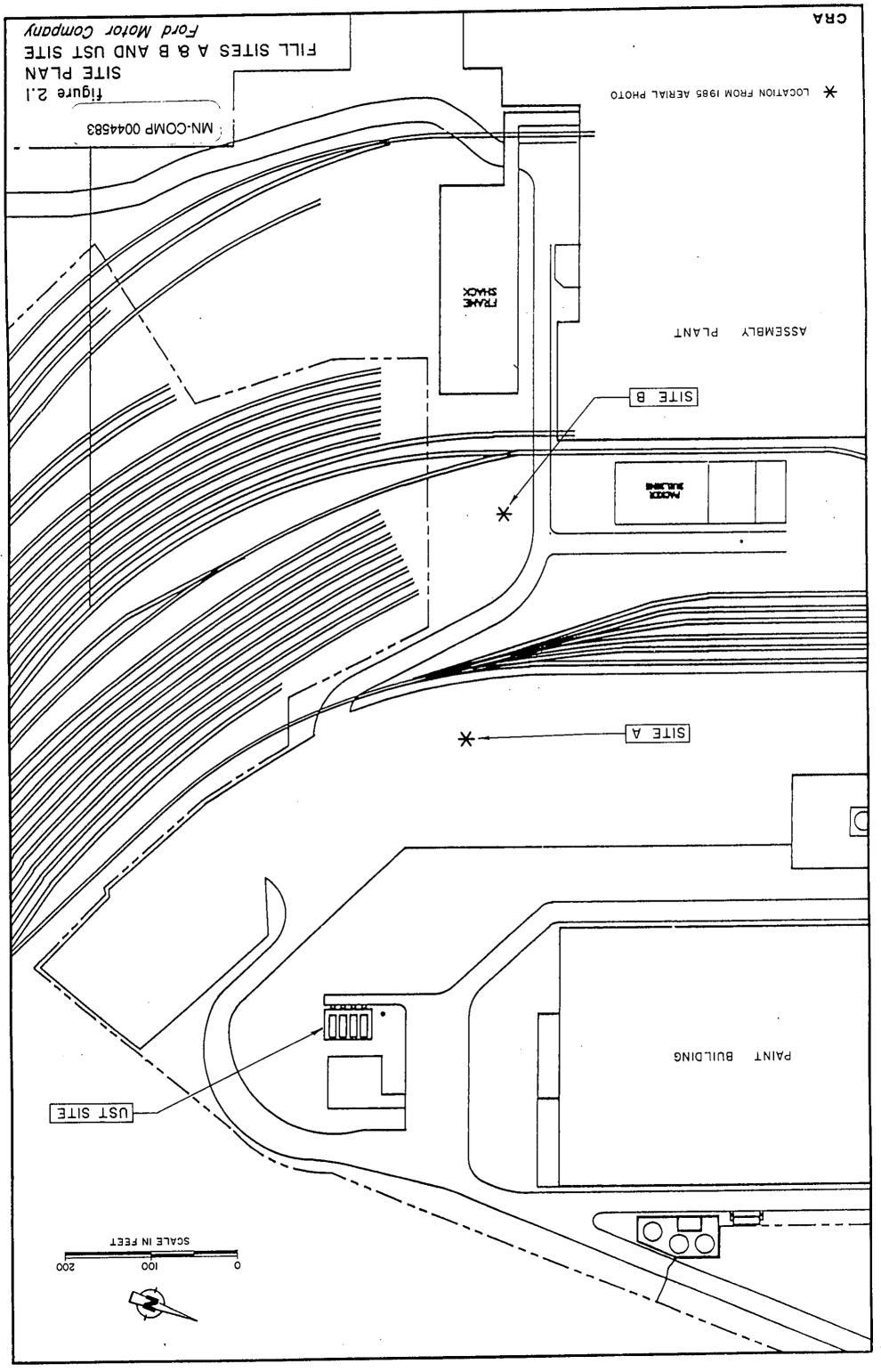
The aerial photograph for 1985 was utilized to summarize the extent of the past disposal at Sites A, B and C as could be determined from the study of the earlier aerial photographs. The areas delineated on the 1985 aerial photographs are based on observation of disturbed soil and vegetation on these earlier photographs and are, therefore, likely to be larger than the area used for actual disposal.

MN-COMP 0044581

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 4 of 41

Following are subsections which describe the waste disposal history at Sites A, B and C.

#### 2.3.1 Site A Disposal History


Site A was located at the south end of a former test track east of the assembly plant. Figure 2.1 illustrates the location of Site A. Paint sludges/wastes were deposited in the area from 1943 to 1960. This area was excavated in 1966 during a railroad car loading "tri-level" expansion. Sludge and earthen materials were deposited in the fill area known as Site C.

## 2.3.2 Site B Disposal History

The Site B is located west of Site A and was used for burning and burial of plant waste during the early Plant operations until 1945. The area was excavated as part of a paved parking lot expansion in 1962. Figure 2.1 illustrates the location of Site B. The excavated materials were placed in the Site C fill area. Based on evaluation of the 1985 aerial photo, from which the maximum area of Site B ground disturbance has been delineated, a portion of the Site B area may now be Soo Line Railroad (Soo Line) property.

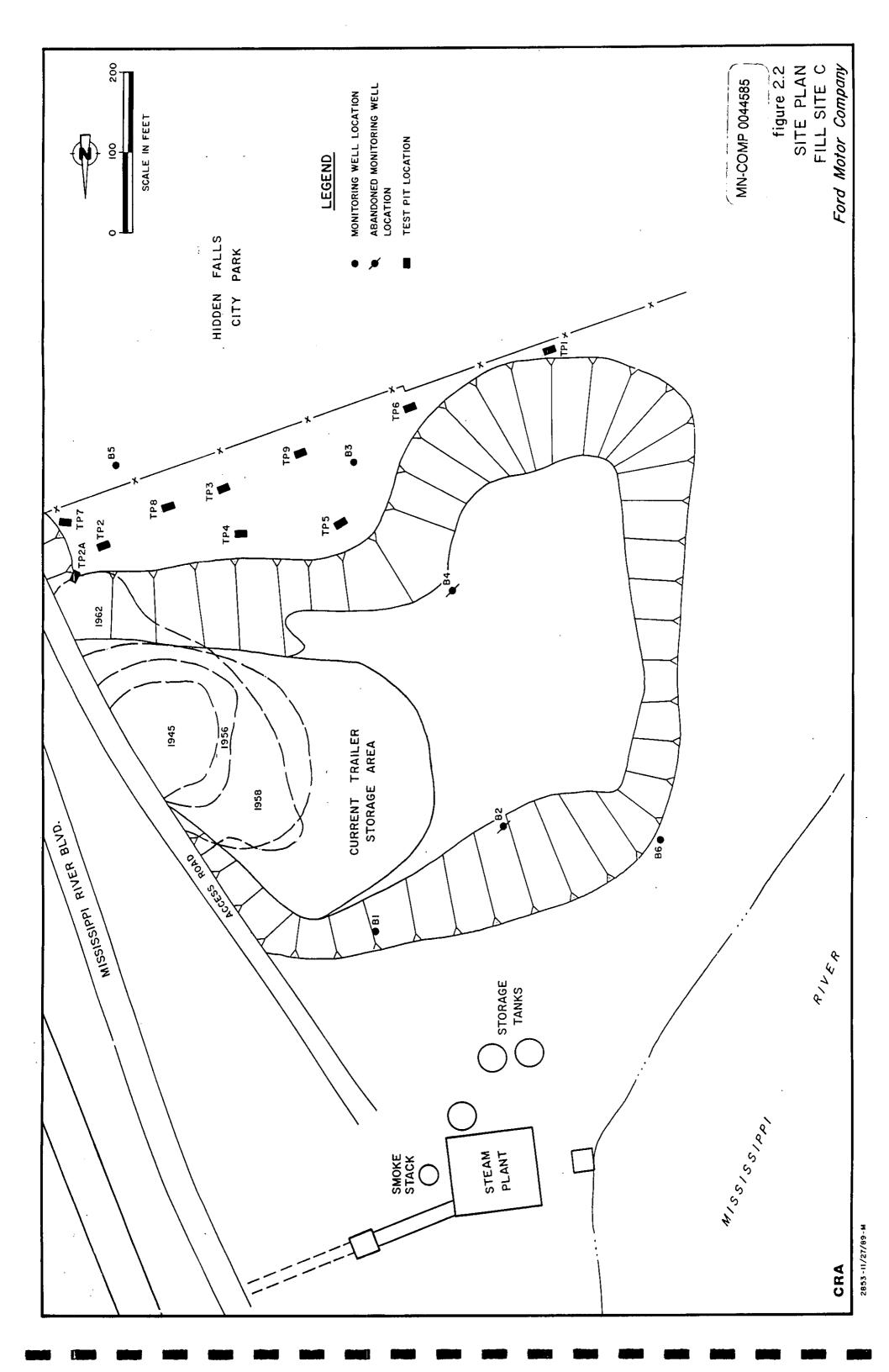
MN-COMP 0044582





.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 5 of 41


#### 2.3.3 Site C Disposal History

Site C is approximately 4 acres in size and is located on Ford property west of Mississippi River Boulevard between the Boulevard and the Mississippi River. Figure 2.2 illustrates the Site C fill area. At different times during the Plant's history, construction rubble and paint sludges/wastes were deposited in a relatively small area in Site C. The majority of this material was deposited during the years 1950 through 1965. This practice was discontinued in 1965. During the years 1965 and 1966, construction debris was deposited in large quantities on top of this fill at Site C. The United States Corps of Engineers also deposited additional rubble between Site C and the river during reconstruction of the Lock and Dam No. 1 near the "Ford Bridge" beginning in 1975.

The Site C waste deposit was identified to USEPA by Ford during the Superfund notification process. A hydrogeologic investigation was commissioned by Ford in 1981. Since that investigation was completed, additional clean fill was placed over part of the Site C waste fill. Earth fill and construction rubble, including broken concrete and road excavation rubble from the construction of Mississippi River Boulevard continue to be brought to Site C. A major portion of the top of the fill has been paved with 8 inches of concrete and is now used as a parking lot for tractor-trailer truck units. The remaining top area of Site C is used as a snow dump during winter months for snow removed from local public streets and parking lots.

The file review for Site C indicates that cardboard, wood and scrap metal may also be present in the waste deposit. Batteries, used light

**CONESTOGA-ROVERS & ASSOCIATES** 



#### Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 6 of 41

ballasts and capacitors were specifically excluded from the fill material and were sent to alternate off-site disposal. Undated copies of photographs show, at that time, exposed drums and what appears to be paint sludge at various locations. This area was the subject of a beautification/landscaping program conducted during the spring of 1990 (see Section 2.7, page 27 of 41).

Aerial photographs from the file search were used to prepare a plan illustrating the progression of fill at Site C from the access road westward. The limit of fill in 1945, 1956, 1958 and 1962 is illustrated in Figure 2.2. Filling with paint sludges/waste ceased in 1965. The limit of the paint sludges/wastes is expected to be close to the 1962 limit. Substantial filling with demolition rubble and excavation soil has occurred since 1965. The present limit of fill is also presented on Figure 2.2. The paint/sludges/wastes are buried beneath approximately 30 feet of rubble including large blocks of reinforced concrete. Total fill thickness throughout the area is approximately 60 feet. The fill thickness was estimated by constructing a cross section from topographic survey data and borehole logs.

In addition to the fill areas that are under review by CRA, a smaller waste deposit below the river bluff north of Site C and the steam plant was excavated and removed to a hazardous waste landfill (Wayne Disposal Inc., Bellville, Michigan) in July 1983 during construction of the wastewater treatment plant. Approximately 77 cubic yards were excavated and shipped. All waste observed, as well as visibly contaminated soils, were removed. Analytical results of testing conducted by Ford confirmed that the waste did not exhibit hazardous waste characteristics. This effort was the subject of Ford's Amended Superfund

MN-COMP 0044586

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 7 of 41

Notification to USEPA dated August 16, 1983. Further information regarding the waste characterization was also provided to MPCA in a letter dated March 2, 1990, which is provided as Appendix A.

### 2.4 INVESTIGATIVE WORK COMPLETED TO DATE

Several investigations have been completed since identification of the disposal sites by Ford. These studies include hydrogeological investigations, disposal area assessments, status reports and groundwater monitoring reports. The major studies completed to date are:

- 1) Final Report, Hydrogeologic Engineering Evaluation, February 1982, STS;
- Twin Cities Assembly Facility, Groundwater Monitoring Wells Survey, March 1982, Ford;
- Twin Cities Assembly Facility, Groundwater Monitoring Wells Survey, December 1982, Ford;
- 4) Assessment of Fill Areas, October 1988, CRA;
- 5) Project Status, Ford New Site B, November 1989, CRA;
- 6) Groundwater Monitoring Report and Evaluation, Site C, January 1990, CRA;
- 7) Supplemental Groundwater Monitoring Report and Evaluation for 1990, Site C, August 1990, CRA.

MN-COMP 0044587

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 8 of 41

## 2.5 SITE A EVALUATION

Site A has been included in previous reports evaluating the Site history and past disposal practices. No environmental field assessment work has been performed at Site A.

# 2.6 SITE BEVALUATION

The MPCA's interest in Site B was prompted by a citizen's "complaint" dated July 25, 1984 (subject of an MPCA letter dated April 25, 1989). The "complaint" described a location that was related to excavation for construction of a water line during July 1984. Representatives of Ford, CRA and MPCA defined an area of investigation in May 1989. The location of the Site B area is shown on Figure 2.1.

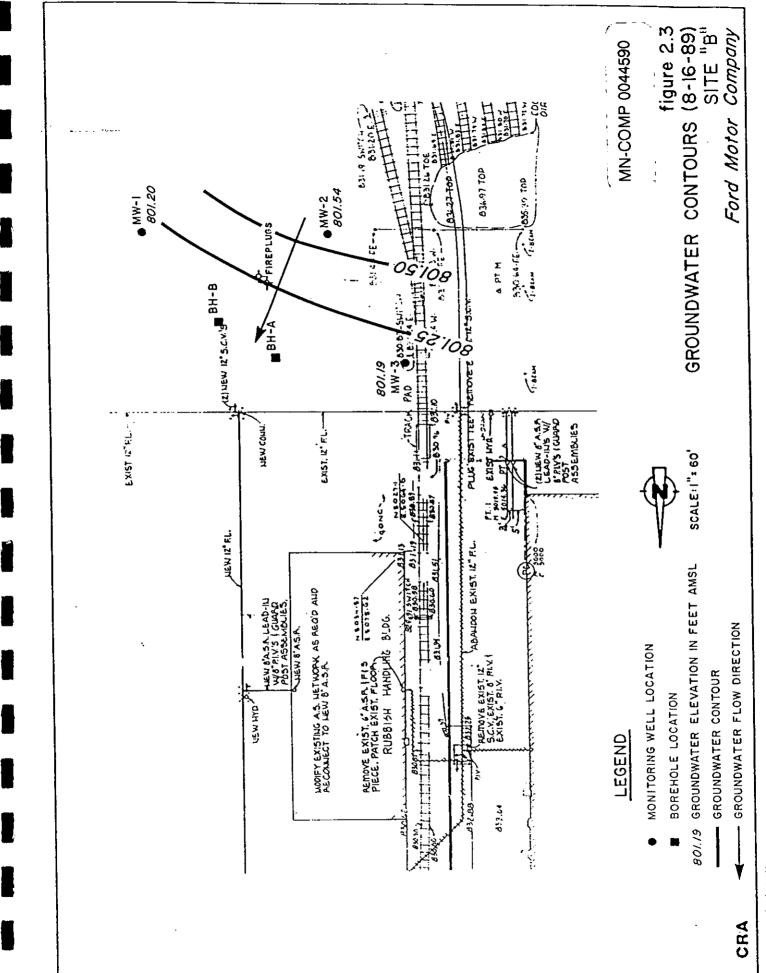
## Field work completed by CRA at Site B includes:

- 6/89 Drilled two boreholes. Screened soil with HNu or OVA
- 6/89 Four soil samples analyzed for VOCs and metals
- 8/89 Drilled three boreholes. Screened soil with HNu or OVA
- 8/89 Installed three monitoring wells (MW1, MW2, MW3)
- 8/89 Groundwater elevations
- 8/89 Three soil samples analyzed for VOCs and metals
- 8/89 Sampled three wells for VOCs and metals

MN-COMP 0044588

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 9 of 41

- 9/89 Groundwater elevations
- 8/90 Groundwater elevations


All field work was conducted in accordance with the MPCA approved investigation scope of work as described in a June 6, 1989, letter to the MPCA. This letter is contained in Appendix A.

## Site B Field Procedures

Initially, two soil borings were proposed. Analytical results of the two initial borings confirmed the presence of VOC. Due to visual appearance and odor in these borings, three additional borings/wells were completed. Locations are presented on Figure 2.3.

All boreholes were advanced using a truck mounted drilling rig advancing 3-1/4 ID hollow stem augers. The augers were steam cleaned between each boring. Soil samples were collected at 2-1/2 foot intervals using a 2 foot long by 2 inch diameter split spoon sampling apparatus. Sampling was conducted in accordance with ASTM methods. Between each sample collection, the split spoons were cleaned using a sequential rinse of methanol, hexane and methanol, followed by a distilled water rinse.

Soil samples were described and classified according to the Unified Soil Classification System. Soil samples were stored in laboratory prepared, 40 ml glass vials and 500 ml glass bottles.



2853-17/10/89-M

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 10 of 41

During sampling, both the containerized soils and auger openings were scanned with either an HNu photoionization meter or an OVA flame ionization meter.

From four of the borings, one sample from above the water table was prepared and submitted for chemical analysis. At boring A (BH A) one sample from above and one sample from below the water table was submitted. Samples were sent to Pace Laboratories of Minneapolis, Minnesota (Pace) using chain of custody procedures. Table 2.1 presents a summary of soil samples obtained and indicates those selected and submitted for analysis. A summary of the soil analytical results is presented as Table 2.2.

Monitoring Well Installations

Three monitoring wells were installed to approximately 12 feet below ground surface (BGS). Wells were constructed with:

- 2 foot long by 2 inch diameter stainless steel continuous (#10) slot screens.
- 2 inch diameter low carbon steel riser.
- A sand pack (#30) placed around and 2 feet above the screen.
- A 2 foot bentonite seal.
- Bentonite cement backfill to the surface.
- Locking protective casing and bumper posts.

MN-COMP 0044591

## **TABLE 2.1**

## SUMMARY OF SOIL SAMPLES SITE B

5

| Location | Sample Inverval<br>(ft. BGS)                                                  | <u>Date</u>                                                    | <u>Analysis</u>            | OVA/Hnu<br><u>Reading</u>             | Submitted<br>to Lab |
|----------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------------|---------------------|
| BH-A     | 0.5 - 2.5                                                                     | 6/18/89                                                        |                            | BG                                    |                     |
|          | 4.0 - 6.0<br>6.0 - 7.5                                                        | 6/18/89<br>6/18/89                                             | VOCs/Metals<br>VOCs/Metals | 40<br>40                              | X<br>X              |
| BH-B     | 0.5 - 2.0<br>2.0 - 4.0<br>4.0 - 6.0<br>6.0 - 8.0<br>8.0 - 10.0                | 6/18/89<br>6/18/89<br>6/18/89<br>6/18/89<br>6/18/89            | VOCs/Metals<br>VOCs/Metals | 10<br>40<br>45<br>45<br>150           | x<br>x              |
| MW-1     | 0.0 - 2.0<br>2.0 - 4.0<br>4.0 - 6.0<br>6.0 - 8.0<br>9.0 - 11.0<br>11.0 - 12.0 | 8/01/89<br>8/01/89<br>8/01/89<br>8/01/89<br>8/01/89<br>8/01/89 | VOCs/Metals                | BG<br>150<br>110<br>175<br>180<br>110 | X                   |
| MW-2     | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                          | 8/02/89<br>8/02/89<br>8/02/89<br>8/02/89<br>8/02/89<br>8/02/89 | VOCs/Metals                | BG<br>BG<br>BG<br>200<br>200          | <b>X</b>            |
| MW-3     | 2.0 - 4.0<br>4.0 - 6.0<br>6.0 - 8.0<br>8.0 - 10.0<br>10.0 - 12.0              | 8/02/89<br>8/02/89<br>8/02/89<br>8/02/89<br>8/02/89            | VOCs/Metals                | BG<br>BG<br>BG<br>BG                  | X                   |

MN-COMP 0044592

محيور الفارسيد بالدار والاستعار والاستعاد الم **CONESTOGA-ROVERS & ASSOCIATES** 

Notes:

- BG = Back Ground Value 1.
- 2.
- VOCs were analyzed using EPA Methods 601 and 602. Metals list includes: As, Ba, Cd, Cr, Cu, Pb, Hg, Se, Ag, Zn, Ni. 3.

|                                        |                           | SUMMA              | RY OF SOII       | SUMMARY OF SOIL ANALYTICAL RESULTS<br>SITE B<br>HA BHA BHB BHB BHB | RESULTS<br>BHB     | IMM              | MW2                                                                                         | MW3              |
|----------------------------------------|---------------------------|--------------------|------------------|--------------------------------------------------------------------|--------------------|------------------|---------------------------------------------------------------------------------------------|------------------|
| Parameter                              | MDL                       | <u>4-6 ft.</u>     | <u>6-8 ft.</u>   | <u>4-6 ft.</u>                                                     | <u>8-10 ft.</u>    | <u>4-6 ft.</u>   | <u>2-4 ft.</u>                                                                              | <u>4-6 ft.</u>   |
| Inorganic<br><u>Analysis (mg/kg)</u>   |                           |                    |                  |                                                                    |                    |                  |                                                                                             |                  |
| Arsenic<br>Barium<br>Cadmium           | 1.3-2.5<br>5.0<br>0.25    | 21<br>870<br>7.5   | 1.5<br>39<br>0.7 | 9.9<br>56<br>56                                                    | 5.6<br>120<br>0.72 | 12<br>380<br>3.3 | 9.0<br>180<br>0.70                                                                          | ND<br>36<br>0.28 |
| Chromium<br>Copper<br>Lead             | 2.5<br>0.25<br>2.5        | 51<br>100<br>1,100 | 8.9<br>62<br>62  | 490<br>75<br>3,800                                                 | 24<br>8.5<br>16    | 400 28<br>400 28 | 32<br>54 42<br>54                                                                           | 16<br>12<br>7.8  |
| Mercury<br>Nickel                      | 0.02<br>1.3<br>2.1        | 0.19<br>21         | 0.22<br>10       | 0.82<br>28<br>8.0                                                  | 0 <sup>1</sup>     | 525<br>525       | ON 21<br>D                                                                                  |                  |
| Selenium<br>Silver<br>Zinc             | 2.5<br>2.5                |                    | 504<br>04        | 3,500                                                              | 20 ß               | 094<br>094       | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |                  |
| Organic<br><u>Analysis (µg/kg)</u> (1) |                           |                    |                  |                                                                    |                    |                  |                                                                                             |                  |
| Ethylbenzene<br>Xylenes, Total         | 600 <sup>(2)</sup><br>600 |                    |                  | 100,000 <sup>(2)</sup><br>ND                                       | 20,000<br>ND       | 080<br>080       | 88                                                                                          | an               |
|                                        |                           |                    |                  |                                                                    | 1                  |                  |                                                                                             |                  |
| Notes:                                 |                           |                    |                  |                                                                    |                    |                  |                                                                                             |                  |

TABLE 2.2

Method Detection Limit S S NDL

Not detected at or above MDL. VOC analysis conducted for EPA 601 and 602 Method Lists, only detected compounds are listed. This sample analyzed with MDL of 12,000 μg/kg rather than MDL indicated. II II II II

MN-COMP 0044593

1 ł

i

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 11 of 41

Borehole and monitoring well logs are contained in Appendix B.

## Well Development and Sampling

Wells were developed using a bottom filling stainless steel bailer to surge and evacuate groundwater. A minimum of five well volumes were removed. Conductivity, pH and temperature were periodically noted.

Immediately following development, water samples were collected and submitted for chemical analysis to Pace.

The groundwater analytical results are presented as Table 2.3. Table 2.4 presents groundwater elevations and Figures 2.3 and 2.4 show the water table elevation contours for Site B.

## Summary of Current Site B Evaluation

## <u>Geology</u>

Site B is located approximately 1/4 mile east of the Mississippi River at an elevation of 830 feet AMSL. The river elevation is approximately 690 feet.

CONESTOGA-ROVERS & ASSOCIATES

# TABLE 2.4

# GROUNDWATER ELEVATIONS FORD, SITE B, ST. PAUL, MINNESOTA

|             | Top of Casing                         |         | er Elevations<br>MSL) |
|-------------|---------------------------------------|---------|-----------------------|
| <u>Well</u> | Top of Casing<br>Elevation (ft. AMSL) | 8/16/89 | <u>9/13/89</u>        |
| MW1         | 812.26                                | 801.20  | 801.17                |
| , MW2       | 813.24                                | 801.54  | 801.97                |
| MW3         | 813.22                                | 801.19  | 801.44                |

MN-COMP 0044595.01

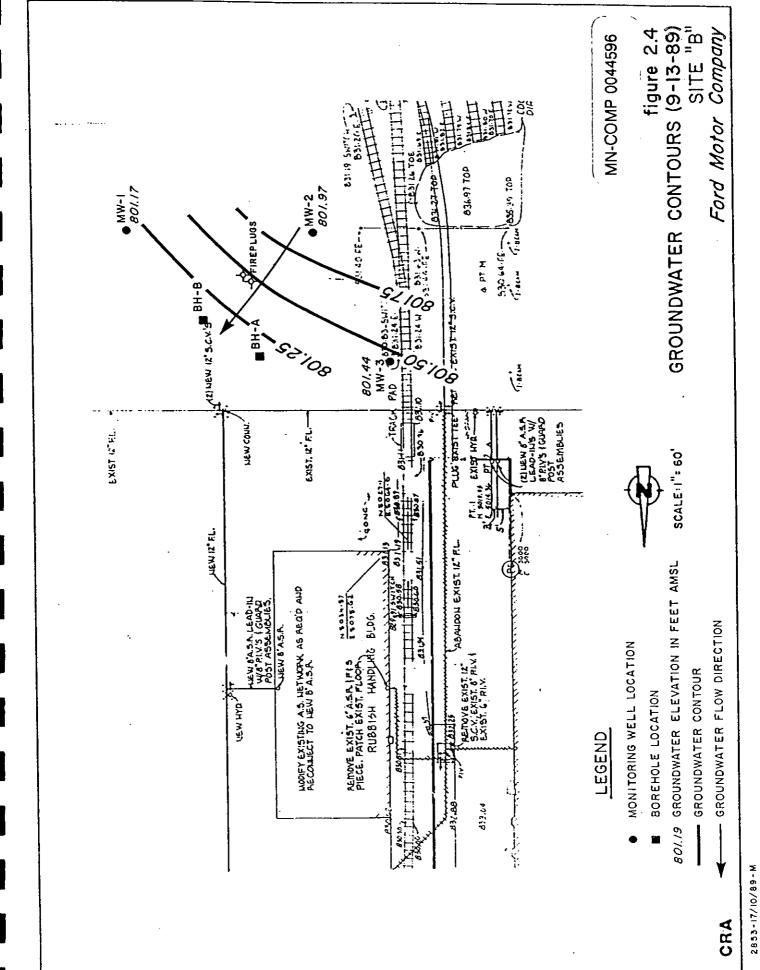
**TABLE 2.3** 

.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SITE B

|                                                                                                               | MDL                                                                                              | Rinsate<br>Blank                                                           | <u>MW-1</u>                                              | <u>MW-2</u>                                                                      | MW-2<br>(Dup.)                                      | <u>MW-3</u>                                                        |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| <u>Inorganic Analysis (mg/L)</u>                                                                              |                                                                                                  |                                                                            |                                                          |                                                                                  |                                                     |                                                                    |
| Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Mercury<br>Nickel<br>Selenium<br>Silver<br>Zinc | $\begin{array}{c} 0.002\\ 0.2\\ 0.001\\ 0.005\\ 0.002\\ 0.010\\ 0.010\\ 0.010\\ 0.01\end{array}$ | 22222222222                                                                | D<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | ON NAXXXXX<br>900<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | ON<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.1 | D<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| <u>Organic Analysis (ug/L)*</u>                                                                               |                                                                                                  |                                                                            | ſ                                                        |                                                                                  |                                                     |                                                                    |
| Methylene Chloride<br>1,1-Dichloroethylene<br>Benzene<br>Ethyl Benzene<br>1,1,1-Trichloroethane               | 5.0 - 50<br>0.3 - 15<br>50.0<br>0.5                                                              | NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN<br>NN | 3.1<br>3.1<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND           | 230<br>43<br>370<br>ND<br>ND                                                     | 110<br>510<br>ND<br>64<br>80<br>ND                  | R <sup>0</sup> 588                                                 |
|                                                                                                               |                                                                                                  |                                                                            |                                                          |                                                                                  |                                                     |                                                                    |

Notes:


H H H MDL NDL

Method Detection Limit Not detected at or above MDL. VOC analysis conducted for EPA 601 and 602 Method Lists, only detected compounds are listed.

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044595

.



Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 12 of 41 1

The Site is situated on a level "terrace" feature, a remnant feature of a large post glacial Mississippi River.

Surficial geologic materials on the terrace consist of natural sand, silt and gravel deposited by the post glacial Mississippi river and, where altered by cultural activity, nonnative, assorted fill material is found.

Bedrock exists at or near the ground surface and is exposed in a bluff along the river valley. The bedrock consists of interlayered sandstones, shales and limestones of Ordovician age. The upper four formations are of primary importance with respect to groundwater hydrology and are listed in descending order of age as follows: Decorah Shale, Platteville Formation, Glenwood Shale and the St. Peter Formation.

Five borings were advanced at Site B, four of which intercepted bedrock at approximately 12 feet BGS. The fifth boring was terminated at 7-1/2 feet where auger refusal occurred.

Surficial materials in all boreholes consisted of intermixed poorly sorted sand, silt, clay and non-native fill material.

Bedrock was interpreted to be the upper member of the Platteville formation. The upper Platteville is described as a tan and gray, medium bedded dolomitic limestone containing interbedded grayish green shale.

MN-COMP 0044597

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 13 of 41

## <u>Hydrogeology</u>

Groundwater was intercepted in all borings at approximately 10 feet BGS. Monitoring wells were installed to a depth of 12 feet BGS, penetrating a zone of saturation approximately 2 feet thick.

Wells were not advanced past 12 feet, the depth at which bedrock was encountered.

The uppermost saturated zone occurs in the unconsolidated fill material lying above the bedrock. Saturation may or may not extend continuously into the underlying Platteville formation.

Groundwater flow is generally towards the north. The average hydraulic gradient is calculated at 0.01. This is considered a shallow gradient. Figures 2.3 and 2.4 show the groundwater flow direction.

Groundwater flow direction in a shallow water table is subject to frequent change primarily attributable to fluctuations during recharge from rain fall events. Flow direction may also be influenced by cultural features (i.e., storm sewers, extensive pavement, drainage tiles, etc.).

Based on these observations, groundwater flow direction at Site B may be subject to frequent change, for there is extensive pavement to the north of the wells and borings. Located to the south is an area that is unpaved, allowing rainfall to infiltrate and recharge the water table. In theory,

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 14 of 41

groundwater would "mound" in the unpaved area and flow towards the north, paved area. After a certain period, flow direction could change as the groundwater system stabilizes, reaching steady state conditions.

Although no boreholes and wells penetrate the Platteville Formation, some conclusions can be reached regarding hydrogeologic characteristics. Regionally, the Platteville, in conjunction with the underlying Glenwood shale, is considered a hydrogeologic confining unit.

CRA's geologist examined bedrock outcroppings of the Decorah shale, Platteville limestone, Glenwood shale and the St. Peter sandstone in the vicinity of the Site for the purpose of examining hydrogeologic characteristics of these formations. Of particular interest was the presence of groundwater seepage emanating from the Platteville formation along the river bluff face. This was observed in several locations and, most notably, several hundred feet south of Site B at Hidden Falls Park. The presence of seeps indicates that groundwater, which may be perched, exists in the Platteville above the Glenwood Shale confining unit. Underlying the Platteville-Glenwood confining unit is the St. Peter sandstone.

## HNu/OVA Results

An HNu photoionization device and/or an OVA flame ionization device was used to scan soils for organic vapors in the five boreholes. The results are shown on Table 2.1.

CONESTOGA-ROVERS & ASSOCIATES

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 15 of 41

Summarizing the above results, HNu/OVA readings were detected above background levels and below the water table in BH A, BH B and MW1. Readings above background were observed at and below the water table in MW2. No above background readings were detected at MW3.

## Soil Chemical Analysis Results

Soil samples were analyzed for halocarbon and aromatic organic compounds (by SW846 Methods 8010/8020) and the inorganic compounds listed on Table 2.2. Table 2.2 presents all inorganic analytical results, however, only detected compounds have been summarized for organics. Based on these inorganic data, cadmium, lead and zinc levels appeared to be present above typical background soils.

Ethylbenzene and total xylene were found above method detection limits (MDLs) in soil taken from boring MW-1. Ethylbenzene was also found above MDLs at BH B.

Groundwater Chemical Analysis Results

Groundwater samples were analyzed for halocarbon and aromatic organic compounds (by EPA Method 601 and 602) and the inorganic compounds listed on Table 2.3. Table 2.3 presents all inorganic analytical results, however, only detected compounds have been summarized for organics. These

groundwater results indicate that inorganics were found at levels near MDLs. Results reported for zinc showed poor reproducibility between the sample and duplicate taken for well MW-2.

Levels of VOCs in well MW-3 were not detected above MDL or were found below levels noted in the field rinsate blank (i.e. for 1,1,1trichloroethene). Detected levels were primarily found in well MW-2 (methylene chloride, 1,1-dichloroethylene, benzene and ethyl benzene) and varied from the sample to the duplicate for this well. Due to the poor reproducibility of VOC results, these data should be qualified as non-quantitative data. However, these data were acceptable for qualitative purposes. Two VOCs (methylene chloride and 1,1-dichloroethylene) were found in well MW-1. Based on the flow direction indicated for the August and September 1989 water levels, well MW-2 is currently the most upgradient of the wells installed.

# 2.7 SITE C EVALUATION

The majority of the environmental assessment work completed to date at the Plant has related to the investigation of Site C due to the relocation of the materials from Sites A and B. The Site C waste deposit was identified to the USEPA by Ford during the Superfund notification process. The first investigation was commissioned by Ford in 1981. A chronological list of the field work performed at Site C follows:

MN-COMP 0044601

| ι.     |                                                                            |                                                                     |
|--------|----------------------------------------------------------------------------|---------------------------------------------------------------------|
| - 4- 4 |                                                                            | Section No. 2.0<br>Revision No. 1<br>Date: 2/11/91<br>Page 17 of 41 |
| 5/81   | Drilled six boreholes,<br>installed four monitoring wells (B1, B2, B3, B4) | STS                                                                 |
| 1/82   | Groundwater elevations                                                     | STS                                                                 |
| 3/82   | Sampled four wells for organics and metals                                 | Ford                                                                |
| 3/82   | Groundwater elevations                                                     | Ford                                                                |
| 12/82  | Installed monitoring well (B5)                                             | STS                                                                 |
| 12/82  | Sampled five wells and three river locations for organics and metals       | Ford                                                                |
| 12/82  | Groundwater elevations                                                     | Ford                                                                |
| 1/88   | Ten test pit excavations,<br>analyzed two leachate samples                 | CRA                                                                 |
| 2/88   | Stadia survey for mapping                                                  | CRA                                                                 |
| 3/88   | Groundwater elevations                                                     | CRA                                                                 |
| 6/89   | Sampled three wells and two river locations for organics and metals        | CRA                                                                 |
| 6/89   | Groundwater elevations                                                     | CRA                                                                 |
| 6/89   | Abandoned two wells (B2, B4)                                               | GME, CRA                                                            |
| 8/89   | Sampled three wells and two river locations for organics and metals        | CRA                                                                 |
| 8/89   | Groundwater elevations                                                     | CRA                                                                 |
| 9/89   | Sampled three wells and two river locations for organics and metals        | CRA                                                                 |
| 9/89   | Groundwater elevations                                                     | CRA                                                                 |
| 4/90   | Installed one well (B6)                                                    | GME, CRA                                                            |
| 4/90   | Sampled three wells and two river locations for organics and metals        | CRA                                                                 |
| 4/90   | Groundwater elevations                                                     | CRA                                                                 |
| 6/90   | Sampled three wells and two river locations for organics and metals        | CRA                                                                 |
|        |                                                                            |                                                                     |

MN-COMP 0044602

Se prime de la caractería

.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 18 of 41 CRA

| 6/90 | Groundwater elevations | CRA |
|------|------------------------|-----|
| 8/90 | Groundwater elevations | CRA |

In June of 1989, GME Consultants Inc. upgraded surface protection on wells B1, B3 and B5 by installing locking protective casings, bumper posts and additional riser pipes where necessary. Wells B2 and B4 had been damaged beyond repair by the continual dumping and regrading of rubble. Therefore, wells B2 and B4 were abandoned in accordance with the Minnesota Department of Health (MDH) water well code. The wells were grouted with a neat cement grout and all retrievable material was removed. Well abandonment records and logs are presented in Appendix C.

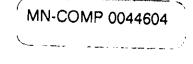
Following the repairs to wells B1, B3 and B5, a Site survey was completed to establish new top of casing elevations on these wells and to further define the top of fill area.

In April 1990, CRA contracted GME Consultants Inc. to install monitoring well MW-6.

A CME 55 drill rig, using 4-1/4 inch inside diameter, hollow stem augers advanced the well boring. Split spoon samples were collected continuously to the bottom of the boring.

The monitoring well was completed using the following materials:

**CONESTOGA-ROVERS & ASSOCIATES** 


Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 19 of 41

- 10-foot, 2.0-inch diameter, .10 slot stainless steel screen;
- 40-foot, 2.0-inch, low carbon steel riser;
- #10 silica sand pack;
- bentonite slurry seal;
- bentonite (approximately 3 percent) cement grout;
- 4.0-inch diameter locking protective casing;
- three 4.0-inch steel protective posts.

The monitoring well was installed inside the auger annulus by backing the augers from the boring while simultaneously installing the sand pack. The sand pack was installed from the bottom to approximately 8 feet above the top of the screen. Natural sand and gravel filled the annulus to approximately 26 feet BGS. A bentonite slurry seal approximately 3 feet thick was placed above the sand pack. The remaining auger annulus was backfilled by the tremie grout method using a mixture of bentonite and cement. Surface protection consists of a 4-inch diameter locking protective casing and three steel bumper posts.

The drill rig, augers, well materials and additional associated equipment were decontaminated using a high temperature, hot water steam rinse.

Well MW-6 was developed and stabilized following installation using a 2-inch stainless steel and teflon, bottom filling bailer. A minimum of five standing well volumes was purged. The well was considered



stabilized after three consecutive volumes with readings of less than 5 percent variability were purged. In total, 44 well volumes were removed during development.

Monitoring well logs for B1, B3, B5 and MW-6 are contained in Appendix B.

Site C monitoring wells have been sampled on seven occasions. Table 2.5 presents a summary of the detected compounds for all seven sampling rounds. Table 2.6 presents water level elevation data. Water table contours are shown on Figures 2.5 and 2.6.

Groundwater and surface water sampling conducted by CRA was completed according to the approved work plan (provided in Appendix A) and the MPCA guidance manual "Procedures for Groundwater Monitoring; MPCA Guidelines" December 1986. The samples were submitted to Pace Laboratories Inc. for chemical analysis under chain-of-custody procedures.

The surface water samples were taken by the "grab sampling" method. On all five sampling events conducted by CRA, samples were obtained from both upstream and downstream locations. The surface water locations are close to, but may not be exactly the same as those previously sampled by Ford during earlier, 1981 and 1982, monitoring.

TABLE 2.5 GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS FORD SITE "C" DETECTED COMPOUNDS

|                                        |      |            |      | 81                 |      |              |         | B2   |            |      |       | •            | 8    |      |                 |       | 2    |        |
|----------------------------------------|------|------------|------|--------------------|------|--------------|---------|------|------------|------|-------|--------------|------|------|-----------------|-------|------|--------|
|                                        | 3/82 | 12/82      | 6/89 | 8789               | 9789 | 4/20         | 6/30    | 3/82 | 12/82      | 3/62 | 12/82 | 67.85        | 8/82 | 5785 | 4/90            | 0679  | 3/82 | 12/82  |
| cis-1,2-Dichloroethyl <b>an</b> e µg/l | NA   | ٧N         | QN   | Ð                  | Q    | QN           | Q       | VN   | ٧N         | VN   | NA    | â            | QN   | Đ    | Q               | Q     | ٧N   | NA     |
| 1,1-Dichloroethylene µg/l              | £    | ĝ          | 1.5  | ND <sup>(R)</sup>  | £    | ę            | Ð       | Ð    | Ð          | Ð    | ĝ     | £            | £    | ę    | Ê               | Ð     | Q.   | £      |
| Methylene Chloride µg/l                | Ê    | QN         | ą    | ND <sup>(R)</sup>  | Q    | QN           | £       | Ð    | Ð          | g    | Ð     | Q            | ĝ    | ĝ    | QN              | Ð     | Q    | QN     |
| Trichlor of uoromethane µg/I           | â    | £          | QN   | (J)CIN             | û    | QN           | QN      | Q    | CN         | £    | Ð     | Q            | Ð    | £    | Q               | Ð     | £    | ,<br>Q |
| Dichlorodifluoromethane µg/l           | ŝ    | QN         | QN   | 14 <sup>(I)</sup>  | Q    | QN           | Q       | £    | Q          | Ê    | Ð     | Q            | £    | £    | QN              | Ð     | ĝ    | ĝ      |
| Vinyl Chloride µg/l                    | Ð    | Ð          | QN   | 5.2 <sup>(1)</sup> | â    | QN           | Q       | Q    | Q          | Ê    | Ð     | £            | Ð    | ę    | ę               | Ð     | QN   | Q      |
| Trichlor oethylene µg/l                | 4    | QN         | Q    | ND(R)              | 21   | Ð            | Ê       | ŝ    | Q          | Ð    | QN    | ĉ            | QN   | Q    | Q               | Q     | Ð    | £      |
| Chloroform µg/l                        | QN   | £          | QN   | Q                  | â    | QN           | QN      | QN   | QN         | DZ   | Ê     | Ð            | QN   | ę    | QN              | Ð     | ę    | QN     |
| Benzene µg/l                           | QN   | Q          | £    | Q<br>Z             | QN . | QN           | QN      | QN   | £          | Ð    | ę     | <del>Q</del> | Đ    | £    | Ê               | Q     | Q    | ę      |
| Toluene µg/l                           | 1    | 2.1        | Q    | ₽                  | ą    | £            | Q       | 1    | Ð          | Ð    | £     | Đ            | Ð    | £    | Q               | Ð     | 1    | Ê      |
| Chlorobenzene µg/l                     | QZ   | Q          | QN   | Ê                  | QN   | QN           | 0N<br>N | Ð    | ÛN         | Ð    | QN    | Đ            | Ð    | Ð    | Q               | QŶ    | Q    | Ê      |
| Xylene (Total) µg/l                    | QN   | Q          | NA   | ۸N                 | NA   | Q            | NA      | QN   | QN         | £    | QN    | VN           | ٧N   | ٧N   | Q<br>N          | NA    | â    | CN     |
| 1,2-Dichloroethylene µg/i              | Ð    | Q          | Ê    | QN                 | Ð    | £            | ę       | 15   | 22.0       | â    | £     | Ð            | £    | £    | Q.              | £     | Ð    | 6.7    |
| Cadmium mg/l                           | 0,02 | 0.003      | QN   | Ð                  | QN   | QN           | Ð       | QN.  | 0.003      | ĝ    | 0.003 | 0.0002       | Ð    | £    | £               | £     | 0.02 | 0.005  |
| Lead mg/l                              | 0.12 | 0.005      | ĝ    | QN                 | QZ   | £            | £       | 0.12 | 0.005      | 0.05 | 0.004 | Q            | ₽    | £    | QZ              | QN    | 90:0 | 0.006  |
| Zinc mg/l                              | 0.06 | Ð          | ĝ    | â                  | £    | £            | Q       | 0.04 | QN         | £    | QN    | 0.03         | Ð    | 0.02 | Ð               | Q     | 0.09 | 0.06   |
| Copper mg/l                            | 0.03 | ĝ          | Q    | 0.01               | QZ   | Q            | Q       | 0.02 | Q          | 0.01 | Q     | £            | 0.02 | Q    | 0.01 (U)        | Ð     | 0.01 | Q      |
| Nickel mg/l                            | 0.07 | 0.06       | Ð    | Q                  | Ð    | ₽            | Ê       | 0.04 | £          | 0.02 | Ð     | Q            | 0.05 | ĝ    | Q               | Q     | 0.05 | Ð      |
| Chromium mg/1                          | QN   | ₽          | Q    | QN                 | QN   | Q            | â       | QN   | Q          | 0.05 | Q     | ₽            | â    | Ê    | Ð               | ĝ     | £    | QN     |
| ارگت سیر<br>NEST                       | NN . | <b>V</b> N | QN   | Q                  | QN   | <del>Q</del> | 0.06    | VN   | <b>V</b> N | VN   | NA    | 6.0          | QN   | Ê (  | 62              | 0.18  | N    | NA     |
| )<br>JGA-R(                            |      |            |      |                    |      |              | ,       |      |            |      |       |              |      | -NM  | MN-COMP 0044606 | 00446 | 90   |        |
| DVE                                    |      |            |      |                    |      |              |         | •    |            |      |       |              |      | ]    |                 | 1     | -    |        |

OGA-ROVERS & ASSOCIATES

ŧ

١

4

TABLE 25 GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS FORD SITE \*C DETECTED COMPOUNDS

8 £ £ g ĝ g ĝ £ ĝ 0.055 ĝ £ ĝ ĝ Ê ž £ g g. ĝ ĝ 87 £ ĝ ĝ ĝ £ ĝ ĝ ĝ £ £ ĝ Ð ĝ £ £ Ê ę ĝ £ g Mississippi River <u>8</u>78 ĝ ĝ ĝ £ £ ĝ £ £ ĝ ĝ £ £ 000 ź g ĝ £ £ ĝ g Down Stream 0.008 97,69 611 ĝ g ĝ g ĝ Ð £ ĝ ĝ g ĝ £ ĝ ž ĝ ĝ ĝ g 613 6789 £ £ 2 £ £ ĝ ĝ ĝ g ĝ ₹ g ĝ ĝ 0.00 ĝ ĝ £ ĝ 12/21 ĝ £ ž £ £ ĝ ĝ ĝ ĝ ž ž ž ž × £ £ ĝ £ ٧Z ź Misstastppi River Adjacent to Plant 12/82 ĝ ĝ 0.00 ۶ £ ĝ £ £ £ ĝ ĝ Ð ٧N ž g ž ٧X ¥ ĝ g (J)600.0 8 ĝ ĝ 2 ĝ 0.058 £ £ £ £ ĝ ĝ ĝ £ g £ ž £ £ ĝ 1.30) 8 ĝ £ g £ ĝ B Ę ĝ £ ĝ ĝ g g g £ £ £ g £ Viiseissippi River 676 ĝ £ g ĝ £ ĝ ĝ ĝ 9 ĝ 0.0 ĝ £ ž g ĝ £ ĝ ĝ g Up Stream 0.0005 618 g g g ĝ £ £ g ĝ £ ĝ £ ž g ĝ £ g g g g 6/83 £ ĝ 2 £ £ ĝ Ê £ £ ĝ £ ž £ ĝ £ ĝ g ĝ ĝ ĝ 12/82 ¥ ĝ £ 2 g ĝ ĝ ĝ ž g ž g £ 2 Z g g g es g ۸ (U) (U) (U) 8 55 £ ĝ ĝ £ ĝ 600 ĝ 0.5 g £ ĝ ž £ £ ĝ g £ ĝ 闔 £€ 8 ĝ ĝ ĝ ĝ ĝ £ 33 £ £ ĝ ĝ £ ĝ £ £ Ð ĝ g 2 18 g 0.0002 £ ĝ £ g g £ ĝ g ĝ g ž ĝ g 026 g ĝ Q £ 8789 0.8()) Ð ĝ g g ĝ Ę g ĝ ĝ g ź ĝ Ð £ Ð az 0.05 ĝ a N. N. Not analyzed. NDI - Not detected at or above method detection limit. (1)55 - Value estimated based on holding time exceedence. (RD) - Value unusable based on holding time exceedence. (U) - Value qualified as non-detect based on method blank. B 6/89 0.0004 ĝ ß ĝ g ĝ £ ĝ ĝ 0.02 £ ĝ ĝ £ £ 0.07 g 0.08 ž ĝ 12/82 ×۲ g g £ ĝ £ ĝ ĝ ĝ g g ĝ 0.00 £ g g g g ĝ ٧Z Dichlorodifluoromethane µg/l cis-1,2-Dichloroethylene  $\mu g/l$ Trichlorofluoromethane  $\mu g/l$ 1,1-Dichloroethylene µg/l 1,2-Dichloroethylene µg/1 Methylene Chloride µg/l Trichloroethylene µg/l Chlorobenzene µg/l Vinyl Chloride µg/l Xylene (Total) μg/l Chloroform µg/l Chromium mg/l Cadmium mg/l Benzene µg/l Tolucne µg/l Copper mg/l Bartum mg/l Nickel mg/l Lead mg/l Zinc mg/l

MN-COMP 0044607

Value qualified as non-detect based on method blank.

**TABLE 2.6** 

# FORD SITE C REVISED\* MONITORING WELL ELEVATION DATA

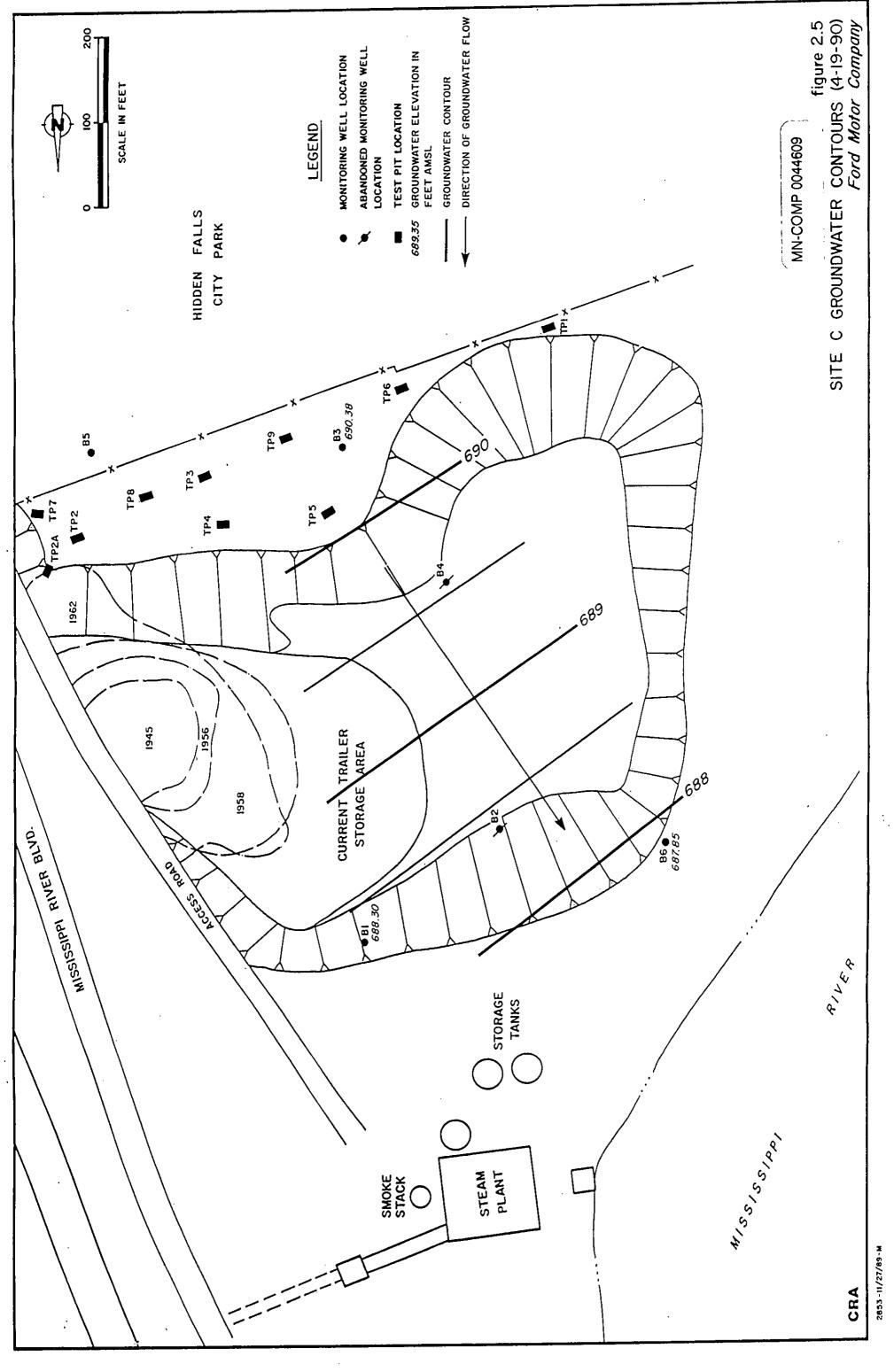
|       |           |                  | Bottom of        |        |        |         |         | Groundwater | water      |                        |                       |                       |
|-------|-----------|------------------|------------------|--------|--------|---------|---------|-------------|------------|------------------------|-----------------------|-----------------------|
| Top c | of Casing |                  | Screen           |        |        |         |         | Elevations  | ons        |                        |                       |                       |
| - चे  | Eevation  | <u>Elevation</u> | <u>Elevation</u> | 8/3/90 | 06/9/9 | 4/19/90 | 9/13/89 | 6/2/89      | 3/24/88(1) | 12/1/82 <sup>(2)</sup> | 3/3/82 <sup>(3)</sup> | 1/5/82 <sup>(3)</sup> |
|       | 738.06    | 735.9            | 681.62           | 66'069 | 690.43 | 688.30  | 686.91  | 689.35      | 688.24     | 691.85                 | 688.35                | 688.62                |
|       | 704.18    | 702.9            | 89.679           | 690.66 | 690.00 | 690.38  | 687.76  | 689.36      | 688.50     | 691.42                 | 688.27                | 688.65                |
|       | 703.90    | 703.2            | 678.50           | 661.39 | 690.82 | ۰       | 689.19  | 690.45      | 689.61     | 691.96                 | Ē                     | ĪZ                    |
|       | 730.85    | 728.4            | 681.90           | 690.95 | 690.61 | 687.85  | ž.      | IN          | IN         | ĪZ                     | N                     | IN                    |
|       | I         | . <b>'</b>       | •                | 691.4  | 691.5  | 688.2   |         |             |            |                        |                       |                       |

Note:

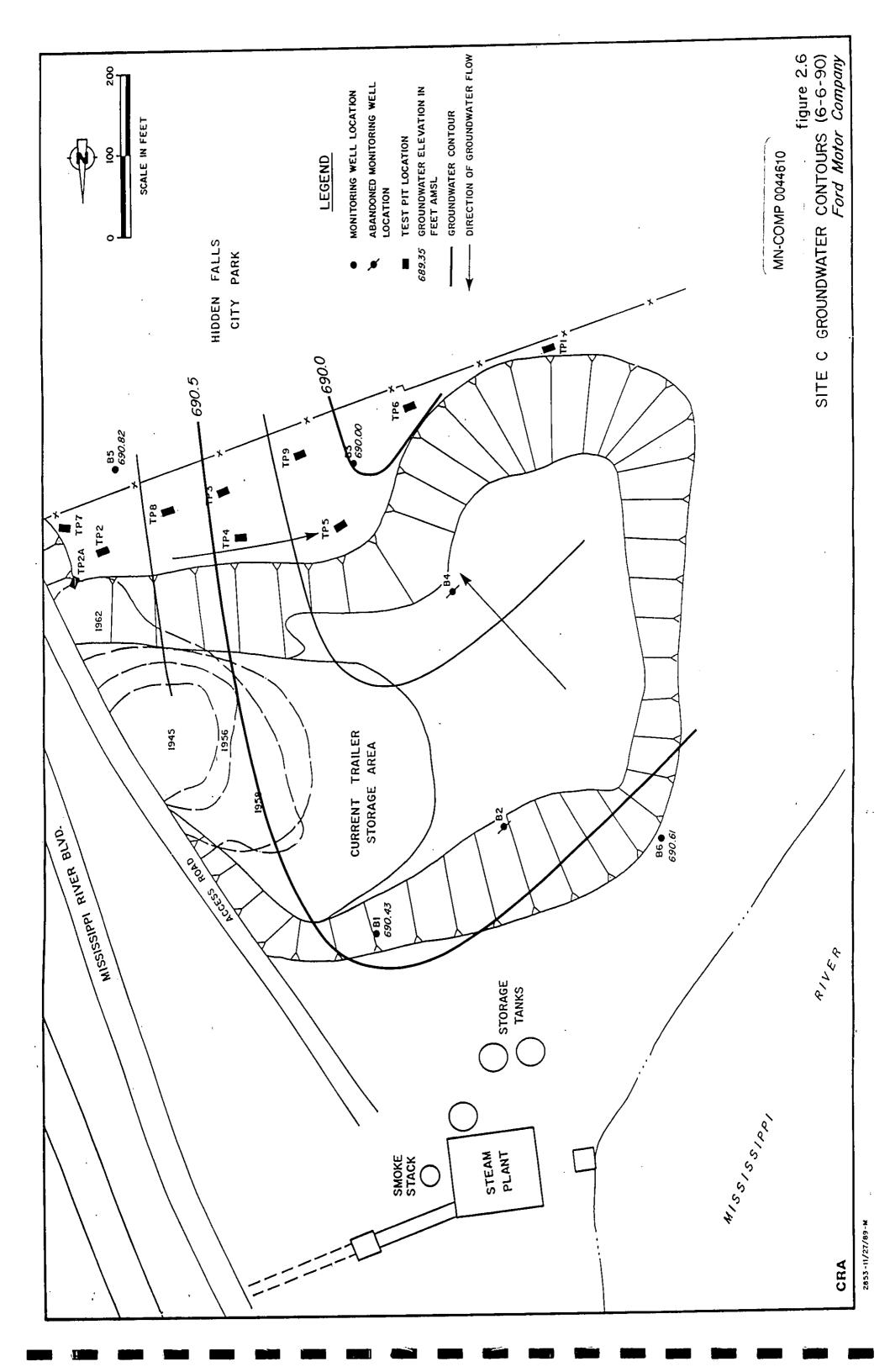
All elevations are feet above mean sea level (AMSL). National Geodetic Vertical Datum, 1929 (NGVD)

\*As revised due to well repairs and modifications.

(1) From report "Assessment of Fill Areas, Ford Motor Company, Twin Cities Assembly Plant," CRA, October 1988.


From report "Twin Cities Assembly Facility, Groundwater Monitoring Wells Survey," Ford Motor Company, December 1, 1982.

From report "Twin Clties Assembly Facility, Groundwater Monitoring Wells Survey," Ford Motor Company, March 3, 1982.


(2) From report "(3) From report "NI Not Installed

MN-COMP 0044608

ļ



2653-11/27/89-M



Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 21 of 41

At the time of the June 1989 sampling event, the Site C area was inspected upstream and downstream for the presence of surface "seeps or springs", as suggested by MPCA's letter of April 25, 1989, to Ford. This inspection located no potential sampling locations of this type.

# **Groundwater Flow Direction**

Groundwater flow is predominantly to the west towards the Mississippi River. Seasonal control of the river elevation may affect this flow direction to some degree. Water levels measured by CRA during 1988, also presented on Table 2.6, had indicated a more northwesterly component of flow direction. A similar westerly flow pattern was also provided by data presented by Ford in December 1982 as also indicated on Table 2.6. Early groundwater elevations by Ford do not include well B5, as it was not installed until later in 1982. Only the 1990 data includes the new well B6. Seasonal fluctuations in the river elevation also appear to change the gradients as shown on Figures 2.5 and 2.6.

Figure 2.6 shows a flow direction to the south for the western edge of Site C. This flow direction indicated that the river was recharging this portion of Site C. The Army Corp of Engineers maintains a staff gauge in the lower pool of Lock and Dam #1. The elevations of the river were approximately 3 feet higher during the June 1990 water level round when compared to the river elevation in April. The change in river elevations explains why groundwater flow for June is different than the flow direction for April.

MN-COMP 0044611

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 22 of 41

Groundwater elevations are measured in the existing monitoring wells which are screened in the fill and/or river deposits of sand and gravel. Thus, the groundwater flow directions represent a localized condition under Site C.

### Site Hydraulic Conductivity

Grain size distribution curves are presented in the 1982 STS report. The grain size distribution can be used to estimate the permeability of the unconsolidated sand and gravel using Hazen's equation. Hazen's equation is an empirical formula that estimates permeability based on grain size distribution. Where:

 $K = Ad_{10}^2$ 

K is the permeability in cm/s,

A is an empirical coefficient equal to 1.0 and

 $d_{10}$  is the grain size (in mm) of the 10 percent retained.

Estimated hydraulic conductivity values are presented in Table 2.7. The geometric mean hydraulic conductivity is  $2 \times 10^{-2}$  cm/sec. This is a relatively high hydraulic conductivity consistent with the sand and gravel soils.

Groundwater velocity can be estimated using the equation:

MN-COMP 0044612 ,

# **TABLE 2.7**

. .

# HAZEN'S PERMEABILITY SITE C

| Borehole | Depth (ft. bgs) | d <sub>10</sub> (mm) | K (cm/sec)           |
|----------|-----------------|----------------------|----------------------|
| BH1      | 39.5 - 41       | 0.08                 | 6 x 10 <sup>-3</sup> |
| BH2      | 19.5 - 21       | 0.25                 | 6 x 10 <sup>-2</sup> |
| BH2      | 29.5 - 31       | 0.30                 | 9 x 10 <sup>-2</sup> |
| BH2      | 34.5 - 36       | 0.075                | $5 \times 10^{-3}$   |
| ВНЗ      | 19.5 - 21       | 0.2                  | $4 \times 10^{-2}$   |
| BH5      | 10 - 11.5       | 0.08                 | 6 x 10 <sup>-3</sup> |
|          |                 |                      |                      |

Average =  $2 \times 10^{-2}$ 

MN-COMP 0044613

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 23 of 41

 $\overline{\mathbf{v}} = \frac{\mathbf{K}\mathbf{i}}{\mathbf{n}}$ 

where: v is the average groundwater linear velocity,
K is the hydraulic conductivity (2 x 10<sup>-2</sup> cm/sec),
i is the hydraulic gradient (0.002) and
n is the porosity (0.3).

The assumed porosity of 0.3, which is common for this type of sediment. The average hydraulic gradient is 0.002.

By solving the equation, the average linear groundwater velocity is estimated to be  $1.3 \times 10^{-4}$  cm/sec, or 0.4 ft/day.

**Analytical Parameters** 

All water samples were analyzed for halocarbon and aromatic volatile organic compounds (VOC) by EPA methods 601 and 602. In addition to the 601/602 VOC parameters, the MPCA requested that *cis*-1,2dichloroethylene and ethylacetate also be analyzed. This request was presented in their letter dated April 25, 1989. The following metals were also analyzed: arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver and zinc.

MN-COMP 0044614

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 24 of 41

The two sampling rounds conducted by Ford in 1982 were analyzed for USEPA volatile priority pollutants plus xylenes, methyl ethyl ketone, methyl isobutyl ketone, cadmium, chromium, lead, nickel, copper and zinc.

## Test Pit Investigation

Test pits were excavated at Site C as an investigative tool to define the extent and nature of possible waste disposal.

On December 4, 1987, CRA and its subcontractor mobilized a rubber tired backhoe at Site C along the river. An attempt was made to gain access to the low land areas south of the trailer storage pad. Several attempts were made to reach the bluff, but on each attempt the backhoe got stuck. One test pit (TP1), shown on the Site C Plan, was successfully completed. No evidence of past disposal (i.e. visual or odor) was noted at this test pit location.

On January 19, 1988, a second attempt was made to access this area. A track mounted backhoe was used this time and mobility was not as difficult due to frozen conditions. A total of 10 test pits were excavated to an approximate depth of nine feet below ground surface.

The individual test pit logs are presented in Appendix D. The test pit locations are presented on Figure 2.2 and the Site C Fill Area Site Plan which is provided under separate cover.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 25 of 41

Grab samples were obtained from the backhoe bucket as the excavation proceeded. Physical evidence of waste presence (i.e. odor or visual) was noted only at test pits TP3 and TP8. Test pit TP3 exhibited soil with a gray/black color having a paint-like odor and test pit TP8 showed visual . evidence of the same gray/black color as TP3, but without the odor. The samples obtained from test pits TP3 and TP8 were the only samples that exhibited odor or color indicating the possible presence of paint sludge/waste. No evidence of waste presence was noted at the other test pits. The steep side slopes and 30 foot thickness of rubble fill over the pre-1965 materials prevented collection of a sample.

The sample from test pit TP8 exhibited a color change at depth, but no odor was noted. Consequently, this sample was analyzed for target metals common to paint sludge/waste. This analysis was conducted using the standard EPA approved Extraction Procedure (EP) toxicity leachate methodology.

The sample from test pit TP3 exhibited a paint sludge/waste-like odor. As the EP toxicity test is not applicable to aromatic compounds, the Toxicity Characteristic Leaching Procedure (TCLP) was selected as the test method. At the time of the investigation this method was typically utilized to :

- 1. to aid in waste characterization for disposal, -
- 2. as an accepted EPA method for delisting wastes,

in evaluating adherence to applicable EPA land disposal restrictions and
 in determining the mobility of organics in soil media.

The TCLP method was recently adopted by EPA to replace the EP method.

Table 2.8 provides a summary of the analytical results of detected parameters for leachate analysis from test pits TP3 and TP8.

The sample from TP3 was collected from a sand seam that exhibited a strong paint waste-like odor. The strong paint waste-like odor suggests migration from the adjacent fill material. The flash point of a sample collected from TP3 was reported to be 140°F. The flash point for determining ignitability defined by RCRA regulations of less than 140°F does not apply since the waste is not a liquid.

A sample from TP8 was leached and analyzed for the EP Toxicity metals. All results were well within criteria values as indicated on Table 2.8. Thus, the material would not be considered a hazardous waste under USEPA or MPCA hazardous waste regulations.

Organic results reported above detection methods in the sample leachate for TP3 are presented in Table 2.9. The sample from Test Pit 3

# **TABLE 2.8**

# SUMMARY OF DETECTED INORGANIC PARAMETERS AND SAMPLE CHARACTERISTICS FROM TEST PITS - SITE C

|                           | Leachate Criteria | Test Pit 3<br>(TP3)** | Test Pit 8<br>(TP8)** |
|---------------------------|-------------------|-----------------------|-----------------------|
| Arsenic (µg/l)            | 5,000             | 10                    | ND                    |
| Barium (mg/l)             | 100               | 1.5                   | 0.2                   |
| Cadmium (mg/l)            | 1.0               | ND                    | ND                    |
| Copper (mg/l)             | 100*              | 0.02                  | ND                    |
| Lead (mg/l)               | 5.0               | 0.3                   | ND                    |
| Zinc (mg/l)               | 500*              | 0.92                  | 0.03                  |
| Flash Point (°F)          | NA                | 140                   | >200                  |
| Sulfide, Reactive (mg/kg) | NA                | ND                    | 61                    |
| рН                        | NA                | 7.6                   | 7.9                   |

#### Notes:

NA - Not Applicable ND - Not Detected

State of Michigan Leachate Criteria Only
 TP3 sample was analyzed using TCLP, whereas the TP8 sample was analyzed using EPA Toxicity Leachate Procedure

# **TABLE 2.9**

# SUMMARY OF DETECTED ORGANIC PARAMETERS (µg/l) FROM TEST PITS - SITE C

|               | Test Pit 3<br>(TP3)* |
|---------------|----------------------|
| Toluene       | 180                  |
| Ethyl Benzene | 85                   |
| M-Xylene      | 2,600                |
| O & P Xylene  | 3,700                |

Note:

\* - TP3 sample was analyzed using TCLP.

MN-COMP 0044619

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 27 of 41

was extracted by the TCLP method. The sample from Test Pit 8 was analyzed for total VOC and all results were reported as below method detection limits. Therefore, no results are tabulated.

## Cleanup and Landscaping of the Site C Area

During the spring of 1990, aesthetic beautification and landscaping was completed on a portion of the south face of the Site C fill area. The work was performed after the completion of the above investigation and material characterization and in accordance with the proposed scope of work letter of March 2, 1990. An area was delineated by the landscaping contractor with input from Ford and the MPCA. Brush, several trees, empty drums, drum parts and miscellaneous rubble were cleared from the defined area and used as fill. Approximately 2,000 cubic yards of clay soil plus 500 cubic yards of topsoil was placed over the sloped face and then seeded for aesthetic and erosion control purposes.

## Site C Evaluation Summary

Site C is comprised of fill and rubble material deposited over naturally occurring sands and gravels which were deposited by the Mississippi River. Groundwater under Site C flows towards the river and is influenced by the river. The data gathered from the existing monitoring wells represents site conditions in the immediate area under Site C.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 28 of 41

Original base grade elevations under the fill pile were on the order of 710 to 720 feet AMSL. Presently, the maximum elevation of the fill area is over 770 feet AMSL, indicating that there is up to 60 feet of fill material present. Near the steam plant access road, paint sludges/waste are present in the lower half of the fill area. Small areas of exposed paint sludges/wastes on the steep bank suggest that the paint sludges/wastes are on the order of 25 feet thick.

A footprint of the area containing paint sludges/wastes can be composited from the 1958 and 1962 limits of fill. Assuming that there is 25 feet of waste and related fill over this area, there is a volume of approximately 30,000 cubic yards of waste material believed to be non-hazardous industrial waste based on the analyses conducted.

The paint sludges/wastes are buried beneath approximately 30 feet of rubble fill including large blocks of reinforced concrete. Exposing the paint sludges/wastes and related material would require removal of a concrete parking lot and excavation of approximately 50,000 cubic yards of fill. Any such excavation would be difficult and costly due to the limited access to the Site, the need to use remote temporary fill storage, the numerous oversize pieces of concrete in the material and disruption to plant operations.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 29 of 41

Existing 8 inch concrete pavement covers most of the waste fill and limits infiltration through this material. The low concentration of VOC in groundwater under the Site is not expected to produce a measurable effect in the Mississippi River.

The following summarizes the groundwater and chemical data evaluation for Site C:

- The monitoring well network (wells B1, B3, B5 and B6) at Site C is sufficient to determine that the groundwater flow direction under Site C flows predominantly west towards the Mississippi River.
- Groundwater chemical data gathered from this monitoring represents Site conditions in the immediate area under Site C.
- Chemical data from samples taken at the river indicate that Site C has had no impact on the river.
- Data quality assessments were conducted of the samples collected during the five sampling rounds conducted by CRA (1989/1990). With minor exceptions, the data was found to be acceptable to assess analyte concentrations within groundwater and surface water at the Site.

- Concentrations for the dissolved metals (cadmium, zinc, copper, nickel, chromium and barium) were either below method detection limits or were low and typically acceptable for naturally occurring groundwater.
- The groundwater results from 1989 and 1990 are inconsistent from location to location and are not repeated in successive monitoring events at any one location. These inconsistent results indicate that any VOC release associated with the Site is insignificant. These results are similar in terms of their low levels to those found by Ford during 1982 monitoring at these wells.
- The metals concentrations at all sampling locations are either not detected or at levels well below any concentration of concern.
- Barium was the only analyte found above method detection limits in the river samples taken during 1990 sampling and was found at equal concentrations upstream and downstream of the Site.
- Results for June 1990 sampling for zinc and April 1990 sampling for copper were qualified as non-detect due to the presence of the analyte in the method blank.
- Chemical data from the two rounds of sampling during 1990 on wells B1, B3 and B6 indicate that wells B1 and B3 had no VOCs present during either sampling event.

- Well B6 had methylene chloride detected at  $1.4 \,\mu g/l$  during the April 1990 sampling. This value was qualified as non-detect due to the presence of this analyte in the method blank.
- Chloroform was detected at well B6 during the April 1990 sampling event at a concentration of 3.9 µg/l but was not detected during the June 1990 event.
  Well B6 was downgradient of the Site during the April sampling event. Well B6 was not downgradient during the June sampling event, however, well B3 was. No VOCs were present in well B3 in either sampling event.
- During the June 1990 sampling, two analytes, *cis*-1,2-dichloroethylene and trichloroetheylnee, were detected at well B6 at concentrations of 5.5 and 0.5  $\mu g/l$ , respectively. However, neither compound was detected during the earlier April 1990 event when B6 was more downgradient of the Site.
- Review of all 1990 sampling data from both rounds indicates no analyte concentration at or near any applicable standards often used for comparison of water quality and purity (e.g. MCLs and RALs). All results for this supplemental 1990 monitoring were found well below RALs and MCLs.

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 32 of 41

#### 2.8 UST SITE - BACKGROUND

## Chronology

Prior to the 1970s, the UST Site was an open area located to the southeast of the former test track. Before the tanks were installed the UST Site was not used for waste handling or activities related to disposal. The location of the waste solvent tanks is shown on Figure 2.1. The more detailed UST Site Plan is enclosed under separate cover.

During the fall of 1984, Ford constructed the UST Site as part of its "Ranger" paint facility expansion, initially to store paints, resin and new solvent brought to the Ford Plant in bulk transport trucks. The double walled, corrosion protected, steel tanks were installed on 24 inch thick concrete pads. However, the UST facility was never used for this purpose and in 1987, Ford decided to utilize the facility to store waste or spent solvent. At that time it was decided that only two (2) of the four (4) tanks (the south two tanks) would be utilized. These tanks are designated as tanks #1 and #2. The fill lines were modified by reversing the check valve system and the installation of quick disconnect fittings for transport truck hook up. Tank #1 was put into use in 1987. Tank #2 was put into use in 1988. Both tanks are operated in conformance with 40 CFR 264, Subpart J.

# Geotechnical Information and Construction Plans

Information was located in Ford's files and compiled to review available data for the UST Site area regarding:

- Site geology,
- excavation and filling that has occurred in the Site area,
- the physical construction of the area facilities,
- the location maps and types of utilities present,
- geotechnical soil boring logs,
- topographical maps and Site grading,
- construction drawings for UST Site facility,
- construction drawings for adjacent hazardous waste storage area.

For this purpose the following information was located and

utilized.

| Drawings Title or Item Description | Drawing # | Date                |
|------------------------------------|-----------|---------------------|
| Partial Site Grading Plan          | CE-2      | 1983 (revised 1985) |
| Topographical Survey Partial       | TS-3      | 1983                |
| Topographical Survey Partial       | TS-4      | 1983                |
| Solvent Tank Farm Layout           | M-50      | 1983 (revised 1985) |
|                                    |           |                     |

## MN-COMP 0044626

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 34 of 41

| Solvent Tank Farm Cathodic Protection | M-51 | 1983 (revised 1985) |
|---------------------------------------|------|---------------------|
| Solvent Tank Farm Cathodic Protection | M-52 | 1983 (revised 1985) |
| Key Plan Sections                     | M-53 | 1984 (revised 1985) |

This information is enclosed under a separate cover.

A geotechnical investigation was performed for the hazardous waste storage area in 1984. The report and borehole logs for the investigation are provided in Appendix F.

It should be noted that no information was located regarding the propane storage tank area.

**Description of System** 

An illustration of the UST Site facility is presented on the UST Site Plan which is provided under separate cover. Further detail is provided by Ford Plans M-50, M-51, M-52 and CE-2. The facility consists of the following elements:

- four tanks of double wall construction type, 10,000 gallon capacity each.
   Tanks are 8' 0" x 26' 7";
- related fill, vent, vapor recovery and pump out pipe lines, an access
   pipe/manhole hatch is also provided, as well as related valves and gauges;
- each tank was also coated with an asphalt-based coating prior to installation;

MN-COMP 0044626.01

- corrosion prevention is provided by cathodic protection on all tanks, lines and associate fittings;
- 5. check valves on pump out lines;
- 6. catch basins located at the pump out line access;
- the size of the drain tile line is 4-inch, perforated pipe, sloped in the direction of sump;
- 8. vacuum test fittings;
- 9. tanks sit on a concrete pad of 48 feet x 30 feet and are anchored to the pad;
- 10. the concrete manhole sump is located at the north end of the drain tile system.

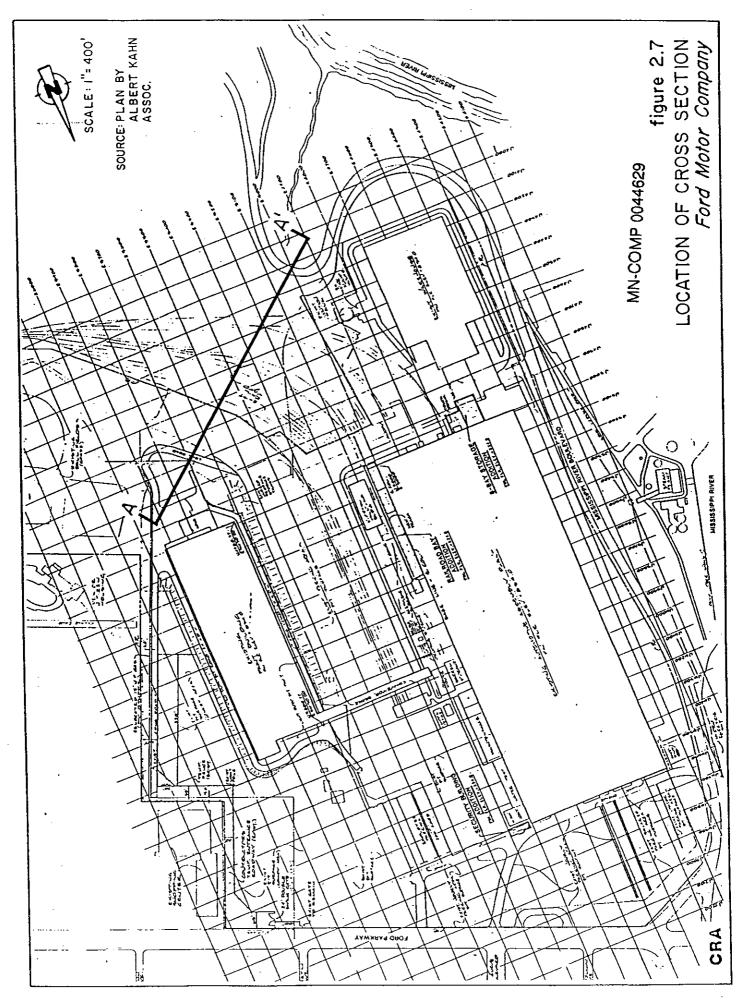
## UST Site Geology and Hydrogeology

#### <u>Geology</u>

The UST Site is located approximately five-eighths of a mile east of the Mississippi River and is situated at an approximate elevation of 850 feet AMSL on a terrace which flanks the present river gorge. The UST Site area exhibits two of these terrace features, one at approximately 850 feet AMSL and one at approximately 830 feet AMSL. The river elevation is approximately 690 feet AMSL. The UST Site's position on the terrace is near the slope (terrace scarp) which separates the 850 foot terrace from the 830 foot terrace.

Boring logs were reviewed that were obtained during the construction of the present hazardous waste storage area located adjacent to the MN-COMP 0044627

UST Site. These logs revealed that the terrace alluvium consists of primarily medium to coarse grained sand and gravel. Bedrock was encountered between 4 and 6 feet BGS.


The bedrock at the UST Site consists of weathered Decorah Shale. Geologic maps of the Site area, supported by past work performed by CRA, indicate that the shale is partially to mostly eroded away just to the west of the UST Site. Underlying the Decorah Shale is the Platteville Formation which is underlain by the Glenwood Shale.

Based on a review of the UST construction plans and previously noted boring logs, it appears that the excavation which houses the tank farm is completed several feet into the Decorah shale. The bottom of the excavation lies at approximately 12 feet BGS which in effect has created a "basin" up to 6 feet in depth in the top of the shale unit. Hereafter this excavation will be referred to as the UST tank basin.


Figures 2.7 and 2.8 present a location of cross section and a geologic cross section, respectively, which represent the interrelationships of: the UST Site and tank basin, terrace features, surficial alluvium, Decorah Shale, Platteville Formation and Glenwood Shale.

Hydrogeology

The previously completed borings reveal that groundwater exists below the UST Site within the alluvial sediment, perched above the



2853-30/03/90-M



1

2853-30/03/90-M

## Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 37 of 41

Decorah Shale. The alluvial sand and gravel, in general, will readily transmit groundwater. Hydrogeologic literature describes the Decorah Shale as a confining unit. Hydraulic conductivities within the Decorah are low. The underlying Platteville Formation contains groundwater within its fracture systems. This groundwater discharges at the bluff which lines the Mississippi River gorge.

Of particular importance is the relationship of the groundwater perched above the Decorah shale to the UST Site. Some basic assumptions can be made regarding groundwater flow. It is expected that the perched groundwater will flow horizontally along the Decorah Shale towards the lower terrace feature to the southwest. The volume of groundwater will fluctuate significantly in response to rainfall and recharge.

The UST Site could in itself impose an influence on perched groundwater occurrence. Surface runoff is presently draining into the UST tank basin. This will in effect recharge the aquifer on a very local level. There is presently a tile drainage system which directs the basin's water into a sump. It is hypothesized that groundwater could also flow horizontally, unimpeded, through the tank basin. Additionally, pumping in the sump could effect a drawdown in the shallow groundwater system.

Additional influences on UST Site groundwater characteristics may be affected by storm sewer lines and utility trenching.

MN-COMP 0044631

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 38 of 41

# Waste Characterization

# Solvent Waste Stored in Tanks

Since its initial use, the UST Site has been used only for waste solvent storage. The same types of solvents have always been stored in both the tanks. These spent solvents are primarily generated from auto body painting operations. The following provides a description of materials that when used become part of this waste stream.

<u>Paint</u>

Ford uses a variety of paints in the paint building operations including various colors of top coat paint and clear coat.

# Solvent

Ford presently uses a variety of solvents in the painting/manufacturing operations. Some of these, solvents are listed RCRA wastes when spent. The major solvent components are:

- xylene,

- toluene,

methyl isobutyl ketone (MIBK),

- butanol,

| MN-COMP 0044632 |    |
|-----------------|----|
| (               | -' |

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 39 of 41

**CONESTOGA-ROVERS & ASSOCIATES** 

- Cellosolve 100 (Aromatic 100), a solvent blend,
- Cellosolve 150 (Aromatic 150), a solvent blend.

The waste solvent material stored at the UST Site has been tested periodically in order to characterize it for waste disposal and recycling. The waste solvent has been characterized as EPA waste number F005 under RCRA regulations. Appendix G provides a sample analysis for a first load of solvent shipped from the tanks. This analysis indicates the following characteristics:

percent each solvent/organic
45 percent xylene
13.5 percent MIBK
12.5 percent toluene

- waste density: 0.882

Metals analysis was not conducted on the sample.

The two waste streams stored in these tanks are recycled for reuse by Ford. A quantity of approximately 150,000 gallons is typically generated per year.

Soil Samples Taken During Investigative Excavation

On November 6, 1989, Ford excavated an area at the UST Site in an effort to determine whether a release may have occurred in the vicinity

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 40 of 41

of these tanks. This followed an October 26, 1989, meeting with Minnesota Pollution Control Agency (MPCA) at which the possibility of a solvent release was discussed. Following this meeting, Ford hired a contractor to excavate the area near tanks #1 and #2. The MPCA was notified and was present for the work. The excavation proceeded to approximately 4 feet BGS at which point the very top west end of tank #1 was exposed, as was the access pump out and vapor vent piping. At this point, the odor level, apparently solvent vapors, was such that following consultation with the MPCA, Ford discontinued excavating. The hole was left open to the point that had been accomplished and the materials that had been excavated were placed on a plastic tarp and covered for storage until a determination was made as to whether further excavation would occur.

During excavation one sample was taken by Ford for laboratory analysis. This sample was obtained from the area near the top of tank #1. The sample was submitted by Ford to Pace Laboratories Inc. of Golden Valley, Minnesota (Pace), and analyzed for MDH List 465C of Volatile Organic Compounds (VOCs). No total metals analysis was conducted. Results were received by Ford and are provided as Appendix H. The results indicate concentrations above method detection limits for xylenes, ethylbenzene, toluene, methylene chloride and 1,1,2-trichlorotrifluoroethane (in order of concentration found from greatest to least).

Based on the observation of stained ground cover prior to excavation and the proximity to the pump stations used for transport truck tank unloading (see UST Site Plan), it is possible that the presence of solvent materials is likely due to transfer practices from the tank to the transport vehicle. The

Section No. 2.0 Revision No. 1 Date: 2/11/91 Page 41 of 41

tanks themselves are not believed to be a source of release as Ford has tested the intersitional zones of tanks #1 and #2 by volume and found no evidence of leakage. Daily recording of tank levels also indicates that no leakage has occurred.

MN-COMP 0044635

Section No. 3.0 Revision No. 1 Date: 2/11/91 Page 1 of 1

# 3.0 SUMMARY OF REMEDIATION TECHNOLOGIES

Table 3.1 summarizes technologies which will be considered and identifies the technologies which may be used in the development of remedial alternatives.

Based on information obtained during the RI, determination will be made as to the need for and type of treatability studies to be conducted. The studies will consider appropriate treatment technology for the Site from the list provided on Table 3.1.

MN-COMP 0044636

#### TABLE 3.1

#### SUMMARY OF REMEDIAL ACTION TECHNOLOGIES FORD RI/FS WORK PLAN

#### Remedial Action Technology

- A. <u>Soil Remediation</u>
- A.1 Deed Restriction
- A.2 Site Cap or Cover
- A.3 Removal (excavation)
- A.4 Consolidation
- A.5 Disposal in Industrial Waste/ Hazardous Waste (RCRA) Landfill (On-Site or Off-Site)
- A.6 Soil Treatment
  - Incineration (On-Site or Off-Site)
  - Advanced Electric Reactor
  - Bioremediation
  - Fixation/Solidification
  - Soil Washing
  - Soil Vapor Extraction (low temperature soil desorption)
  - Vitrification

## Comments

Restricts future land use of area affected by contamination.

Reduction of water infiltration, prevents direct contact and exposure of contaminants at the surface.

May be cost prohibitive but removes source of contamination.

Permits consolidation of Site materials for other treatment options.

Secures waste and minimizes future migration of contaminants, may be restricted by Land Disposal Regulations.

Provides destruction of most organic wastes and can be conducted on or off Site. Would require additional handling of decontaminated soil/ash after incineration.

Practical successes not demonstrated by the manufacturer.

Some compounds are not easily biodegradable. VOCs would be released to atmosphere.

Limited to fixation of contaminated soil containing inorganics. Could be used to fix residual metals within incinerated soil.

Experimental technology. Difficult to maintain oxygen and nutrient levels in soil.

Removes.volatile organic waste constituents and promotes biodegradation of non-volatiles.

Cost prohibitive, not proven technology, will not immobilize VOCs.

MN-COMP 0044637

## TABLE 3.1 (CONT'D)

## SUMMARY OF REMEDIAL ACTION TECHNOLOGIES FORD RI/FS WORK PLAN

|            | Remedial Action Technology          | Comments                                                                                                                                                                   |
|------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B.         | Groundwater Remediation             |                                                                                                                                                                            |
| B.1        | - Monitoring                        | Provides determination of ongoing nature, extent and trends.                                                                                                               |
| B.2        | - Deed Restriction                  | Restricts use of groundwater in area of contamination.                                                                                                                     |
| B.3        | - Cap                               | Reduction of surface water infiltration potentially reduces long term mass loading to aquifer.                                                                             |
| B.4        | - Physical Containment              | Provides physical barrier to prevent future migration of contaminants.                                                                                                     |
| B.5        | - Hydraulic Containment/Collection  |                                                                                                                                                                            |
|            | - Extraction Wells                  | Collects groundwater and mitigates future migration. Would reduce levels of contamination over time.                                                                       |
|            | - Extraction Wells with Reinjection | Reinjection not normally allowed in Minnesota.                                                                                                                             |
|            | - Subsurface Drain                  | Collects groundwater and prevents future migration. Limited to depths of 40 feet or less.                                                                                  |
| <b>B.6</b> | Treatment                           |                                                                                                                                                                            |
|            | - Biological                        | Difficult to implement and maintain on-Site.<br>Off-Site treatment at Public Owned Treatment<br>Works (POTW) suitable.                                                     |
|            | - Activated Carbon                  | Effective in treating large array of organic<br>contaminants. Ineffective for some<br>compounds such as acetone. May require pre<br>or post treatment by other technology. |
|            | - Air Stripping                     | Effective in treating volatile compounds. May require additional polishing by other technology for surface water discharge.                                                |

- Aeration

Effective in removal of volatile compounds. Low maintenance where scaling a concern.

MN-COMP 0044638

# TABLE 3.1 (CONT'D)

# SUMMARY OF REMEDIAL ACTION TECHNOLOGIES FORD RI/FS WORK PLAN

|     | Remedial Action Technology     | Comments                                                                                                     |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------|
|     | - Oxidation                    | High cost of oxidizing agents when used alone. Not effective in treating VOCs without ultraviolet radiation. |
|     | - Ion Exchange                 | Used to treat inorganic wastewater (i.e. metals).                                                            |
|     | - Reverse Osmosis              | Used to treat inorganic wastes (i.e. metals.).                                                               |
|     | - Solar Evaporation            | Would cause VOC releases to atmosphere.<br>Ineffective when humid.                                           |
|     | - Spray Evaporation            | Would cause VOC release to atmosphere.<br>Ineffective when humid.                                            |
|     | - Discharge to POTW            | Would be subject to POTW's operating permit.<br>Site contaminants are readily treated by<br>POTW.            |
|     | - Ultraviolet Oxidation        | Capable of treating most organic compounds.<br>Requires pretreatment for iron removal.                       |
|     | - Biological/Activated Carbon  | High cost. Normally applied when high level of organic contaminants present.                                 |
| B.7 | Treatment Groundwater Disposal |                                                                                                              |
|     | - Reinjection/Recharge         | Not normally allowed in Minnesota.                                                                           |
|     | - Discharge to Surface Water   | Would require NPDES permit and high efficiency treatment.                                                    |
|     | - Discharge to POTW            | Would be subject to POTW's operating permit.                                                                 |
|     | - Discharge to RCRA Facility   | Logistics of transporting treated water not feasible.                                                        |
| B.8 | Alternate Water Supply         | Not expected to apply as area serviced by city water system.                                                 |
|     |                                | - mark                                                                                                       |

MN-COMP 0044639

**CONESTOGA-ROVERS & ASSOCIATES** 

.

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 1 of 25

## 4.0 SITE INVESTIGATION PLAN

4.1 OBJECTIVES

The goal of this RI/FS is to gather the data necessary to characterize the nature and extent of potential residual contamination resulting from past activities at the Ford Site. The information compiled will be used to:

- conduct a Baseline Risk Assessment to evaluate potential impact on public health and well being;
- 2) develop potential remedial alternatives for the Site, if needed;
- determine what additional data is needed, if any, to fully characterize the site.

The specific tasks to achieve these objectives are:

- to determine the nature and extent of potential residual soil contamination attributable to past Site activities;
- 2) to characterize Site geologic conditions;

- to characterize the Site hydrogeologic conditions including horizontal and vertical groundwater flow directions and velocities in both overburden and bedrock;
- to determine the nature and extent of groundwater contamination in the Site overburden and bedrock, if any;
- 5) to determine if local surface water is impacted by past Site activities.

## 4.2 SITE AREA ORGANIZATION

As discussed previously in Section 2.0 (Site Background Information and Past History), four potential source areas have been identified at the Ford Site. Three of these areas, the UST Site, Site A and Site B are located in the main plant area and encompass the majority of the proposed field activities. The scope of field activities at Site C, located adjacent to the Mississippi River, involves the continued monitoring of chemical and hydrogeologic conditions using the existing monitoring well network. Figure 1.2 shows the locations of these potential source areas.

For organizational purposes, a discussion of the scope of work and field activities to be performed at each potential source area will be divided into three sections; the UST Site, Sites A and B (combined), and Site C. The segregation of these potential source areas into separate study units is based

MN-COMP 0044641

on differences in waste disposal history and hydrogeologic setting as outlined in Section 2 and the potential of differing remedial response actions at each source area site.

The following sections discuss the scope of work and field activities which will be performed at each study area.

# 4.3 UST SITE INVESTIGATION WORK PLAN

4.3.1 Overview of Scope of Work

Based on: the possible presence of waste solvent in the UST Site drain tile system as discussed in Section 2.8; the presence of solvent materials in the soil above tanks #1 and #2; the possible migration of solvent materials outside the UST tank basin, the following scope of work is proposed to investigate Site conditions involving soil and groundwater in the vicinity of the UST.

- Analysis of solvent waste stream in tanks #1 and #2 for metals and further VOC characterization;
- The use of soil gas sampling to investigate soil gas conditions;
- Sample soils for chemical analyses;
- Removal of the four USTs;
- The installation of three groundwater monitoring wells;

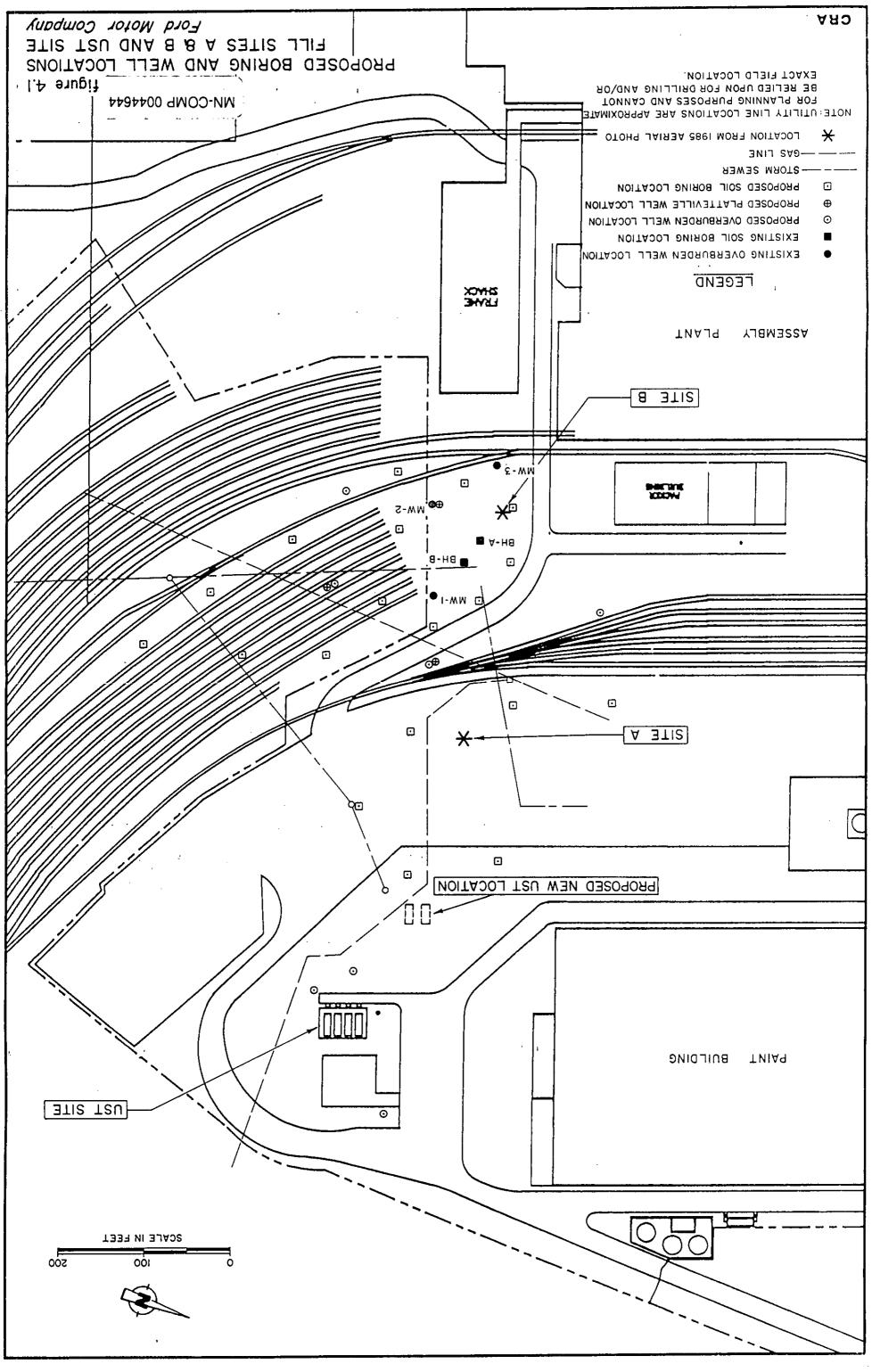
CONESTOGA-ROVERS & ASSOCIATES

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 4 of 25

Water level monitoring;

- Groundwater sampling of the three new wells and the drain tile sump for metals and VOC.

This work is proposed to evaluate:


- groundwater flow direction,
- hydrogeologic properties,
- assess groundwater quality in the vicinity of the UST;
- assess soil conditions in the vicinity of the UST.

Ford will be removing the four USTs as part of a separate project to relocate the waste solvent storage facility and provide modifications prompted by new federal RCRA UST regulations. As part of this relocation project, Ford will be utilizing two of the four USTs at a new installation to be constructed at the location noted on Figure 4.1. To the extent possible, the sump and drain tile system will be left intact at the existing location to allow for their use in the UST site investigation. Table 4.1 summarizes the scope of field and related monitoring/analytical work proposed.

## 4.3.2 Soil Gas Survey

A soil gas survey will be conducted to determine soil gas organic vapor concentrations that may indicate the presence of VOC in the soil. Soil gas monitoring will be conducted at approximately 12 locations (i.e. final

, MN-COMP 0044643



| -A -     |
|----------|
|          |
| <b>T</b> |
|          |
|          |
| æ        |
| _        |
| _        |
| -        |

# SCOPE OF WORK ANALYTICAL SUMMARY

|                      |                             |                                   |                                 | Number of                             |                            | Quality Ass             | urance Samples                   |                                     |             |           |       |
|----------------------|-----------------------------|-----------------------------------|---------------------------------|---------------------------------------|----------------------------|-------------------------|----------------------------------|-------------------------------------|-------------|-----------|-------|
| <u>Site/Location</u> | Matrix                      | Field<br><u>Parameters</u>        | Analytical<br><u>Parameters</u> | Investigative<br>Samples <sup>1</sup> | Trip<br>Blank <sup>2</sup> | Rinsate<br>Blank        | Rinsate Field<br>Blank Duplicate | MS/MSD<br><u>Sample<sup>3</sup></u> | Subtotal    | Frequency | Total |
| UST                  | Soil, Borings               | Soil Gạs                          | VOC                             | r)                                    | 0                          | 1                       | -                                | ÷                                   | S           | 1         | ŝ     |
|                      | Groundwater                 | Conductivity<br>pH<br>Temperature | VOC<br>Metals                   | <b>т т</b>                            | 1 0                        | <b>5</b> 71 <b>5</b> 71 |                                  |                                     | r 4         | 7 7       | 12    |
|                      | Sump                        |                                   | VOC                             | 1                                     | 1                          | C                       | o                                | 0                                   | 2           | 2         | 4     |
|                      | Water Discharge Temperature | Temperature<br>pH                 | VOC<br>Metals                   |                                       | 0 1                        | 0 0                     |                                  |                                     | <b>4</b> 6) | ы<br>Ч    | 80 VD |
| A and B              | Soil, Borings               | Soil Gas                          | VOC                             | ង                                     | 0                          | 2                       | 2                                | 2                                   | ନ୍ଧ         | 1         | କ୍ଷ   |
|                      | Groundwater                 | Conductivity<br>pH<br>Temperature | VOC                             | 10                                    | -                          | -                       | F.                               | -                                   | 14          | 7         | 28    |
|                      | Surface Water               | pH<br>Temperature                 | voc                             | ю                                     |                            | 0                       | F                                |                                     | •           | 7         | 12    |

<sup>1</sup>Exact number of investigative samples may vary fro the listed.

<sup>2</sup>Trip blank samples may be consolidated.

 $^{3}$ Triple normal sample volume will be collected.

<sup>4</sup>Number of sampling events.

MN-COMP 0044645

<u>\_\_\_\_\_</u>

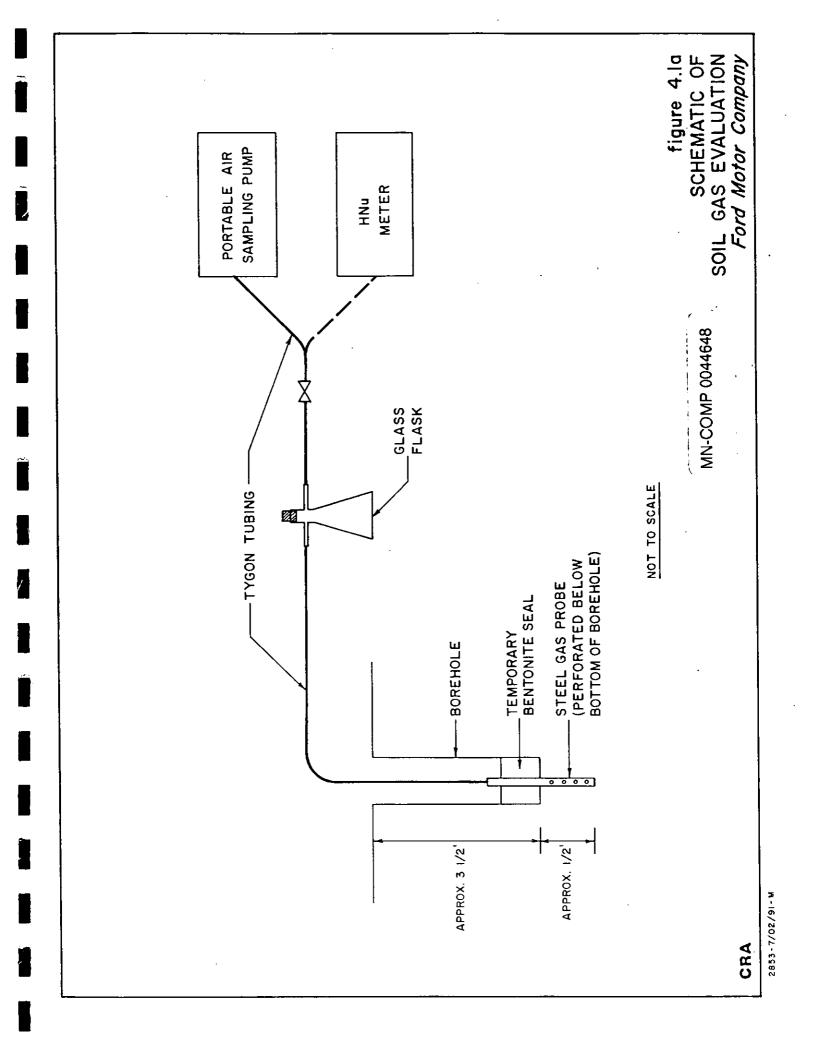
. ,

- an augered borehole will be drilled to a depth of approximately 3-1/2 feet into the ground at each test location;
- a steel gas probe will be driven 1/2 foot through the bottom of the borehole such that the perforated portion of the probe is completely below the bottom of the borehole. A temporary bentonite seal will then be placed at the bottom of the borehole and around the probe;
- a pump will then be used to draw a soil gas sample out of the probe and into a glass vessel. The flexible tubing leading to (i.e. out of) the glass vessel will than be clamped or valved off to trap the gas sample in the vessel;
- 4. the tygon tubing leading to the air pump will be removed from the pump and connected to the inlet of the HNu probe. The contents of the glass vessel will then be evaluated using an HNu-tpye photoionization detector with 11.7 EV probe calibrated to benzene to determine relative concentrations of gas present;
- 5. the borehole will then be backfilled with cuttings;

MN-COMP 0044646

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 6 of 25

6. as a quality assurance procedure, ambient air (background) readings will be taken prior to and after each sampling location.


Figure 4.1a presents a schematic of the equipment/method to be used for soil gas evaluation. Where feasible, soil gas monitoring will be conducted within the utility line excavations which radiate from the UST area. The hazard of drilling near the utility lines may, however, prohibit this work at these locations.

The proposed monitoring well location for the UST Site (see Sections 4.3.3 through 4.3.4) will also serve as soil gas sampling locations in order to correlate soil gas field data to laboratory analytical data and evaluate the effectiveness of the soil gas sampling.

# 4.3.3 Soil Borings/Sampling

Three soil borings will be conducted using hollow stem auger methods. These soil borings will then be completed as monitoring wells. Locations are presented on UST Site Plan and Figure 4.1, and may be modified in the field due to accessibility and the presence of utilities. The borehole will be advanced using a minimum 4-1/4 inch I.D. hollow stem auger. Continuous undisturbed soil samples will be taken by split barrel sampling to define the

MN-COMP 0044647



Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 7 of 25

subsurface soil stratigraphy. All boreholes are expected to be extended a minimum of 2 feet into the water table; the water table is expected to be approximately four to eight feet below grade.

At each monitoring well boring location, continuous undisturbed soil samples will be collected. Sampling will be conducted in accordance with ASTM split barrel sampling methods and EPA SW846 chemical sampling methods. Soil sampling procedures are detailed in Section 6.2.1.

Soil samples will be sent under chain-of-custody procedures and submitted for analysis of VOCs (EPA Method 8010/8020). One sample per boring will be submitted for chemical analysis.

## 4.3.4 Monitoring Well Installation

Based on Site geologic and hydrogeologic conditions, three monitoring well locations have been selected. The proposed well locations are shown on Figure 4.1 and the UST Site Plan, which is enclosed under separate cover. As described previously, it is expected that groundwater flow direction will be generally towards the southwest. Monitoring wells MWT1 and MWT2 will be placed to intercept groundwater flow downgradient from the UST tank basin. The proposed well MWT3 is located northeast of the UST tank basin for

two purposes: to ascertain background groundwater quality and to provide adequate spacing of wells to maximize the evaluation of groundwater flow conditions. These well installations will require a permit from MDH.

The monitoring wells will be constructed according to the procedure provided in Section 6.2.2.

Following installation, the three new wells would be surveyed to the common on-site reference datum (Nation Geodetic Vertical Datum of 1929, NGVD) to establish groundwater elevations.

4.3.5 Groundwater Elevations

Groundwater elevations will be measured to better define the groundwater flow direction under the UST Site. In addition, water levels will be obtained for the drain tile sump and existing monitoring wells placed west of the UST Site as part of the Site B area work. Further information will also be correlated regarding storm water drains in the immediate area to better evaluate their possible influence. Attempt will be made to establish water elevations within these storm sewers should water be present during times of nonprecipitation. Storm sewer lines in the area are indicated on Figure 4.1. A minimum of two complete rounds of water levels will be taken and groundwater flow directions will be calculated.

MN-COMP 0044650

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 9 of 25

### 4.3.6 Groundwater Sampling

Two rounds of groundwater samples will be collected from the three new groundwater monitoring wells and the drain tile sump. Prior to sampling, each monitoring well will be developed and stabilized as per Section 6.2 and allowed to set for one week prior to sampling.

The groundwater monitoring wells will be developed using a precleaned<sup>1</sup> stainless steel bailer until a silt-free condition exists, or until a maximum of 10 well volumes has been removed. During development pH, specific conductivity and temperature will be recorded as per Section 6.2.

Wells will be sampled one week after well development. Prior to sample collection, the well will be bailed to remove a minimum of three well volumes, or until the well bails dry. The sample from the sump will be obtained as representative as possible by the use of a "coliwasa" column sample method. Samples will be sent under chain-of-custody procedures and analyzed for the following parameters: VOCs and metals as provided in Section 6.0.

Each sampling round will include one duplicate and one field blank sample as a quality control check.

MN-COMP 0044651

<sup>1</sup>Methanol/hexane/methanol followed by distilled water rinse.

# 4.3.7 Interim Response Action (IRA) Inspection and Sump Sampling Plan

The UST facility will be relocated as earlier noted. This new facility will be operated, maintained and inspected in accordance with applicable UST regulations. Given the more immediate need to address the inspection of the UST Site drain tile and sump, the following IRA is proposed.

# 4.3.7.1 <u>Pumping Operations</u>

It is proposed that a pump and discharge line be used to pump down the drain tile system. The discharge would be routed to the two filtering basins used for process water recycling/setting with a total capacity of 1.5 million gallons located beneath the paint building. A fiberglass pipeline to the building exists and will be utilized.

Hook up of the line would include use of a pump within the manhole and back flow prevention on the discharge line. A schematic of the discharge/pump out system is presented on the UST Plan.

In addition, diversion of storm water runoff will be evaluated to prohibit runoff from areas adjacent to the UST tank basin from flowing to the basin area.

It is proposed that regardless of removal of the USTs, the flow to the sump should be sampled and analyzed every two months during the

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 11 of 25

RI to evaluate the water quality. This material is likely to contain the same constituents as the wastewater from paint spray booths. As a result, it is not necessary to evaluate water quality each time pumping is conducted. The sample for analysis will be drained from the discharge line via a sampling port (to be installed). To provide the most representative sample, a composite will be made by taking a sample at the beginning, middle and end of the pumping cycle. This will be done by manually operating the pump and observing the operation during the entire cycle. The collected sample will be analyzed for VOCs and metals as provided in Section 6.0. These pumping operations will be implemented for the period of the RI field work, after which they will be reevaluated. A key factor in this will be whether the sump and drain tile system are still present after the tank removal.

# 4.3.7.2 Sump Inspection

Assuming the sump and drain tile will be left in place, they will be inspected on a monthly basis and after significant precipitation events. The pumping system will be started to lower the liquid level in the manhole and drain tile system for inspection. The manhole area will then be visually inspected from surface level (without confined space entry) using a strong light. The inspection will help identify:

sump water levels,

presence of potential solvent waste in sump water,

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 12 of 25

- sediment buildup in sump,
- evidence of pipe blockage.

A reference elevation at the lip of the manhole will be established to allow measurement of the water elevation with the manhole sump and the elevation of any sediment build up which may be present.

Inspections of the facility will be conducted on at least a monthly basis during the RI field work. After the RI field work, the frequency of inspection will be reassessed. The results of each inspection will be recorded on an inspection log sheet. Information on the log sheets will include the inspector's name and title, date and time of inspection, item of inspection, observations, the date and whether pumping occurred during inspection.

An inspection log will be kept with the RI/FS project files. Records of inspections will be kept under the terms of the records retention policy provided in Section 7.2.

# 4.3.8 Reporting

The final UST Site report will be included in the final RI report and present the following information:

- 1. Background of the Site,
- 2 Tank contents and history,

| MN-COMP 0044654                       | i  |
|---------------------------------------|----|
| · · · · · · · · · · · · · · · · · · · | 'ر |

- 3. Results of all sampling and monitoring conducted, including inspection logs completed to date,
- 4. Site map showing all sampling locations (i.e. borings, monitoring wells, etc.),
- 5. Technical information on geology and hydrogeology of the Site area,
- 6. Technical information on surface waters runoff of the area, if any,
- 7. Building information on structures near the Site area,
- 8. Information and locations of utilities in the area,
- 9. Information on any free product or vapors,
- 10. Interim control measures proposed underway and/or completed,
- 11. Technical discussion, conclusions and recommendations, and
- 12. All associated sampling and analytical protocols.

Following completion of the report, the need for additional interim response action will be assessed.

### 4.4 SITES A AND B INVESTIGATION

Due to the proximity, similar waste disposal history and anticipated similar hydrogeologic setting, Sites A and B will be investigated under simultaneous programs of work.

**CONESTOGA-ROVERS & ASSOCIATES** 

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 14 of 25

### 4.4.1 Overview of Scope of Work

Based on the history of potential waste disposal at Sites A and B and the detection of contaminated soil and groundwater at Site B as outlined in Section 2.0, the following scope of work is proposed to characterize soil and groundwater chemical conditions and hydrogeologic conditions at Sites A and B:

- installation of boreholes to obtain soil samples for chemical and hydrogeologic analysis;
- 2. installation of overburden monitoring wells in selected soil boreholes;
- 3. installation of bedrock monitoring wells, collecting bedrock core;
- 4. collection of groundwater chemical data from monitoring wells;
- 5. collection of hydrogeologic data from monitoring wells;
- 6. collection of chemical data from surface water.

The following subsections detail the field activities associated with the above tasks. Table 4.1 summarizes the scope of field and related monitoring/analytical work proposed. Site A is considered to be entirely on Ford property. The scope of work for the investigation of Site B is separated into two sections, one for work to be performed on Ford property and one for work to be performed on Soo Line property.

**CONESTOGA-ROVERS & ASSOCIATES** 

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 15 of 25

Performance of the work proposed for the Soo Line property is contingent on Ford receiving access authorization from Soo Line. Ford will request MPCA assistance if efforts to obtain access are unsuccessful.

### 4.4.2 Soil Sample Collection

Soil samples will be collected to determine the extent and chemical characteristics of potentially contaminated soils and to obtain data for hydrogeologic interpretation. Samples will be collected for chemical analysis and geological classification continuously from the surface to the top of bedrock, expected to be from 10 to 15 feet BGS. One sample per boring will be submitted for chemical analysis. Details pertaining to the QA, analytical parameters, field protocols and field methods that will be used are described in Section 6.0 (QAPP).

### Ford Property

A minimum of 13 boreholes will be advanced at Sites A and B on Ford property. Borehole depths are expected to be from 10 to 15 feet BGS. Figure 4.1 shows the locations of these boreholes. Two of the borings will be completed as monitoring wells.

MN-COMP 0044657

The objective of this soil sampling program is to delineate the extent of potentially contaminated soils. Borehole locations were chosen based on our review of past work and historical aerial photographs which show areas of disturbance.

The objectives for soil sample locations chosen at Site B were to further delineate the extent of previously encountered contamination in BH A, BH B and MW-1. The proposed borings will be advanced to delineate the areal extent of potential contamination. Soil boring locations chosen at Site A are intended to provide adequate coverage of the disturbed area as shown in the 1985 aerial photograph. Site A is considered to be entirely on Ford property.

### Soo Line Property

A minimum of 10 boreholes will be advanced at Site B on Soo Line property. Borehole depths are expected to be from 10 to 15 feet BGS. Figure 4.1 shows the locations of these boreholes. Two of the borings will be completed as monitoring wells

The objective of the Soo Line soil sampling program is to delineate the extent of potentially contaminated soils. Borehole locations were chosen based on our review of past work and historical aerial photographs which show areas of disturbance.

MN-COMP 0044658

# 4.4.3 Overburden Monitoring Well Installations

4.4.3.1 Site A Wells

Three overburden monitoring wells will be installed at Site A on Ford property if soil contamination is discovered at Site A. The locations of these potential wells will be based on soil chemistry and geologic data obtained during the soils investigation phase of the Site A area. These monitoring wells will be placed to provide a thorough coverage of the Site A area shallow groundwater to intercept potentially impacted groundwater, if any, associated with contaminated soils.

Overburden monitoring well construction methods and field protocols are detailed in Section 6.2.2.

#### 4.4.3.2 Site B Wells

Overburden monitoring wells will be installed to characterize the chemical and hydrogeologic conditions of the shallow groundwater underlying Site B.

MN-COMP 0044659

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 18 of 25

Monitoring well placement will be based on both available data gathered from past studies and additional data gathered during the soils investigation. Figure 4.1 shows the approximate locations of the proposed monitoring wells.

### Ford Property - Site B Wells

Based on the chemical and hydrogeologic data available from the existing Site B monitoring wells (MW-1, MW-2 and MW-3), two overburden monitoring well locations, on Ford property, were selected . The objectives of these new well locations is to further delineate the location of potential groundwater contamination which may extend laterally to the east of MW-1 and downgradient to the north of MW-1 and MW-2. Additionally, these wells will provide added data points for hydrogeologic interpretation. These wells will be installed in the soil borings previously noted.

### Soo Line Property - Site B Wells

A minimum of two overburden monitoring wells will be installed at Site B on Soo Line property. These wells will be installed in the previously completed borings as earlier noted. These wells are intended to delineate the source of potential groundwater contamination upgradient of MW-1 and MW-2. The locations of these wells and the locations of possible additional wells are contingent on the results of the borehole sampling program.

**CONESTOGA-ROVERS & ASSOCIATES** 

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 19 of 25

### 4.4.4 Bedrock Monitoring Wells

Three bedrock monitoring wells will be installed at Site B to ascertain if groundwater contamination detected at Site B has migrated vertically into the bedrock, determine if a hydraulic connection exists between the overburden and bedrock and determine horizontal and vertical groundwater flow characteristics of the bedrock aquifer. Bedrock monitoring wells will be located adjacent to selected overburden monitoring wells (nested) to provide determination of vertical hydraulic gradients. Two bedrock wells will be installed on Ford property and one bedrock well will be installed on Soo Line property. Figure 4.1 shows the proposed locations of the bedrock monitoring wells.

Bedrock monitoring well locations were chosen based on the observation of impact to the overburden units at Site B. Well placement will maximize interpretation of hydrogeologic characteristics.

The bedrock immediately underlying the Sites A and B area consists of limestone of the Platteville Formation. Based on past field observations and available literature, groundwater is known to occur in fractures of the Platteville Formation. The thickness of the Platteville is estimated at 20 to 25 feet in the Site area.

Underlying the Platteville Formation is the Glenwood Shale which is approximately 4 to 6 feet thick. Literature sources state that this

Formation is composed of clay rich, thin bedded shales which functions as a hydrogeologic confining unit. Underlying the Glenwood Shale is the St. Peter Sandstone.

Based on the above information, the proposed bedrock monitoring wells will be installed with the well screens set in the Platteville Formation. Drill holes will not extend beyond the contact with the Glenwood Shale. It is expected that the Glenwood Shale will provide an effective confining layer preventing vertical groundwater flow into the St. Peter Formation.

Bedrock monitoring wells will be installed to minimize potential cross contamination from the overburden aquifer to the bedrock aquifer. The following outline details the procedures and materials which will be used to install the bedrock monitoring wells:

- A 10 inch diameter borehole will be advanced through the overburden, two feet into the top of the Platteville Formation;
- 2. A 6.0 inch diameter steel casing will be installed, sealed and grouted in the 10 inch boring. The casing will be allowed to set an adequate period of time, and then will be checked to ensure an adequate seal has been achieved. This check will be done by placing drilling water in the casing and observing that the water level is maintained;

ł

MN-COMP 0044662

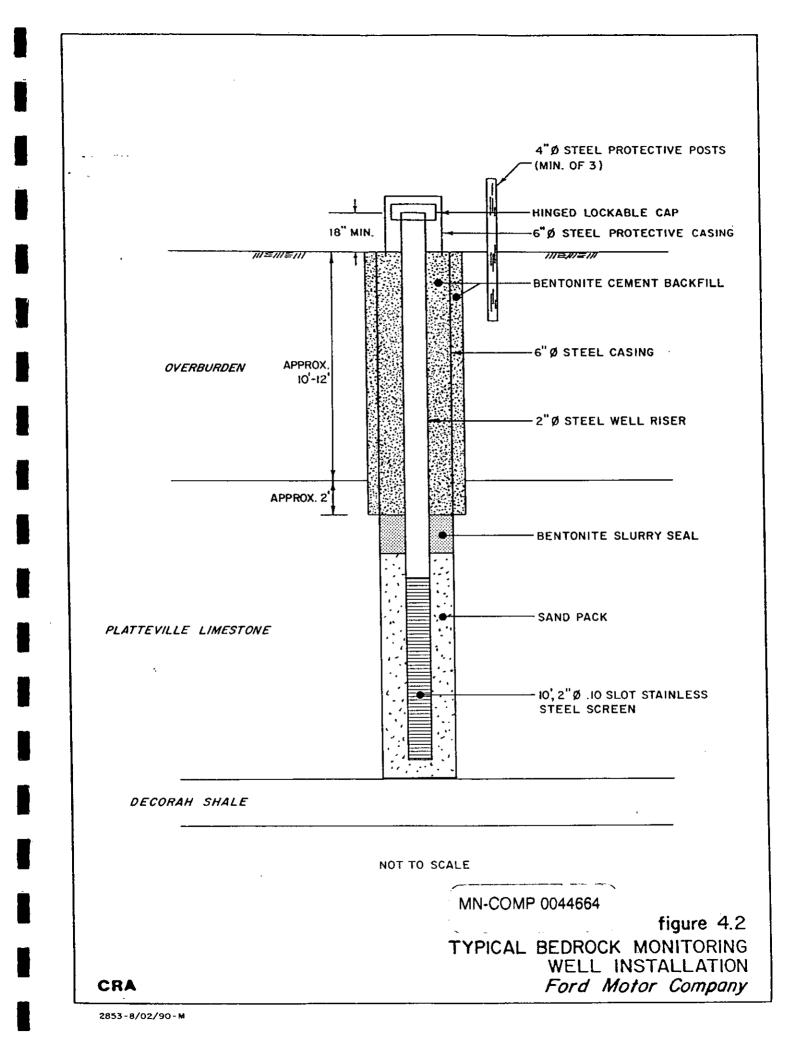

- 3. Using wet rotary methods, a core hole will be advanced using an nx sized barrel (approximately 2.0 inch inside diameter) to the top of the Glenwood Shale. All wet rotary methods will be conducted using potable city water.
- 4. The core hole will be reamed to a diameter of 6.0 inches using a tri-cone rotary bit and wet rotary methods.
- 5. The drill hole will be flushed clean using potable water.
- 6. A two inch diameter well and surface protection will be installed using the same materials, methods and field protocols as described in Section 6.2.2.
- 7. All drilling equipment (i.e. rods, augers, drill rig, etc.) will be cleaned in accordance with the procedures outlined in Section 6.2.2.

Figure 4.2 details the bedrock monitoring well installations.

Bedrock monitoring wells will be installed in accordance with the MDH well code using a licensed well contractor.

Rock core will be cataloged and described by CRA's field geologist, paying particular attention to hydrogeologic properties of the bedrock.

MN-COMP 0044663



Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 22 of 25

All monitoring wells will be developed and stabilized as described in Section 6.2.2.

### 4.4.5 Groundwater Sampling

Following well development and stabilization, two rounds of groundwater samples will be collected from overburden and bedrock wells. Details pertaining to sampling procedures, analytical parameters, field procedures, sampling protocols, quality assurance and quality control are summarized in Section 6.0 (QAPP).

### 4.4.6 Hydrogeologic Data Collection

Hydrogeologic data will be collected from selected monitoring wells to provide a basis for determining groundwater flow direction in overburden and bedrock, horizontal and vertical hydraulic gradients, hydraulic conductivities, groundwater flow rates and groundwater recharge and discharge points. Monitoring well reference elevations will be surveyed to the NGVD datum to aid in hydrogeologic characterization.

The following hydrogeologic data collection is proposed:

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 23 of 25

- 1. Water Level Elevations: Three rounds of water elevation data will be collected from all wells using an electric water level tape.
- 2. Single Well Response Tests: Single well response tests will be performed on selected monitoring wells to provide data for interpreting hydraulic conductivity. Rising and falling head tests will be conducted using a "slug" consisting of a solid PVC rod. The slug will be inserted into the monitoring well, resulting in a raising of the water level. Water level change versus time will be recorded using an electric water level tape as the water level column drops back to its static level (falling head test). Should the hydraulic response be too rapid to accurately monitor by electric water level tape, an electronic transducer and data logger will be used. Upon stabilization of the water level to static conditions, the slug will be removed, causing a lowering of the water level. Water level measurements versus time will again be noted as the water rises to its static position (rising head test). Response test data will be interpreted using the method of Papadopulos 1973, with the aid of a computer program, Graphical Well Analysis Package (GWAP).

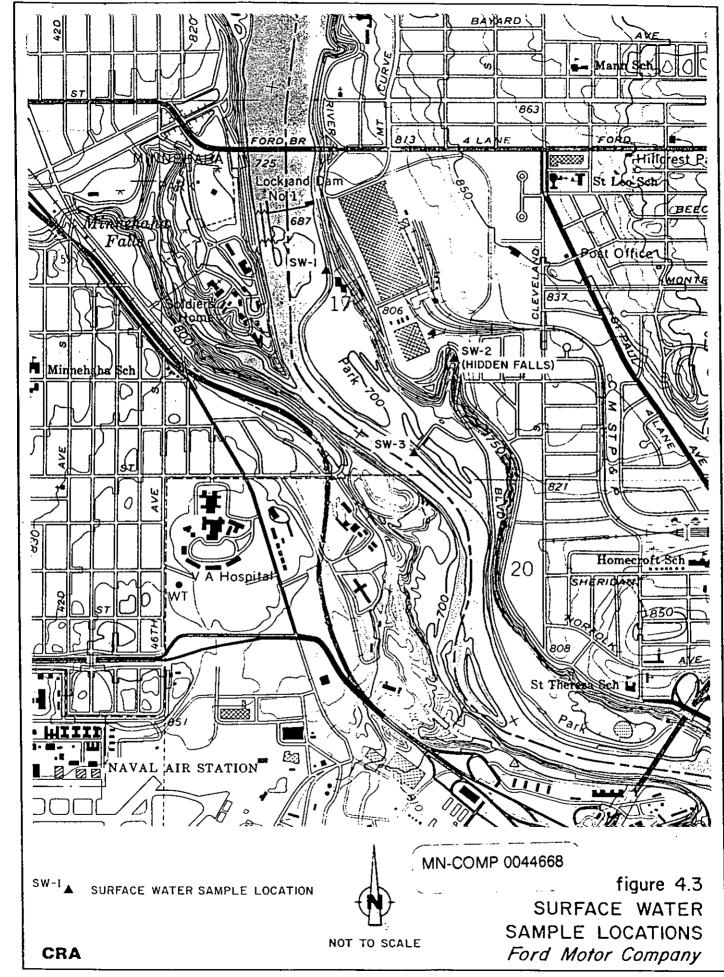
# 4.4.7 Surface Water Sampling

Three surface water samples will be collected to aid in evaluating the potential impact of past Site disposal practices on local surface

MN-COMP 0044666

water. These samples will be taken in conjunction with the two proposed groundwater sampling events using the same analytical parameters as discussed in Section 6.0.

The locations of these sample points is illustrated on Figure 4.3. One surface water sample will be collected from Hidden Falls creek, directly from the storm sewer runoff (SW-2). This location will be used to evaluate if Site groundwater is discharging to the area storm sewer system. Two surface water samples will be collected from the Mississippi River, one located down gradient of the Site (SW-3) and one located up gradient of the Site (SW-1) to provide background chemical characterization.


Surface water sampling procedures, QA and field protocols are discussed in Section 6.0.

# 4.5 SITE C INVESTIGATION

## 4.5.1 Overview of Scope of Work

As detailed in Section 2.0, an investigation of Site C has been ongoing for approximately nine years. There are presently four monitoring wells installed at Site C, with a significant amount of chemical and hydrogeologic data collected from these wells, and from surface water. The summary of the evaluation of Site C is provided in Section 2.7.

MN-COMP 0044667



2853-20/08/90-M

Section No. 4.0 Revision No. 1 Date: 2/11/91 Page 25 of 25

Based on the work completed to date, no further

investigation is proposed for Site C.

MN-COMP 0044669

# 5.0 PROJECT ORGANIZATION AND RESPONSIBILITY

Conestoga-Rovers and Associates (CRA), as contractor to Ford, has overall responsibility for all phases of the RI/FS. CRA will perform or supervise all field investigations and, using information compiled from this program, perform a site and risk assessment. In addition, CRA will also develop, screen and evaluate remedial action alternatives. All reports based on RI/FS activities will be produced by CRA.

Pace Laboratories Inc., as analytical subcontractor to CRA, will perform all chemical analyses of samples collected for the RI.

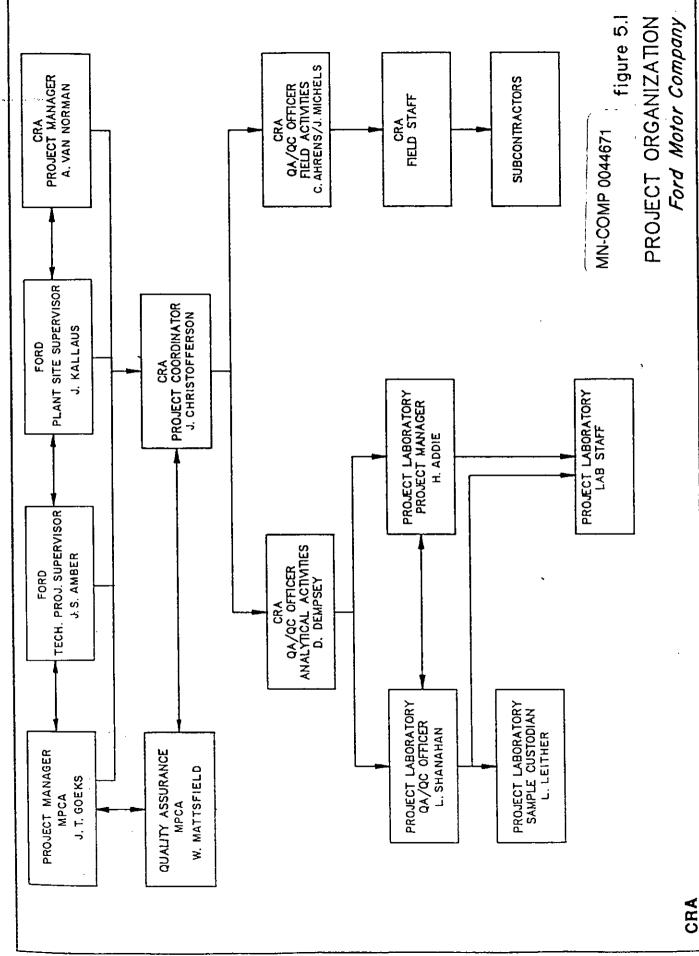

Both firms will provide project management as appropriate to their responsibilities. CRA will provide administrative oversight and QA/QC for all deliverables. All final project deliverables will be issued by CRA.

Figure 5.1 presents the key staff organization for the project. A summary of each of the key person's responsibilities is presented below:

Jerome S. Amber - Technical Project Supervisor, Ford

- General overview of the project to ensure that the objectives are met
- Participation in negotiations with the MPCA
- Managerial guidance to CRA's Corporate Project Manager and Project Coordinator

MN-COMP 0044670



2853-20/08/90-M

Section No. 5.0 Revision No. 1 Date: 2/11/91 Page 2 of 5

# John Kallaus - Ford Site Supervisor, Ford

- Provides coordination with Plant personnel and operations
- Provides access to necessary Plant facilities
- Coordinates activities with Plant security

Alan Van Norman - Project Manager and Principal Engineer, CRA

- Provides overall project management
- Ensures all resources of CRA are available on an as-required basis
- Participation in technical negotiations with the MPCA and attendance at project meetings on an as-required basis
- Managerial and technical guidance to CRA staff
- Preparation and review of RI/FS report
- Approval of the QAPP

#### Jon Christofferson - Project Coordinator, CRA

- Day-to-day project management
- Managerial and technical guidance to CRA staff
- Participation in technical negotiations with the MPCA
- Preparation and review of RI/FS report
- Project file custodian

# Dave Dempsey - Quality Assurance Officer - Analytical Activities, CRA

- Overview of laboratory activities
- Decides laboratory data corrective action
- Analytical data assessment and validation

| ' MN-COM | MP 004467 | ′2 <sup>`</sup> |
|----------|-----------|-----------------|
|          |           | - :             |
| `        |           | )               |

Section No. 5.0 Revision No. 1 Date: 2/11/91 Page 3 of 5

- Responsible for external performance and system audits
- Review of RI/FS report
- Approval of the QAPP

Chuck Ahrens/Jon Michels - Quality Assurance Officers -Field Activities/Field Supervisors, CRA

- Management of field activities and field QA/QC
- Data assessment
- Preparation and review of RI/FS report
- Technical representation of field activities
- Preparation of SOP for field activities

<u>Helen Addie - Project Manager, Pace</u>

- Ensures all resources of Pace are available on an as-required basis
- Overviews final analytical report
- Oversees all laboratory's activities
- Approval of the QAPP

Bill Scruton - Operations Manager, Pace

- Coordinate laboratory analyses
- Supervise in-house chain-of-custody
- Schedule sample analyses
- Oversee data review
- Oversee preparation of analytical reports
- Approve final analytical reports prior to submission to CRA

# Leisa Shanahan - Quality Assurance Officer, Pace - Laboratory Activities

- Overview laboratory quality assurance
- Overview QA/QC documentation
- Conduct detailed data review
- Decide laboratory corrective actions, if required
- Technical representation of laboratory QA procedures
- Approval of the QAPP

### Lisa Leither - Sample Custodian, Pace

- Receive and inspect the incoming sample containers
- Record the condition of the incoming sample containers
- Sign appropriate documents
- Verify chain-of-custody and its correctness
- Notify laboratory manager and laboratory supervisor of sample receipt and inspection
- Assign a unique identification number and customer number and enter each into the sample receiving log
- With the help of the laboratory manager, initiate transfer of the samples to appropriate lab sections
- Control and monitor access/storage of samples and extracts

Primary responsibility for project quality rests with CRA's QA Officers. Ultimate responsibility for project quality rests with CRA's Project

MN-COMP 0044674 -- ---

Manager. Independent quality assurance will be provided by the Laboratory Project Manager and QA Officer prior to release of all data to CRA.

# 5.1 MINNESOTA POLLUTION CONTROL AGENCY (MPCA)

The MPCA Project Manager will be responsible for the execution and direct management of all the technical and administrative aspects of this project. The MPCA Project Manager will also be responsible for providing approval of the work plan. J. Todd Goeks is the Project Manager for the MPCA.

The MPCA Quality Assurance Officer will be responsible for MPCA oversight of QA/QC activities and approval of the QAPP. The MPCA Quality Assurance Officer will be Wayne Mattsfield.

MN-COMP 0044675

Section No. 6.0 Revision No. 2 Date: 3/7/91 Page 1 of 39

# 6.0 QUALITY ASSURANCE PROJECT PLAN (QAPP)

# 6.1 QUALITY ASSURANCE (QA) OBJECTIVES FOR MEASUREMENT DATA

The overall QA objective is to develop and implement procedures for field sampling, chain-of-custody, laboratory analyses and reporting that will provide accurate data. Specific procedures to be used for sampling, chain-of-custody, calibration, laboratory analysis, reporting, quality control, audits, preventive maintenance and corrective actions are presented in other sections of this QAPP.

Data quality objectives (DQO) have been established in accordance with the U.S. EPA guidance document entitled "Data Quality Objectives for Remedial Response Activities", EPA/540/G-87/003, March 1987, to ensure that the database developed during the Site investigation meets the objectives and quality necessary for its intended use, namely risk assessments, determining contaminant distribution and evaluating remedial objectives.

DQO can be classified for measurement data by defining the level of analytical support assigned to each type of measurement data. For activities outlined in Table 4.1, all laboratory analyses will require level III analytical support.

DQO for field screening activities such as the determination of pH, specific conductance, temperature and VOC concentration (HNu) will require level I analytical support.

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 1 of 39

# 6.0 QUALITY ASSURANCE PROJECT PLAN (QAPP)

# 6.1 QUALITY ASSURANCE (QA) OBJECTIVES FOR MEASUREMENT DATA

The overall QA objective is to develop and implement procedures for field sampling, chain-of-custody, laboratory analyses and reporting that will provide accurate data. Specific procedures to be used for sampling, chain-of-custody, calibration, laboratory analysis, reporting, quality control, audits, preventive maintenance and corrective actions are presented in other sections of this QAPP.

Data quality objectives (DQO) have been established in accordance with the U.S. EPA guidance document entitled "Data Quality Objectives for Remedial Response Activities", EPA/540/G-87/003, March 1987, to ensure that the database developed during the Site investigation meets the objectives and quality necessary for its intended use, namely risk assessments, determining contaminant distribution and evaluating remedial objectives.

DQO can be classified for measurement data by defining the level of analytical support assigned to each type of measurement data. In general, all laboratory analyses will require level III analytical support.

DQO for field screening activities such as the determination of pH, specific conductance, temperature and VOC concentration (HNu) will require level I analytical support.

CONESTOGA-ROVERS & ASSOCIATES

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 2 of 39

The use of the analytical support levels defined above will ensure that the overall objectives for the RI/FS will be completed.

# 6.1.1 Level of QA Effort

To assess the quality of data resulting from the field sampling program, field duplicate samples, rinsate samples, trip blank samples and matrix spike samples will be taken (where appropriate) and submitted to the analytical laboratory.

For all field samples collected, field duplicate samples will be collected at a frequency of 1 per 10 or fewer investigative samples per parameter set for each sample matrix or at least once per day, whichever is more frequent. Matrix spike/matrix spike duplicate (MS/MSD) samples will be analyzed at a minimum frequency of 1 in 20 for each analysis.

Rinsate blank samples will be submitted at a frequency of 1 per 10 or fewer well purging/sampling equipment cleanings or at least once per day of well purging/sampling equipment cleanings. Rinsate blanks shall be collected by routing deionized distilled water through decontaminated sampling equipment. For surface water samples, field blank samples will be collected at a frequency of 1 per 10 samples in place of rinsate samples.

Trip blank samples for VOC analyses (prepared by the laboratory and consisting of organic-free water) will be shipped by the

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 3 of 39

laboratory with each shipment container of aqueous VOC sample vials. Trip blanks samples will be handled in a manner consistent with actual field sample handling and will be shipped back to the laboratory with the daily field samples. The trip blanks will provide a measure of potential cross contamination of samples during shipment and handling. It is noted that trip blanks will not be opened in the field.

The sampling and analysis program (the level of QA effort required for each matrix) is summarized on Table 6.1.

Blank samples will be analyzed to check procedural contamination and/or ambient conditions and/or sample container contamination at the Site that may cause sample contamination.

Upon examination of the results obtained by Pace, if any of the aforementioned blanks contain any analytes, the following procedure will be followed. First, determine if the contamination is real by examining the associated investigative samples and method blanks. If the contamination can be traced to an isolated source, e.g. a highly contaminated sample, the data are to remain unqualified. Otherwise, the data will be examined to determine the extent of contamination and all associated data will be qualified according to the data validation guidelines referenced in Section 6.6.

Field duplicate samples will be analyzed to check for sampling and analytical reproducibility. Field duplicate samples will be collected 1 for every 10 samples per matrix or at least once each day of sampling

MN-COMP 0044679

|                                                                                                                          | <u>Trip Blank Sample</u>      |                                                                              | 1 in every cooler containing<br>aqueous VOC samples                          | 1 in every cooler containing<br>aqueous VOC samples                          |                                                                                         |     | MN-COMP 0044680 |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|-----------------|
| OR SAMPLES<br>ISEMBLY PLANT RI/FS<br>ANY                                                                                 | <u>MS/MSD Sample</u>          | 1 for every 20 samples                                                       | 1 for every 20 samples                                                       | 1 for every 20 samples                                                       | oles.                                                                                   |     |                 |
| TABLE 6.1<br>SUMMARY OF QA SAMPLES FOR SAMPLES<br>COLLECTED DURING TWIN CITTES ASSEMBLY PLANT RIFS<br>FORD MOTOR COMPANY | <u>Field Duplicate Sample</u> | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | llected in place of rinsate samp                                                        |     |                 |
| SUI                                                                                                                      | <u>Rinsate Sample</u>         | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | 1 for every 10 samples<br>or at least once per day<br>of sampling activities | E For surface water, field blank samples will be collected in place of rinsate samples. | · · |                 |
|                                                                                                                          | <u>Matrix</u>                 | Soil                                                                         | Groundwater                                                                  | Surface Water <sup>1</sup>                                                   | <u>Note:</u><br>1. For surface wate                                                     |     |                 |

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 4 of 39

activities for each matrix. Comparison of field duplicate samples will be based upon analytes, both non-detected and detected, and relative percent differences (RPD). The parameters which do not meet criteria may only be used for qualitative assessment. Professional judgement shall determine the RPD limits on a sample-to-sample basis.

### 6.1.2 Sensitivity, Precision and Accuracy of Analysis

The fundamental QA objective with respect to the accuracy, precision and sensitivity of analytical data is to achieve the QC acceptance criteria of each analytical protocol. The sensitivities required for these organic analyses will be at least the targeted detection limits listed on Tables 6.2 and 6.3. These tables present targeted detection limits for all target parameters. It should be noted that these limits are targeted detection limits. Lower method detection limits, if achieved by the laboratory, will be substituted for the targeted detection limits in the final report.

The analytical method precision (based upon relative percent difference) shall be determined from replicate analyses, and will meet criteria presented in Section 6.6.2.2.

CONESTOGA-ROVERS & ASSOCIATES

# TABLE 6.2

# PRACTICAL QUANTITATION LIMITS (PQLs) AND METHOD DETECTION LIMITS (MDLs) FOR VOC ANALYSES TWIN CITIES ASSEMBLY PLAN SITE RI/FS FORD MOTOR COMPANY<sup>1</sup>

|                                      | Water <sup>1</sup> |               |                | Soil <sup>2</sup> |  |
|--------------------------------------|--------------------|---------------|----------------|-------------------|--|
|                                      | PQL                | MDL           | PQL            | MDL               |  |
|                                      | <u>(µg/l)</u>      | <u>(µg/l)</u> | <u>(µg/kg)</u> | <u>(µg/kg)</u>    |  |
| Bromodichloromethane                 | 1.0                | 0.2           | 125            | 25                |  |
| Bromoform                            | 2.0                | 1.0           | 250            | 120               |  |
| Bromomethane                         |                    | 1.5           | -              | 190               |  |
| Carbon Tetrachloride                 | 1.2                | 0.3           | 150            | 38                |  |
| Chlorobenzene                        | 2.5                | 1.0           | 312            | 120               |  |
| Chloroethane                         | 5.2                | 1.0           | 650            | 120               |  |
| 2-chloroethyl Vinyl Ether            | 10                 | 5.0           | 1,200          | 620               |  |
| Chloroform                           | 0.5                | 0.5           | 62             | 62                |  |
| Chloromethane                        | 2.0                | 1.0           | 240            | 120               |  |
| Dibromochloromethane                 | 2.0                | 1.0           | - 240          | 120               |  |
| Dibromomethane                       | -                  | -             | -              | 0.10              |  |
| 1,2-dichlorobenzene                  | 10                 | 4.0           | 1,200          | 500               |  |
| 1,3-dichlorobenzene                  | 10                 | 4.0           | 1,200          | 500               |  |
| 1.4-dichlorobenzene                  | 10                 | 4.0           | 1,200          | 500               |  |
| Dichlorodifluoromethane <sup>3</sup> | -                  | 1.5           | -              | 190               |  |
| 1,1-dichloroethane                   | 0.7                | 0.3           | 88             | 25                |  |
| 1,2-dichloroethane                   | 0.3                | 0.2           | 38             | 25                |  |
| 1,1-dichloroethene                   | 1.3                | 0.3           | 162            | 38                |  |
| trans-1,2-dichloroethene             | 1.0                | 0.3           | 125            | 38                |  |
| Methylene Chloride                   | -                  | 1.0           | . –            | 120               |  |
| 1,2-dichloropropane                  | 0.4                | 0.2           | 50             | 25                |  |
| trans-1,3-dichloropropene            | 3.4                | 0.3           | 425            | 38                |  |
| 1,1,2,2-tetrachloroethane            | 2.0                | 1.0           | 240            | 120               |  |
| Tetrachloroethene                    | 2.0                | 1.0           | 240            | 120               |  |
| 1,1,1-trichloroethane                | 1.0                | 0.5           | 120            | 62                |  |
| 1,1,2-trichloroethane                | 2.0                | 1.0           | 240            | 120               |  |
| Trichloroethene                      | 1.2                | 0.5           | 150            | 62                |  |
| Trichlorofluoromethane               | -                  | 0.4           | -              | 50                |  |
| Vinyl Chloride                       | 1.8                | 1.5           | 225            | 190               |  |
| Benzene                              | 2.0                | 1.0           | 250            | 120               |  |
| Ethyl Benzene                        | 2.0                | 1.0           | 250            | , 120             |  |
| Toluene                              | 2.0                | 1.0           | 250            | 120               |  |
| Xylenes                              | -                  | 1.0           | ı <b>-</b>     | 120               |  |
| Ethyl Acetate                        | -                  | 0.01%         | -              | 0.01%             |  |
|                                      |                    | (solvent      |                | (solvent          |  |
|                                      |                    | scan)         |                | scan)             |  |

### Notes:

- 1. PQLs and MCLs are highly matrix depenent. Therefore, actual PQL and MDLs obtained may be considerably higher, depending on the sample matrix.
- 2. PQLs and MCLs are based on wet weight of sample.

3. Analyte demonstrated poor trap-and-purge efficiency.

MN-COMP 0044682

# TABLE 6.3

# PRACTICAL QUANTITATION LIMITS (PQLs) AND METHOD DETECTION LIMITS (MDLs) FOR TARGET METALS ANALYSES TWIN CITIES ASSEMBLY PLAN SITE RI/FS FORD MOTOR COMPANY<sup>1</sup>

|          | Water <sup>1</sup> |               |                | Soil <sup>2</sup> |  |  |
|----------|--------------------|---------------|----------------|-------------------|--|--|
|          | PQL<br>(μg/l)      | MDL<br>(μg/l) | PQL<br>(mg/kg) | MDL<br>(mg/kg)    |  |  |
| Arsenic  | 10                 | 10            | 2              | 0.094             |  |  |
| Barium   | 200                | 6.0           | 40             | 0.006             |  |  |
| Cadmium  | 5                  | 0.1           | 1              | 0.006             |  |  |
| Chromium | 10                 | 10            | 2              | 0.01              |  |  |
| Cobalt   | 50                 | 16            | 10             | 0.016             |  |  |
| Copper   | 25                 | 5.0           | 5              | 0.005             |  |  |
| Lead     | 5                  | 1.0           | 1              | 0.045             |  |  |
| Mercury  | 0.2                | 0.2           | 0.04           | 0.0002            |  |  |
| Nickel   | 40                 | 21            | 8              | 0.021             |  |  |
| Selenium | 5                  | 3.3           | 1              | 0.081             |  |  |
| Silver   | 10                 | 5             | 2              | 0.005             |  |  |
| Zinc     | 20                 | 6.0           | 4              | 0.006             |  |  |

### Notes:

- 1. PQLs and MDLs are highly matrix depenent. Therefore, actual PQL and MDL obtained may be considerably higher, depending on the sample matrix.
- 2. PQLs and MDLs are based on wet weight of sample.

| MN-COMP 0044683 | <b>`</b> . |
|-----------------|------------|
|                 | 2          |

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 5 of 39

Accuracy for the analytical method will be determined by the matrix spike and check sample recoveries. Sections 6.6.2 summarize criteria that each spike recovery must meet.

## 6.1.3 Completeness, Representativeness and Comparability

It is expected that all analyses conducted in accordance with SW-846 methods will provide data meeting QC acceptance criteria for 80 percent of all samples tested. Any reasons for variances will be documented. The corrective actions taken if the completeness goals are not met are described in Section 6.11 of this work plan.

The sampling networks have been designed to provide data representative of Site conditions. During development of these networks, consideration was given to past disposal practices, existing data from past studies completed for the Site, remedial activities to date and physical setting. The extent to which existing and planned analytical data will be comparable depends on the similarity of sampling and analytical methods. The procedures used to obtain the planned analytical data are documented in this work plan. However, it may be necessary to verify similar documentation for previous analytical data to adequately establish comparability. Comparability of

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 6 of 39

MN-COMP 0044685

**CONESTOGA-ROVERS & ASSOCIATES** 

laboratory analyses will be ensured by the use of consistent units. Following completion of data collection, the existing database will be evaluated for representativeness.

# 6.2 FIELD PROTOCOLS

# 6.2.1 Soil Sample Collection

All soil samples will be obtained in accordance with ASTM D1586-84. The split spoon sampler will be attached to the drill rod and driven into the soil the full depth (24 inches). If the soil is loose, wet or in any way unconsolidated, clean basket retainers will be used to retain the soil in the split spoon. Between each sampling station, the split spoon will be cleaned with Alconox detergent and rinsed with deionized water.

All soil samples collected will be described and classified according to the Unified Soil Classification System. A record of all soil sampling will be recorded on borehole logs which will be maintained by the Site geologist.

Selected soil samples will be prepared in the following manner for chemical analyses.

- The sampling tool and all other instruments used in extracting the soil samples for chemical analyses will be precleaned using Alconox detergent. A new pair of disposable latex gloves will be used for each sample handled. Disposable gloves will be collected and contained for proper disposal.
- 2. Each soil sample for chemical analyses will be obtained and prepared in the following manner:
  - a. Using a clean cutting tool (stainless steel knife), the soil sample will be extracted from the split spoon, attempting to ensure that a representative sample is collected. For VOC samples, the sample core will be transferred to sample jars without breaking apart the core, if possible. The remaining soil will be placed in the proper sampling bottles as outlined on Table 6.4.
- Soil samples will be labeled noting the sampling location, depth, time and sampler's initials. A separate hard-cover field book will be maintained to document all soil samples and sampling events.
- 4. Samples will be placed on ice or cooler packs in laboratory supplied coolers after collection and labeling.

The criteria for selecting soil samples for chemical analysis are as follows:

|                                                                                                 | Normal<br><u>Packaging</u> 3      |       | Bubble Pack                                    | Bubble Pack                           |      | Bubble Pack      |     | Bubble Pack                           |        |                                                                                                                                                                       |    |   | 0044687         |
|-------------------------------------------------------------------------------------------------|-----------------------------------|-------|------------------------------------------------|---------------------------------------|------|------------------|-----|---------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----------------|
|                                                                                                 | <u>Shipping</u> <sup>2</sup>      |       | Courier or staff                               | Courier or staff                      |      | Courier or staff |     | Courier or staff                      |        |                                                                                                                                                                       |    |   | MN-COMP 0044687 |
| SERVATION,<br>QUIREMENTS                                                                        | Volume<br><u>of Sample</u>        |       | Fill completely,<br>no air bubbles             | Fill to shoulder<br>of bottle         |      | Fill completely  |     | Fill completely                       |        |                                                                                                                                                                       | 'n |   |                 |
| SOIL AND GROUNDWATER CONTAINER, PRESERVATION,<br>HOLDING TIME PERIODS AND SHIPPING REQUIREMENTS | Maximum<br><u>Holding Times</u> 1 |       | 14 days                                        | 6 months (except<br>mercury, 28 days) |      | 14 days          |     | 6 months (except<br>mercury, 28 days) |        | of sample collection.                                                                                                                                                 |    |   |                 |
| , AND GROUNDWAT<br>DING TIME PERIOD                                                             | Preservation                      |       | HCI to pH<2<br>4 °C                            | HNO <sub>3</sub> to pH<2<br>4°C       |      | 4°C              |     | 4 °C                                  |        | alculated from the date<br>t.                                                                                                                                         |    | · |                 |
| 10H<br>IIOS                                                                                     | Containers                        |       | Two 40 m <i>l</i><br>volatile organic<br>vials | One 500 ml<br>polyethylene            |      | 1 4 oz. glass    | jar | 1 4 oz. plastic<br>jar                |        | The maximum sample holding time is calculated from the date of sample collection.<br>Samples will be picked up by Pace.<br>All samples shall be protected from light. |    |   |                 |
|                                                                                                 | <u>Analysis</u>                   | Water | vocs                                           | Metals                                | Coll | VOC              |     | Metals                                | Notes: | <ol> <li>The maximun</li> <li>Samples will 1</li> <li>All samples sh</li> </ol>                                                                                       | ·  |   |                 |

.

.

TABLE 6.4

ĺ

#### Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 8 of 39

During sampling, HNu headspace readings will be taken and recorded as an indication of possible VOC presence. Headspace readings will be collected as follows: a portion of the soil sample not already sealed in VOC jars (i.e. the metals sample) will be placed in a glass jar and the mouth of the jar will be sealed with aluminum foil. After a period of 15 to 20 minutes, an HNu photoionization probe will puncture the seal to detect any volatile gases that may be emitting from the soil.

If an HNu reading above site background levels is recorded from the soil sample, the sample will be prepared for possible analysis. A representative sample from each boring will be selected for chemical analysis after the HNu screening is complete. If HNu readings above background are not recorded, the soil sample collected from just above the groundwater table will be submitted for chemical analysis. A minimum of one soil sample per boring location will be submitted for chemical analysis.

#### 6.2.2 Overburden Monitoring Well Installation Protocols

Overburden monitoring wells will be installed using a truck mounted drill rig advancing hollow stem augers with a minimum inside diameter of 4-1/4 inches. Overburden monitoring wells will be 2 inches in diameter. The following well materials will be used:

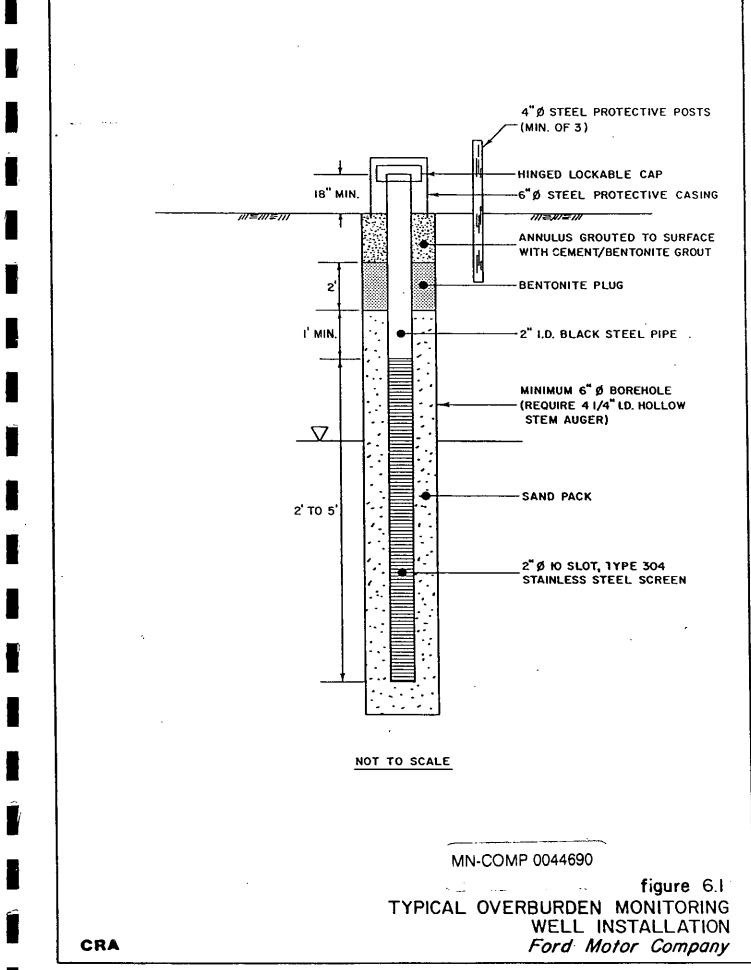
1. 2.0 feet or 5.0 feet of .10 slot stainless steel screen;

2. low carbon steel, flush threaded riser;

CONESTOGA-ROVERS & ASSOCIATES

MN-COMP 0044688

- appropriate sized sand pack material installed a minimum of 1.0 feet above the top of the well screen;
- 4. a seal consisting of a minimum of 2.0 feet of bentonite slurry
- 5. bentonite (approximately 3 percent) cement backfill;
- surface protection consisting of a locking steel protective post and three protective bumper posts.


The decision to use a 2 foot or 5 foot screen will be made in the field based on the depth of the borehole and the depth to the water table. As a provision for the possible presence of light NAPL, wherever possible, the screen will be installed so that the top of the screen is above the water table.

The monitoring well will be installed inside the auger annulus by backing the augers from the boring while simultaneously installing the sand pack. The sand pack will be installed from the bottom of the boring to approximately 1 foot above the top of the screen. A bentonite slurry seal approximately 2 feet thick will be emplaced above the sand pack. The remaining annulus will be backfilled by the tremie grout method using a mixture of bentonite and cement. Surface protection consisting of a 4 inch diameter locking protective casing and three steel posts will be installed.

Figure 6.1 illustrates typical overburden monitoring well construction details.

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044689



2853-8/02/90-M

# Monitoring Well Installation Protocols

Monitoring wells will comply with the Minnesota Department of Health Water Well Construction Code. The following provides a summary of aspects related to field quality assurance.

To eliminate cross-contamination between successive drilling locations, the installation of all monitoring well will be carried out according to the following protocol:

- Prior to drilling in the initial and all subsequent boreholes, the drilling rig and all drilling equipment will be cleaned using a high pressure-low volume hot water wash and/or steam cleaned with alconox.
- 2. All drilling water will be obtained from the site potable water supply.
- All well screens will be of the precleaned Johnson<sup>™</sup> Environmental type. All riser pipe and screens will be "steam cleaned" prior to use.

# 6.2.3 Monitoring Well Development

Well development will be carried out according to the following protocol:

MN-COMP 0044691

- Monitoring wells will be developed by the surge and bail method using a stainless steel bottom filling bailer. Prior to use, the bailer will be "precleaned" off site using the following solvent rinse sequence: methanol, hexane, methanol, air dry, deionized water.
- Development will continue until sediment-free water is obtained and three successive readings of pH, temperature and conductivity are measured within the following ranges:

pH - <u>+</u>0.1 pH unit

Temperature -  $\pm 0.5^{\circ}$ C

Conductivity -  $\pm 10$  umhos/cm

- 3. The purged water will be discharged onto the ground surface.
- 4. Prior to the measurement of water levels, the measuring instrument will be cleaned with distilled water.
- 5. All cleaning fluids will be collected and contained for proper disposal.
- 6. Well development and stabilization records will be maintained. This includes recording readings of pH, temperature, conductivity and cumulative volume of water removed during development.

MN-COMP 0044692

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 12 of 39

# 6.2.4 Monitoring Well Sampling

All monitoring wells will be sampled according to the following protocols:

- New disposable latex gloves will be used when sampling each well.
   Additional glove changes will be made for each sampling.
- 2. The sampling will measure and record the depth to water in each well to the nearest 0.01 foot using an electric tape. The bottom three feet of the measuring device will be cleaned by rinsing with deionized water.
- 3. Prior to sampling, each well will be purged using a precleaned, bottom filling, stainless steel or teflon bailer. A minimum of three times the standing water volume in the well will be removed, or until conductivity and pH readings in the purge water are stable. In the event that a well is purged dry prior to achieving three well volumes, groundwater will be permitted to recover to a level sufficient for sample collection. The time that the well was purged dry will be noted and well recovery will be monitored. Upon recovery, a precleaned bailer will be used for sample collection. Prior to use, each bailer will be cleaned as follows:
  - a. Rinse with methanol/hexane/methanol;
  - b. Allow to air dry.
  - c. Triple rinse with distilled deionized water;

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044693

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 13 of 39

- 4. All waste groundwater will be discharged to the ground surface.
- Field measurements of pH and conductivity (using a DspH-3 pH/3 RGE conductivity meter or equivalent) and temperature (using a YSI Model 33 SCT meter or equivalent) will be recorded prior to sample collection.
   Calibration of field instruments will be conducted as specified in Section 6.4.
- 6. After the required standing well water has been purged, water samples will be collected using a bottom filling, stainless steel or teflon bailer attached to a nylon rope. New nylon rope will be used for each monitoring well.
- 7. Containers for sample collection and preservation requirements are determined as required by the analytical parameters. Table 6.4 details the requisite sample containers and preservation techniques for chemical parameters. All sample bottles will be provided by the laboratory and will be prepared consistent with ICHEM 300 Series protocols. The sample bottles will be delivered to the Site in sealed containers.
- 8. The MS/MSD sample will be taken from a well where samples do not require consideration for turbidity. Samples will be collected from the well as outlined in (5) above, but in triple the normal volume. The analysis request sheets sent to the laboratory will indicate the sample that will undergo MS/MSD analyses.

MN-COMP 0044694

- 9. All disposable gloves and nylon ropes will be placed in DOT approved 55gallon drums and stored on-site. All drummed waste will be disposed of in accordance with State and Federal regulations. All rinsings will be handled as discussed in item (3) above.
- 10. Samples will be labeled noting the well location, date, time and sampler's initials. A separate, hard-cover bound, field notebook will be maintained describing the sampling history (including: date and time of collection, sample handling and storage, preservation and labeling, field measurements, details pertaining to well purging and characteristics of each sample taken, and weather conditions).
- 11. Samples will be placed on ice or cooler pack in laboratory supplied coolers after collection and labeling.

# 6.2.5 <u>Surface Water Sampling</u>

The surface water samples will be collected in accordance with the following protocols:

1. New disposable latex gloves will be used when collecting the sample.

MN-COMP 0044695

MN-COMP 0044696

- 2. The sample will be collected by the grab sample method directly into the precleaned sample containers. The most downstream sample will be collected first and sampling will then progress upstream.
- 3. Containers for sample collection and preservation requirements will be the same as specified for groundwater samples (see Table 6.4).
- Samples for MS/MSD analyses will be collected in triple the normal volume. The analysis request sheets sent to the contract laboratory will indicate the sample to undergo MS/MSD analyses.
- 5. Rinsate samples will not be collected since there will be no sampling tools used for collecting these samples. Therefore, field blank samples will be collected at a frequency of 1 per 10 samples, or at least one per day of sampling activities.
- 6. Samples will be labeled noting the sampling location, date, time and sampler's initials. A separate hard-cover field book will be maintained to document all samples and sampling events. Weather conditions at the time of sampling will be noted.
- Samples will be placed on ice or cooler packs in laboratory supplied coolers after collection and labeling.

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 16 of 39

#### 6.3 SAMPLE CUSTODY AND DOCUMENT CONTROL

This section details the procedures and protocols which must be followed for the transport of samples.

6.3.1 Chain-of-Custody

A chain-of-custody will be maintained to document the transfer of sample containers. Each sample will be properly sealed. Sample container labels will include sample number, place of collection and date and time of collection. Samples will be placed in the shipping cooler immediately after collection.

Each cooler being shipped to Pace will contain a chain-ofcustody form. The chain-of-custody form consists of four copies which are distributed to the shipper, the receiving laboratory, the CRA laboratory and the CRA office file. Each sample number of each sample shipped will be recorded on the sheet. The shipper will maintain his copy while the other three copies are enclosed in a waterproof envelope within the cooler with the samples. The container will then be sealed properly for shipment. The laboratory, upon receiving the samples, will complete the three remaining copies. The laboratory will maintain one copy for their records. One copy will be returned to CRA upon receipt of the samples by the laboratory. One copy will be returned to CRA with the data deliverables package.

MN-COMP 0044697

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 17 of 39

Upon receipt of the container at the laboratory, the container will be inspected by the designated sample custodian. The condition of the container will be noted on the chain-of-custody record sheet by the sample custodian. The sample custodian will document the date and time of receipt of the container and sign the form.

If damage or discrepancies are noticed, it will be recorded in the remarks column of the record sheet, dated and signed. Any damage or discrepancies will be reported to the laboratory supervisor who will inform the lab manager and QA officer. The lab QA officer will than notify the CRA QA Officer - Analytical Activities.

# 6.3.2 Sample Documentation in the Laboratory

The sample custodian will assign a unique number to each incoming sample for use in the laboratory. The unique number and customer number will then be entered into the sample receiving log. The laboratory date of receipt will also be noted.

Pace will be responsible for maintaining analytical log books and laboratory data, as well as sample (on hand) inventory for submittal to CRA on an "as required" basis. Samples will be maintained by the laboratory for a period of 30 days following CRA's receipt of the respective sample data under the conditions prescribed by the appropriate U.S. EPA methods for additional

MN-COMP 0044698

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 18 of 39

1

analyses, if necessary. Raw laboratory data files will be inventoried and maintained by Pace for a period of five years at which time CRA will advise Pace regarding the need for additional storage.

6.3.3 Storage of Samples

After the sample custodian has prepared the log book, the chain-of-custody will be checked to ensure that all samples are stored in the appropriate locations. All samples will be stored within an access controlled location and will be maintained at 4 °C until completion of all analytical work or, as a minimum, for 30 days.

# 6.3.4 Sample Documentation - CRA

Project files for the entire project will be inventoried and maintained by CRA and will consist of the following:

- Project Plan
- Project Logbooks
- Field Data Records
- Sample Identification Documents
- Chain-of-Custody Records
- Correspondence
- Report Notes, Calculations, etc.

MN-COMP 0044699

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 19 of 39

- Data Packages,
- References, Literature
- Miscellaneous photos, maps, drawings, etc.
- Final Report

The project file materials will be the responsibility of the evidentiary file custodian with respect to maintenance and document removal. Jon Christofferson will be the project file custodian.

#### 6.4 CALIBRATION PROCEDURES AND FREQUENCY

The procedures indicated below will be performed for all samples delivered to Pace for analysis. Specific instructions relevant to a particular type of analysis are given in the pertinent analytical procedures for this project.

All quality control data and records produced from calibration will be retained by the laboratory and will be made available to CRA on an "as required" basis.

The following specific analytical quality control procedures are related to each analytical batch.

MN-COMP 0044700

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 20 of 39

Laboratory protocols and QA/QC procedures for Pace are provided in Appendix I.

#### 6.4.1 Instrument Performance

Prior to initiating analysis, it is required to establish that a given instrument meets the specifications required.

# 6.4.1.1 Organic Analyses

Internal standards retention times must be within two percent of the initial standard. In addition, a laboratory prepared sample is analyzed with each batch of samples. Percent recovery for this sample is required to be within ten percent of actual analyte concentrations. If either criteria is not met, analysis of samples is halted until the problem is corrected.

# 6.4.2 <u>Calibration</u>

Prior to analysis, laboratory instruments will be calibrated using procedures for VOC and metals analyses specified by Pace (see Appendix I).

MN-COMP 0044701

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 21 of 39

# 6.4.2.1 Calibration of Gas Chromatograph

A five-point calibration curve is prepared by Pace each day analyses are performed. Calibration factors are calculated for each analyte and percent relative standard deviations (%RSD) are calculated. Each %RSD value must be less than 20, otherwise the calibration procedure must be repeated for any analyte that failed this criterion.

A calibration check is conducted after every ten samples. Calibration factors values from this sample must be within 15 percent of the initial calibration factor, based upon the relative percent difference. If this criterion is not met, analysis of samples will stop until the problem is corrected. This may result in generating a new five-point calibration curve.

# . 6.4.2.2 Standard Curves for Inorganic Analysis

Standard curves used in metals analyses will be prepared as follows:

Standard curves derived from data consisting of one reagent blank and a minimum of three concentrations will be prepared for each inorganic analyte. The standard curve will be used with each subsequent analysis, provided the standard curve is verified by using at least one reagent blank and one standard at a level normally encountered or expected in such samples. If the results of the verification are not within  $\pm 10$  percent of the original curve, a new

MN-COMP 0044702

standard will be prepared and analyzed. If the results of the second verification are not within  $\pm 10$  percent of the original standard curve, a reference standard will be used to determine if the discrepancy is with the standard or with the instrument. New standards will also be prepared on a quarterly basis at a minimum. All data used in drawing or describing the curve will be so indicated on the curve or its description. A record will be made of the verification.

# 6.4.2.3 Field Instrument Calibration

Calibrating field instruments will be done prior to the collecting each water sample if well purging data indicate a change (> $\pm$ 10 percent) in pH and/or conductivity from the last location sampled. However, calibration will be conducted at least daily during groundwater sampling. The field equipment will be maintained, calibrated and operated in a manner consistent with the manufacturer's guidelines and U.S. EPA standard methods. Since the majority of field measurements will be limited to pH, conductivity, temperature and depth (water level) the following procedures will be conducted, at a minimum:

1) <u>pH</u>

- Calibrate daily against two buffer solutions within a pH of 2 of the anticipated water pH.

| /               |
|-----------------|
| MN-COMP 0044703 |
|                 |
|                 |

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 23 of 39

# A) <u>Calibration of pH Meter</u>

The pH meter will be calibrated with commercially obtained pH 7, 4 and 10 buffer solutions. The pH calibration will be temperature compensated and will be performed immediately before initiating a sampling event. Calibration checks will be performed with every sample collected. In the event that the result fails to be within 0.1 pH units, the meter must be recalibrated and all samples after the last calibration must be remeasured.

Calibration will be performed in accordance with the following procedure:

- 1) Rinse the probe in deionized water;
- 2) Insert probe in a fresh pH 7 buffer solution;
- Slide battery compartment cover back to the first stop, exposing the adjustment potentiometers;
- 4) Adjust the "CAL" potentiometer such that the display reads 7.00;
- 5) Remove the probe; rinse in deionized water;
- 6) Insert probe in a fresh pH 4 or pH 10 buffer solution;
- Adjust the slope potentiometer until the correct pH is displayed; and
- 8) Remove probe; rinse in deionized water.

| $\sim$ |                   |
|--------|-------------------|
| ( N    | IN-COMP 0044704 . |
| 5.     | <i>-</i> 2        |

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 24 of 39

# 2) <u>Conductivity</u>

- Check once per sampling event against a standard solution of potassium chloride and deionized water.

# B) Calibration of the Specific Conductivity Meter

The specific conductivity meter is factory calibrated, but the calibration should be checked periodically and the probe thoroughly rinsed between samples. Calibrating the specific conductivity meter will be performed as follows:

- 1) Rinse probe in deionized water;
- Wipe probe and allow to dry the conductivity displayed should be zero in air;
- 3) Adjust the zero potentiometer if necessary;
- 4) Immerse the probe in a solution of known conductivity;
- 5) Adjust the "SPAN" potentiometer such that the correct conductivity is displayed; and
- 6) Rinse probes thoroughly with deionized water and allow to dry.
- 3) <u>HNu</u>

HNu calibration checks will be done daily in the field prior to the commencement of field activities.

MN-COMP 0044705 **CONESTOGA ROVERS & ASSOCIATES** 

# C) <u>Calibration Checks of the HNu</u>

Calibration checks will be performed in accordance with the following procedures:

 Connect the analyzer to the regulator and cylinder with a short piece (butt connection) of tubing. The calibration gas in the cylinder consists of a mixture of isobutylene and zero air. Isobutylene is nontoxic and safety to use in confined areas. There are no listed exposure levels at any concentration.

It is important that the tubing be clean since contaminated tubing will affect the calibration reading. Do not use cylinder below about 30 psig as a reading below that level can deviate up to ten percent from the rated value.

Safely discard the disposable cylinder when empty. Do not refill this cylinder.

- 2) With the SPAN setting and the function switch at the same positions as listed in the Application Data Sheet or Calibration Report, open the valve on the cylinder until a steady reading is obtained.
- 3) If the reading is the same as the recorded data, the analyzer calibration for the original species of interest is still correct.

MN-COMP 0044706

- If the reading has changed, adjust the SPAN setting until the reading is the same.
- 5) Shut off the cylinder as soon as the reading is established.
- 6) Record and maintain this new SPAN setting.

# 6.5 ANALYTICAL PROCEDURES

This section presents the analytical methods which will be employed by Pace to complete all required analyses.

6.5.1 Overview

All soil, surface water and groundwater samples collected for chemical analyses will be analyzed using SW-846 methods. The methods for performing these analyses are presented on Table 6.5. The analyses of VOC and metals will be performed in a manner consistent with these analytical methods.

MN-COMP 0044707

# TABLE 6.5

# ANALYTICAL METHODS FOR ANALYSIS OF SOIL AND AQUEOUS SAMPLES $^{\rm 1}$

| <u>Matrix</u> | <u>Analysis</u> | Extraction | <u>Method</u>    |
|---------------|-----------------|------------|------------------|
| Soil          | VOC             | 5030       | 8010/8020        |
|               | Metals          |            | 6000/7000 Series |
| Water         | VOC             | 5030       | 8010/8020        |
|               | Metals          |            | 6000/7000 Series |

# Note:

1. All methods are from "Test Methods for Evaluating Solid Waste", SW-846, third edition, September 1988.

MN-COMP 0044708 ...... ----

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 27 of 39

MN-COMP 0044709

**CONESTOGA-ROVERS & ASSOCIATES** 

# 6.5.2 Identification

Identification of all target analytes will be accomplished with an authentic standard of the analyte. When authentic standards are not available identification will be considered tentative.

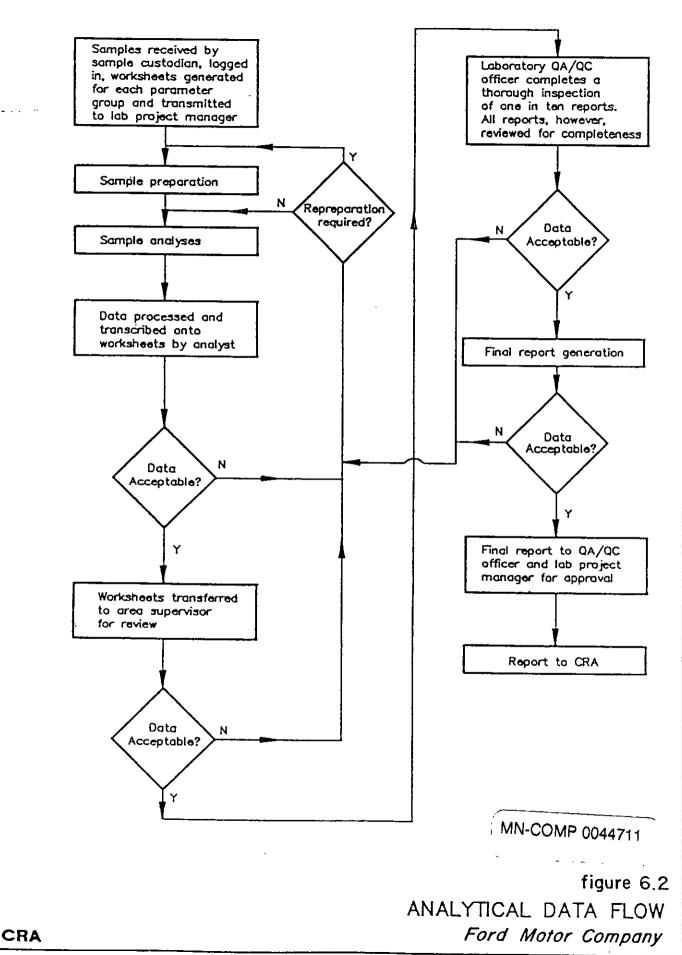
For gas chromatographic determinations of specific analytes, the relative retention time of the unknown will be compared with that of an authentic standard. Since a true identification using GC is not possible, an analytical run for compound confirmation will be performed using a column of a dissimilar phase, according to the specifications in the methods. Peaks must elute within daily retention time windows established for each indicator parameter to be declared a tentative or confirmed identification. Retention time windows are determined via a standard a study defined in each method. Results of the study are to be filed in the laboratory and available for inspection during a QC audit.

# 6.5.3 Quantification

The procedures for quantification of analytes are discussed in the appropriate specific analytical methods.

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 28 of 39

# 6.5.4 Practical Quantitation Limits (PQLs)


The data used to conduct the RI/FS will have PQL detection limits that are consistent with the appropriate analytical methods. The PQLs for chemical analyses were previously presented on Tables 6.2 and 6.3. Specific detection limits are highly matrix dependent. The PQLs listed in these tables are provided for guidance and may not always be technically achievable.

# 6.6 DATA REDUCTION, VALIDATION ASSESSMENT AND REPORTING

Pace will perform analytical data reduction and validation in-house under the direction of the laboratory QA officer. The laboratory QA officer will be responsible for assessing data quality and advising of any data which were related "preliminary" or "unacceptable" or other qualifications. Figure 6.2 illustrates the analytical data flow through the laboratory. Data reduction, validation and reporting by the laboratory will be conducted as detailed in the following. It should be noted, however, that "sign-off" will be required following completion of each step.

- Raw data produced and checked by the responsible analyst is turned over for independent review by another analyst.
- Area Supervisor reviews that data for attainment of quality control criteria presented in the referenced analytical methods.

MN-COMP 0044710



2853-20/08/90-M

- Laboratory Operations Manager reviews that data and a report will be generated and sent to the laboratory quality assurance officer.
- Laboratory Quality Assurance Officer will complete a thorough inspection of all reports.
- Area Supervisor and QA officer will decide whether any sample reanalysis is required.
- Upon acceptance of the preliminary reports by the QA officer, final reports
   will be generated and signed by the laboratory manager.

The data package shall consist of the following:

- detailed case narrative,
- summary of analysis dates,
- method blank sample data,
- surrogate compound recoveries,
- MS/MSD recoveries,
- check sample recoveries,
- executed chain-of-custody forms.

CRA's QA Officer - Analytical Activities will conduct an evaluation of data reduction and reporting by the laboratory. These evaluations will consider the finished data sheets, rinsate data, field duplicate data, and recovery data for surrogate and matrix spikes. The material will be checked for legibility, completeness, correctness, and the presence of requisite dates, initials

MN-COMP 0044712

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 30 of 39

and signatures. The results of these checks will be assessed and reported to the project managers noting any discrepancies and their effect upon the acceptability of the data. All information garnered from QA/QC checks will be discussed in the final RI/FS Report.

Validation of the analytical data will be performed by the CRA QA Officer - Analytical Activities. Validation will be consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988, and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses", July 1, 1988. Assessment of analytical and field data will include checks for data consistency by looking for comparability of duplicate analyses, potential sample contamination as indicated by results of blank sample analyses, laboratory QA procedures, adherence to accuracy and precision criteria, transmittal errors, and anomalously high or low parameter values. The results of data validations will be reported to the project managers, noting any discrepancies and their effect upon acceptability of the data.

Raw data from field measurements and sample collection activities that are used in project reports will be appropriately identified and appended to the report. Where data have been reduced or summarized, the method of reduction will be documented in the report. In addition, field data will be audited for anomalously high or low values that may appear to be inconsistent with other data.

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044713

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 31 of 39

# 6.7 INTERNAL QUALITY CONTROL CHECKS AND FREQUENCY

6.7.1 <u>Field QC</u>

Quality control procedures for field measurements will be limited to checking the reproducibility of the measurement in the field by obtaining multiple readings and by calibrating the instruments (where appropriate).

Quality control of field sampling will involve collecting field duplicates and rinsate blanks in accordance with the applicable procedures.

6.7.2 Laboratory QC

Specific procedures related to internal laboratory QC samples (namely, matrix spikes, surrogate spikes, blanks, check samples and matrix spike duplicates) are detailed in the following subsections.

6.7.2.1 Method Blank

A method blank will be analyzed by the laboratory at a frequency of one per twenty analyses or, in the event that an analytical round

MN-COMP 0044714

consists of less than twenty samples, one reagent blank will be analyzed. The reagent blank, an aliquot of analyte-free water or solvent, will be carried through the entire analytical procedure.

# 6.7.2.2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

A MS/MSD sample will be analyzed at a minimum frequency of 1 in 20 for each method per matrix. Table 6.6 presents a summary of the compounds and acceptable criteria. Percent spike recoveries will be used to evaluate analytical accuracy while percent relative standard deviation or percent difference between the spike and matrix spike duplicate will be used to assess analytical precision.

# 6.7.2.3 Surrogate Compounds

Surrogate compounds are used in all VOC analyses. Every blank, standard and environmental sample, including MS/MSD samples, will be spiked with surrogate compounds prior to purging volatiles.

Surrogate compounds will be spiked into samples according to the appropriate analytical methods. Percent recoveries will fall within the control limits set by procedures specific in the method for analytes falling within the detection limits without dilution. Diluting samples to bring the analyte

CONESTOGA-ROVERS & ASSOCIATES

MN-COMP 0044715

# TABLE 6.6

# PERCENT RECOVERIES AND PRECISION CRITERIA FOR MS/MSD ANALYSES

|                 |                    | % Reco      | % Recovery <sup>1</sup> |  |  |
|-----------------|--------------------|-------------|-------------------------|--|--|
| <u>Analysis</u> | Parameter          | Water       | Soil                    |  |  |
| VOC             | Trichloroethene    | 35-146 (20) | 35-146 (50)             |  |  |
|                 | Chlorobenzene      | 38-150 (20) | 38-150 (50)             |  |  |
|                 | Benzene            | 39-150 (20) | 39-150 (50)             |  |  |
|                 | 1,1-dichloroethene | 28-167 (20) | 28-167 (50)             |  |  |
|                 |                    |             |                         |  |  |
| Metals          |                    | 75-125 (20) | 75-125 (50)             |  |  |
| Metals          |                    | 28-167 (20) | 28-167 (50)             |  |  |

# Note:

1. Values in parentheses are maximum RPD limits.

MN-COMP 0044716

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 33 of 39

concentration into the linear range of calibration may dilute the surrogates below the quantification limit; assessment of analytical quality in these cases will be based on the quality control embodied in the check and MS/MSD samples.

Table 6.7 presents a summary of the surrogate recovery control limits as stated within the analytical methods.

6.7.2.4 <u>Check Samples</u>

As prepared by Pace, each analytical batch will contain a check sample. The check sample will consist of an analyte-free water spiked with MS compounds. Check samples will be carried through all procedures, including extractions, by Pace. Percent recoveries for check samples will be within ten percent of actual analyte concentrations.

# 6.8 PERFORMANCE, SYSTEM AUDITS AND FREQUENCY

For the purpose of external evaluation, performance evaluation check samples from the U.S. EPA and various state agencies are analyzed periodically by Pace.

Internally, the evaluation of data from these samples is done on a continuing basis over the duration of a given project.

MN-COMP 0044717

# TABLE 6.7

# PERCENT RECOVERIES FOR VOC SURROGATE COMPOUND

|                        | % Recov |      |  |
|------------------------|---------|------|--|
| Compound               | Water   | Soil |  |
| α,α,α-trifluorotoluene | 80-120  | -    |  |
|                        |         |      |  |

| MN-COMP 0044718 |   |
|-----------------|---|
|                 | , |

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 34 of 39

The CRA QA Officer - Analytical Activities may carry out performance and/or systems audits to insure that data of known and defensible quality are consistently produced during a program.

System audits are qualitative evaluations of all components of field and laboratory quality control measurement systems. They determine if the measurement systems are being used appropriately. The audits may be carried out before all systems are operational, during the program, or after the completion of the program. Such audits typically involve a comparison of the activities given in the QA/QC plan described herein, with activities actually scheduled or performed. A special type of system audit is the data management audit. This audit addresses only data collection and management activities.

The performance audit is a quantitative evaluation of the measurement system used for a monitoring program. It requires testing the measurement systems with samples of known composition or behavior to evaluate precision and accuracy. A performance/system audit may be carried out by or under the auspices of the MPCA, without the knowledge of the analyst during each sampling event for this program. The scheduling of performance evaluation (PE) audits will be at the discretion of the MPCA.

In addition, one external QA audit may be conducted by CRA prior to analysis of any investigatory samples. It should be noted, however, that any additional external QA audits will only be performed if deemed

MN-COMP 0044719

necessary by either the PRP or CRA project managers or the CRA QA officers. The project laboratory may also undergo PE audit(s) by the MPCA, if so requested.

# 6.9 PREVENTIVE MAINTENANCE

All analytical instruments to be used in this project will be serviced by Pace personnel at regularly scheduled intervals in accordance with the manufacturer's recommendations. Instruments may also be serviced at other times due to failure. Requisite servicing beyond the abilities of Pace personnel will be performed by the equipment manufacturer or their designated representative.

Daily checks of each instrument will be by the analyst who has been assigned responsibility for that instrument. This will include changing GC inlet liners, checking operation of data systems, checking for leaks, etc. Manufacturer's recommended procedures will be followed in every case.

The HNu, pH and conductivity meters will be calibrated in the field as described in Section 6.3.2.3. In addition, the following preventive maintenance measures will be taken in the field:

HNu - The HNu meter is sent annually to the manufacturer for recalibration and cleaning.

**CONESTOGA-ROVERS & ASSOCIATES** 

MN-COMP 0044720

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 36 of 39

# pH, Conductivity - Keep probes clean and free of dirt by rinsing with deionized water.

- Keep deionized water around probes to prevent dehydration.

Water Level Tape - Clean probe and lower three feet of tape with pesticide grade isopropanol and deionized water to prevent hard water and iron build up.

# 6.10 SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION, ACCURACY AND COMPLETENESS

6.10.1 <u>QA Measurement Quality Indicators</u>

6.10.1.1 Precision

Precision will be assessed by comparing the analytical

results between MS/MSD analyses and/or duplicate sample analyses.

| MN-COMP 0044721 |   |
|-----------------|---|
| l<br>\          | J |

#### 6.10.1.2 Accuracy

Accuracy will be assessed by comparing a set of analytical results to the accepted or "true" values that would be expected. In general, surrogate compound recoveries, MS/MSD analyses and check sample recoveries will be used to assess accuracy.

# 6.10.1.3 <u>Outliers</u>

Procedures discussed previously will be followed for documenting deviations. In the event a result deviates significantly from established control limits, this deviation will be noted and its effect on the quality of the remaining data assessed and documented.

# 6.11 CORRECTIVE ACTION

The need for corrective action may be identified by system or performance audits or by standard QC procedures. The essential steps in the corrective action system will be:

 Checking the predetermined limits for data acceptability beyond which corrective action is required;

MN-COMP 0044722

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 38 of 39

- Identifying and defining problems;
- Assigning responsibility for investigating the problem;
- Investigating and determining the cause of the problem;
- Determining corrective action to eliminate the problem (this may include reanalyses of resampling and analyses);
- Assigning and accepting responsibility for implementing the corrective action;
- Implementing the corrective action and evaluating the effectiveness;
- Verifying that the corrective action has eliminated the problem; and
- Documenting the corrective action taken.

For each measurement system, the CRA QA Officer -Analytical Activities will be responsible for initiating the corrective action and the laboratory supervisor will be responsible for implementing the corrective action. The corrective action taken will depend upon the QA/QC criteria that did not meet the necessary criteria, and may range form qualifying the data to resampling at the Site.

MN-COMP 0044723

Section No. 6.0 Revision No. 1 Date: 2/11/91 Page 39 of 39

# 6.12 QUALITY ASSURANCE REPORT TO MANAGEMENT

Management will receive reports on the performance of the measurement system and the data quality following each sampling round and at the conclusion of the report.

Minimally, these reports will include:

- Assessment of measurement and quality indicators, i.e. data accuracy, precision and completeness;
- Results of system audits; and
- QA problems and recommended solutions.

The CRA QA Officer - Analytical Activities will be responsible within the organizational structure for preparing these periodic reports. The final report for the project will also include a separate QA section which will summarize data quality information contained in the periodic QA/QC reports to management, and details and overall data assessment and validation in accordance with the data quality objectives outlined in this QAPP.

MN-COMP 0044724

Section No. 7.0 Revision No. 1 Date: 2/11/91 Page 1 of 3

# 7.0 DATA MANAGEMENT AND DOCUMENTATION

#### 7.1 DATA MANAGEMENT PLAN

Sampling and analytical records will be generated in accordance with the quality assurance plan presented in Section 6. Data generated will be validated prior to inclusion into the database. D-Base and Lotus<sup>™</sup> software will be used as appropriate for computer compilation, tabulation and assessment of data records.

Project reports will be submitted according to the schedule provided in Section 11.

# DATA RECORD

Each data record entered into the database will include the following information:

1. sample location,

2. the date the sample was taken,

3. analyzed parameter,

4. field measurement raw data,

5. laboratory performing the analysis,

6. analytical method and

7. result of analysis (i.e. concentration).

MN-COMP 0044725

Section No. 7.0 Revision No. 1 Date: 2/11/91 Page 2 of 3

# TABULAR DISPLAYS

Data may be tabulated in the following ways:

- 1. unsorted (raw) data,
- 2. summary of data of detected parameters and
- 3. sorting of data according to location, aquifer or constituent monitored.

## **GRAPHICAL DISPLAYS**

Data may be displayed graphically in the following ways:

- display of line graphs of concentration versus time for selected sampling locations noted in the data evaluation,
- 2. displays of the geographical extent of the contamination by use of isopleth maps as noted in the data evaluation and where otherwise appropriate, and
- 3. graphical displays of hydrogeologic data and interpretation as found appropriate.

#### 7.2 DATA AND DOCUMENT AVAILABILITY AND RETENTION

Ford will allow MPCA staff and/or its authorized representatives to inspect and copy all sampling, testing, monitoring or other data transmitted to or generated by Ford pertaining to work undertaken under the RFRA program of work. Ford will allow duplicate/split samples to be

MN-COMP 0044726

Section No. 7.0 Revision No. 1 Date: 2/11/91 Page 3 of 3

collected by MPCA and/or its authorized representatives of any samples collected by Ford pursuant to the work plan. Ford will maintain a central depository of the data, reports and other documents prepared pursuant the work plan. All data, reports and other documents will be preserved by Ford until Ford receives written approval from the MPCA to allow otherwise.

MN-COMP 0044727

Section No. 8.0 Revision No. 1 Date: 2/11/91 Page 1 of 2

#### 8.0 RISK ASSESSMENT

A baseline risk assessment will be conducted for the Site. The risk assessment will provide an evaluation of the actual and potential threat to human health, welfare and the environment posed by the possible threatened releases of hazardous substances, pollutants or contaminants in the absence of any remedial action. The objectives of a baseline risk assessment shall be attained by identifying and characterizing the following:

- An evaluation of the results of the Site investigation showing the actual and potential concentrations of hazardous substances, pollutants or contaminants present in relevant media (e.g. air, soil, groundwater, surface water, sediment and biota) at the conclusion of the RI and projected in the future. The evaluation is expected to focus on VOCs and metals at the Site.
- 2. Identification of the hazardous and toxicological properties and relevant human health and environmental standards criteria for the hazardous substances, pollutants or contaminants found in the Site investigation.
- 3. Environmental fate and transport mechanisms within specific environmental media such as physical, chemical and biological degradation processes and hydrogeological conditions.
- 4. Potential human and environmental receptors.

MN-COMP 0044728

MN-COMP 0044729

**CONESTOGA-ROVERS & ASSOCIATES** 

- 5. Potential exposure pathways and extent of actual or expected exposure.
- 6. Extent of expected impact or threat, and the likelihood of such impact or threat occurring (i.e. risk characterization).
- 7. Level(s) of uncertainty associated with the above items.

The risk assessment will be prepared using the U.S. EPA document "Risk Assessment and Guidance for Superfund", Interim Final, Volume 1 (December 1989) and Volume 2 (March 1989).

Section No. 9.0 Revision No. 1 Date: 2/11/91 Page 1 of 2

# 9.0 SITE SECURITY AND SAFETY PLAN

# 9.1 SITE SECURITY

Current Site operations do not allow for public access to operating facilities. The following Site security control measures are in place:

- 1. The Ford Plant has its own 24-hour per day plant security guards.
- 2. The investigation sites, Site A, Site B and the UST area, are enclosed within the Plant's security fence. The fence is steel chain link 8 feet high.
- The Site is watched by video cameras strategic location above the various Plant areas and all investigation sites.
- 4. The Site C area also is controlled by fencing and is watched by video camera.
- 5. All monitoring wells at the Site are completed with locking protective riser pipes and bumper posts as per the MDH Water Well Code.
- 6. All areas are patrolled by Ford security.
- All Site and Plant visitors must sign in with Plant security before entering the Site. Visitors will be issued passes once access is approved.

MN-COMP 0044730

Section No. 9.0 Revision No. 1 Date: 2/11/91 Page 2 of 2

MN-COMP 0044731

**CONESTOGA-ROVERS & ASSOCIATES** 

# 9.2 HEALTH AND SAFETY PLAN

Appendix J provides the health and safety plan for the Site operations, maintenance and monitoring activities covered by this RI. This plan is consistent with the requirement of:

- OSHA requirement 29 CFR Part 1910.120, Hazardous Waste Operations and Emergency Response; Interim Final Rule, Federal Register, December 19, 1986.
- 2. OSHA requirements 29 CFR part 1910 (General Industry Standards) and 1926 (Construction Industry Standards).
- Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, NIOSGH/OSHA/USCG/EPA, DHHS (NIOSH) Publication Number 85-115, October 1985.

Section No. 10.0 Revision No. 1 Date: 2/11/91 Page 1 of 4

MN-COMP 0044732

CONESTOGA ROVERS & ASSOCIATES

#### 10.0 COMMUNITY RELATIONS PLAN

#### **GENERAL**

The overall goal of the Community Relations Plan (CRP) is to plan for an organized dissemination of information to the public regarding investigation, activities and results upon request. The Ford CRP therefore includes opportunities for comments and input by citizen, community and other groups.

Elements of the Community Relations Plan are:

- Establishment of a communication process in conjunction with the MPCA project manager and MPCA's public information office.
- Ford Plant Employee Relations personnel will be available for communication with persons who have expressed interest (interested persons) to receive as well as provide information.
- 3. Reliable information will be made available to interested persons who have requested to review the information.

Section No. 10.0 Revision No. 1 Date: 2/11/91 Page 2 of 4

# COMMUNITY RELATIONS

The Ford Community Relations Plan Coordinator for this project will be Edward Lloyd - Employee Relations Manager.

The MPCA Coordinator will be J. Todd Goeks.

These Coordinators will keep up to date on all aspects of progress on the RI/FS.

Questions regarding the RI/FS that originate from the public should be first directed to the MPCA Coordinator.

In order to accomplish the CRP goals, Ford will conduct the following:

a. Create and maintain a mailing list of interested parties. Among the persons who shall be included on this list are the MPCA Public Information Officer assigned to this Site, the Mayor of the City of St. Paul, City Council Member Bob Long (representing the City Council of the City of St. Paul), the Chairperson of the St. Paul Parks and Recreation Board, the State Senator and State Representative whose districts include the Site, and any citizen or environmental groups that have expressed an interest.

MN-COMP 0044733 **CONESTOGA-ROVERS & ASSOCIATES** 

Section No. 10.0 Revision No. 1 Date: 2/11/91 Page 3 of 4

MN-COMP 0044734

**CONESTOGA-ROVERS & ASSOCIATES** 

- b. Provide written monthly progress reports to the MPCA as specified in Part
   II.C. (page R-3) of the RFRA. These progress reports will note, as
   appropriate in addition to all monthly activities, the status of:
  - the Remedial Investigation,
  - the Feasibility Study,
  - the Record of Decision, and
  - any interim remedy or response activity.

#### **REPORTS AND DOCUMENTS**

All project reports, progress reports, sampling results and documents will be made available to the MPCA by Ford according to the project schedule. Citizens groups and interested persons can make requests to review the content of these documents by contacting MPCA.

#### PUBLIC COMMENT

Copies of the project RI/FS report will be available through normal public access for review and comment at the MPCA St. Paul offices. Public comments made through the MPCA will be considered in the preparation of final reports, thus ensuring public input on final results.

Section No. 10.0 Revision No. 1 Date: 2/11/91 Page 4 of 4

# PUBLIC INFORMATION

Information from the public should be transferred through the Coordinators to CRA for consideration in the RI/FS. Similarly, information provided by CRA should be through the Coordinators to the public as requested.

CONESTOGA-ROVERS & ASSOCIATES

MN-COMP 0044735

Section No. 11.0 Revision No. 1 Date: 2/11/91 Page 1 of 3

# 11.0 <u>REPORTING AND PROJECT SCHEDULE</u>

#### 11.1 MONTHLY SUMMARY/PROGRESS REPORT

A monthly summary/progress report noting activities conducted under the work plan and the RFRA will be prepared.

The report will provide information on the preceding month and be submitted by the 15th day of the following month.

# 11.2 <u>RI FINAL REPORT</u>

An RI Final Report will be prepared presenting the results and evaluation of data and information obtained by implementation of this work plan and in accordance with the procedures provided in this work plan.

The RI Final Report will provide a screening of possible remedial alternatives as presented in Section 3.0 of this work plan. It is proposed that this report be submitted according to the schedule presented in Section 11.3.

MN-COMP 0044736

Section No. 11.0 Revision No. 1 Date: 2/11/91 Page 2 of 3

# 11.3 <u>RI/FS SCHEDULE</u>

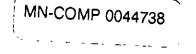
Ford has provided notice of intent to comply with the RFRA and has retained a consultant. Portions of the work related to the RI have been ongoing prior to this work plan submittal.

Submittal of this RI/FS Work Plan is scheduled for August 31, 1990. Based on the RFRA, the following schedule for remaining RI Work Plan tasks is anticipated:

Implement Site Security and Safety Plan Within 10 days of MPCA written approval of RI/FS Work Plan.

Conduct RI Work Contained in RI/FS Work Plan Begin within 2 weeks of MPCA written approval of RI/FS Work Plan.

Submit RI Final Report


Within 150 days of MPCA written approval of RI/FS Work Plan. This differs from RFRA schedule, however, is necessary given the time needed to complete work plan tasks and prepare report after approval of work plan. Should the work plan not be approved by

MN-COMP 0044737

Section No. 11.0 Revision No. 1 Date: 2/11/91 Page 3 of 3

September 30, 1990, weather delays may also occur and should be anticipated in project scheduling.

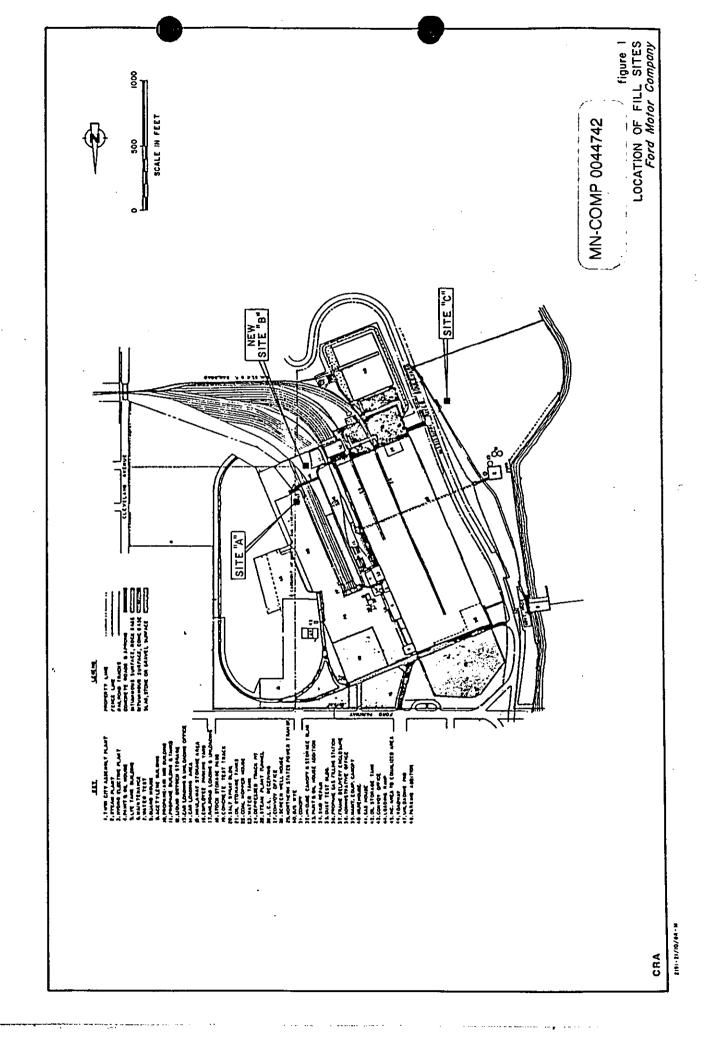
Submit Treatability Studies and Feasibility Study - Detailed Analysis Report (DAR) Within 60 days of MPCA written approval of RI Final Report.

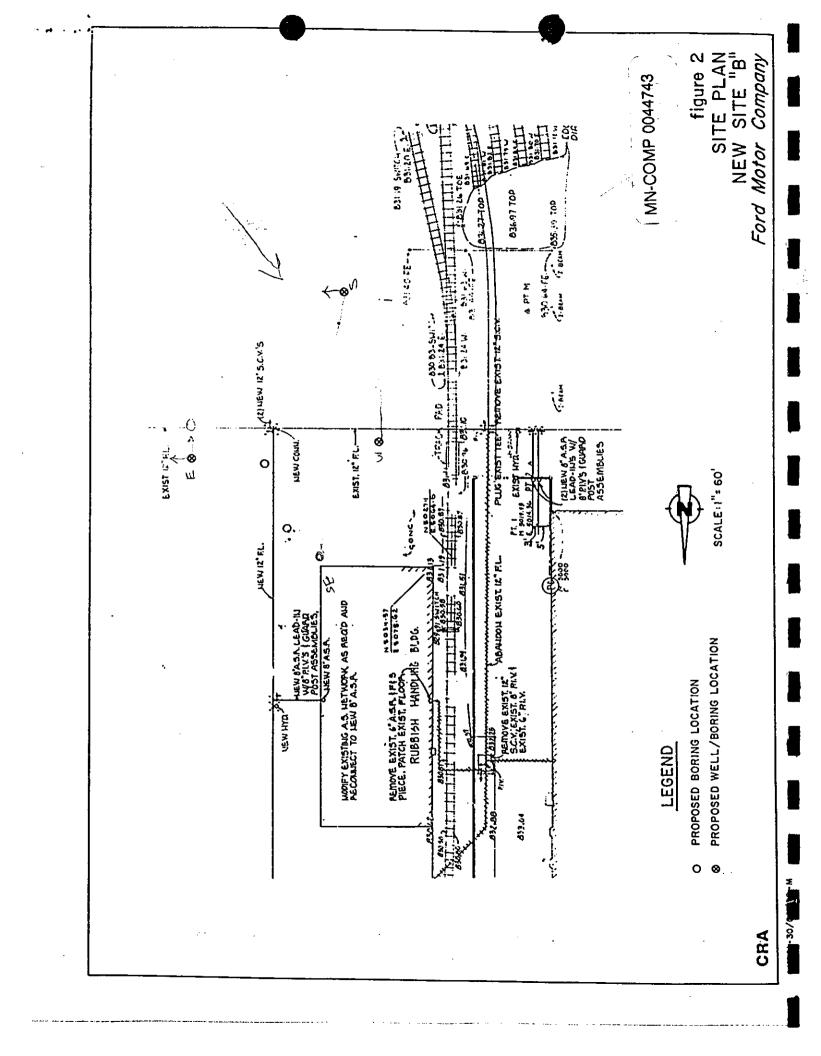


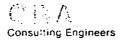
APPENDIX A

•

~


٠.


SCOPE OF WORK LETTERS CRA TO MPCA FORD SITES B AND C




• · ·

. .....







CONESTOGA-ROVERS & ASSOCIATES LIMITED 651 Colby Drive Waterloo, Ontario, Canada N2V 1C2 (519) 884-0510

March 2, 1990

#### Reference No. 2853

• • •

Mr. Todd Goeks Site Response Section MINNESOTA POLLUTION CONTROL AGENCY 520 Lafayette Road North St. Paul, Minnesota 55155

Dear Mr. Goeks:

RE: Ford Motor Company Twin Cities Assembly Plant St. Paul, Minnesota

On behalf of Ford Motor Company (Ford) we are submitting the following information as a result of discussions that occurred at our recent January 31 meeting.

- 1. A Work Plan for supplemental monitoring at Site C (the fill area near the river) is enclosed to provide a summary of groundwater and surface water monitoring to be conducted by Ford. This monitoring would include the installation of one additional well with two subsequent rounds of monitoring.
- 2. Waste characterization information is enclosed to complete your files regarding the paint sludge material excavated during the wastewater treatment plant construction in July 1983. These copies of documents located in Ford's files include:
  - a copy of the laboratory report dated July 7, 1983, for analysis of the excavated material for EP Toxicity. By applying knowledge of the material and processes used, Ford determined that the waste was also non-reactive, non-corrosive and non-ignitable;
  - a copy of the manifests for the three shipments of the excavated material made on July 14 and 27, 1983. We understand from Ford that the waste was shipped and disposed of as a hazardous waste (Waste Classification Number D008) despite the fact that the material was found to be "non-EP Toxic" for lead;
  - a copy of a map that accompanied Ford's Amended Superfund Notification to U.S. EPA dated August 16, 1983, indicating the approximate area of excavation.
- 3. A portion of the south face of the Site C fill area is proposed for landscaping and aesthetic cleanup to remove empty drums and drum parts. Tasks related to this effort will be:
  - the landscaping contractor will be contracted by Ford and receive its primary directions from Ford;
     MN-COMP 0044744

CONESTOGA-ROVERS & ASSOCIATES LIMITED Consulling Engineers

> Reference No. 2853 Page 2

MN-COMP 0044745

- Conestoga-Rovers and Associates (CRA) will assist in delineating the work area and will provide input to Ford on the area appropriate for further aesthetic cleanup and landscaping;
- Once the work area has been delineated, MPCA will be advised prior to work proceeding. As discussed at our meeting, MPCA will provide notification and coordination with other regulatory agencies;
- work will then proceed as weather permits. It is expected that work could begin as early as May 1, 1990;
- after brush and several trees have been cleared from the defined area, approximately 500 cubic yards of soil will be placed over the sloped face and then seeded for aesthetic and erosion control purposes.

Should you have any questions regarding this information, please contact Mr. Jerome Amber of Ford at telephone number (313) 322-4646 or me at CRA's local office, telephone number 639-0913.

Yours Very Truly,

CONESTOGA-ROVERS AND ASSOCIATES

fon L. Christofferson

JLC/kk Enc. cc: J. Kallaus, Ford J. Gibson, Ford D. Rueh, Ford J. Amber, Ford A. Van Norman, CRA

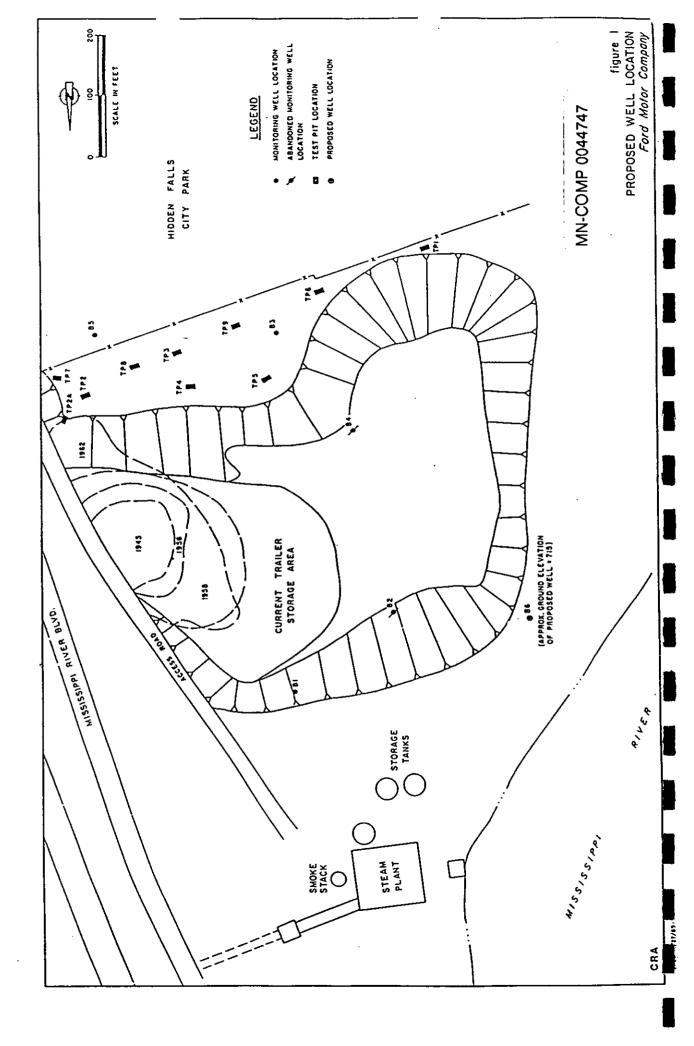
#### ATTACHMENT 1 WORK PLAN SUPPLEMENTAL GROUNDWATER MONITORING SITE C FORD TWIN CITIES ASSEMBLY PLANT ST. PAUL, MINNESOTA

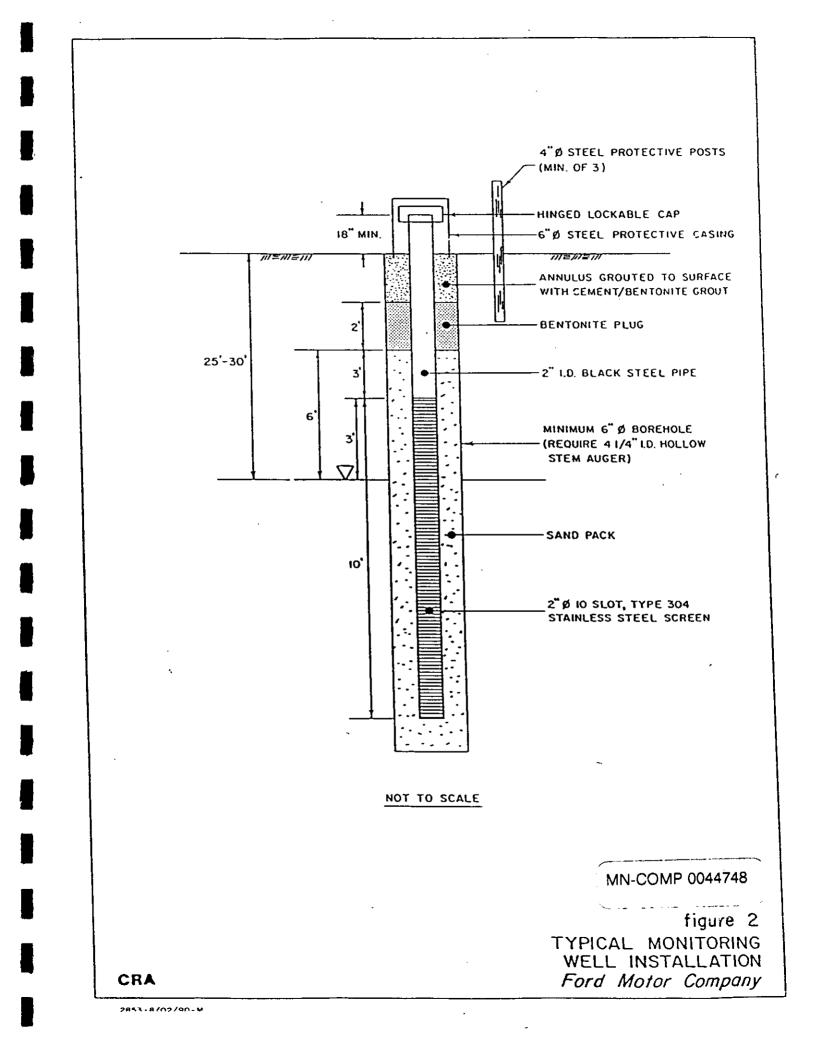
# Task 1 - Installation of Additional Monitoring Well

- Install additional Monitoring Well B6 (see attached Figure 1 for proposed location).
- Well to be installed in accordance with Minnesota Department of Health Water Well Code. Well construction detail provided as attached Figure 2. To be two feet above the 100 year flood plain elevation of 707 feet AMSL (based on Army Corps of Engineers 100 year flood elevation for Lock and Dam #1 tail water) top of well casing would have to be at a minimum elevation of 709 AMSL. Because this may not be implementable, a variance to the Well Code and/or further discussions with MPCA may be required.

Installation of Well B6 would be scheduled to be completed by March 30, 1990.

- Develop well prior to sampling.


#### Task 2 - Groundwater and Surface Water Sampling


- Water level round prior to sampling.
- Sample groundwater wells B1, B3 and B6.
- Sample surface location upstream and downstream of site utilized during 1989 monitoring.
- Each monitoring round to include on blank and one duplicate sample.
- Samples will be analyzed for Halocarbon and Aromatic Organic Compounds by EPA Method 601 and 602 plus cis-1,2-dichloroethylene and ethylacetate. Analysis will also be conducted for the following metals: Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Mercury, Selenium, Silver, Zinc and Nickel. Groundwater samples will be field filtered prior to metals analysis. Surface water samples will not be filtered prior to analysis. Metals analysis for Barium, Cadmium, Chromium, Copper, Lead, Silver, Zinc and Nickel will be conducted using Inductively Coupled Plasma (ICP) analysis EPA Method 6010. Analysis for Arsenic, Selenium and Mercury will be conducted using EPA Atomic Absorption methods.
- Sampling rounds will be tentatively scheduled for early April and early June.

#### Task 3 - Data Monitoring Report

Following completion of the two rounds of sampling and receipt of analytical results, a report summarizing all data and results will be submitted to MPCA. The report will be scheduled for submittal by July 17, 1990.

MN-COMP 0044746





# ENVIRONMENTAL RESEARCH GROUP, INC.

FEB 1 9. 90

<u>---</u>

135 State Street P.O. Box 70006 St. Paul, Minnesota 55107 (612) 293-9268

JULY 7, 1983

FORD MOTOR ATTN: DAVE CLOUTIER 966 S. MISSISSIPPI RIVER BLVD. SAINT PAUL, MN 55116 SAMPLE RECEIVED: 6/15/83

LAB REPORT NO. 9429 PURCHASE ORDER NO. 15 P083 167007

| ANALYSIS      | PAINT SLUDGE | UNITS |
|---------------|--------------|-------|
| E.P. TOXICITY |              |       |
| 1. BARIUM     | 0.27         | MG/L  |
| 2. CHROMIUM   | 0.0043       | MG/L  |
| 3. MERCURY    | <0.0002      | MG/L  |
| 4. SILVER     | 0.0029       | MG/L  |
| 5. ARSENIC    | 0.006        | MG/L  |
| 6. CADMIUM    | 0.014        | MG/L  |
| 7. LEAD       | 2.1          | MG/L  |
| 8. SELENIUM   | <0.001       | MG/L  |
| ,             |              |       |

WILLIAM R. KRUEGER, BRANCH MANAGER

MN-COMP 0044749

۰.

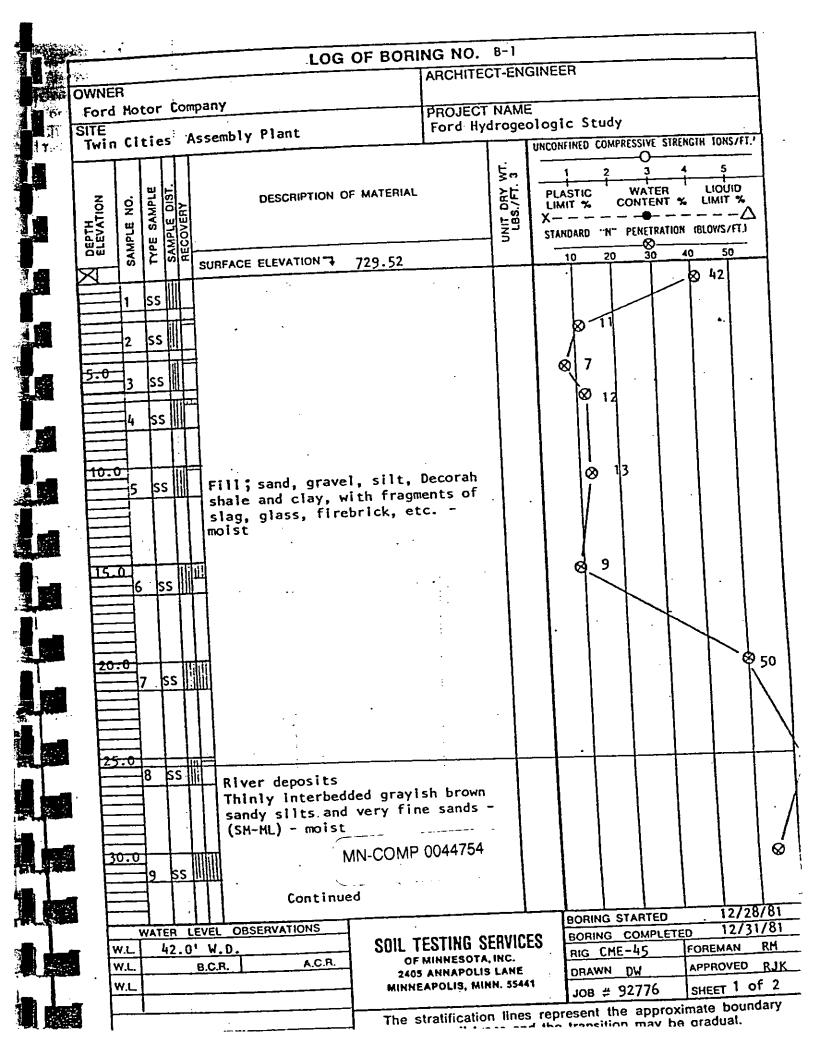
Cleveland

San Francisco

Minneapolis-St. Paul

| and that this facility is licensed to accept more i sub symptotic control of the penetator and hauter and that this (d) is not the the penetator and hauter and that this (d) is not the the penetator and hauter and that the penetator and hauter and hauter and the penetator and hauter an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Illy Additon<br>Type 50 10. Number<br>Type 50 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                                                                                                                                                                                                                 | Phone Number<br>Transporter's EPA<br>Transporter's EPA<br>Transporter's EPA<br>Transporter's EPA<br>Transporter's EPA<br>Transporter's EPA<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>Number<br>MITION<br>MITION<br>Number<br>MITION<br>MITION<br>Number<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION<br>MITION | Sile Addres       COLONICATION CONTRICT         Sile Addres       COLONICATION CONTRICT         FT Nett NCM       COLONICATION CONTRICT         FT Nett NCM       COLONICATION CONTRICT         Generator's Sile EPA LD. Number       Control         J.       Lucre       EPA LD. Number         G       U.S. D.O.T. Shipping Name (or common shipping name).       Location and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and apocial handling instructors and instructors and an instructors and apocial handling instructors and instructors and instructors and instructors and instreation andisto instreating instructors and instreating instructors |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | As Surcharge Assessed?                                                               | and that this factility is licensed to accept those $750$ of by both the generator and havies and that this $90$ be used in administrative and court proceedings. Left be used in administrative and court proceedings. We will | the above identitied wastes and the<br>y a manifest property certified by bo<br>elevend that this manifest see be used<br>it and ahipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TSDF.CERTIFICATION: I certify receipt at this facility of the above identified wastes wastes wates . I also certify that the wastes ware accompanied by a manifest proparty certifit (actify is the destination igglicated on the manifest. Lunderstand that this manifest each describe any significant discrepancies between manifest and shipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      | 1/826570                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Describe any significant discrepancies between manifest and amprovention.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D Nimber                                                                             |                                                                                                                                                                                                                                 | the above identified wastes and the<br>v a manifest property certified by bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DF-CERTIFICATION: I certify receipt at this facility of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and that this facility is licensed to accept more i sub symptotic control of the penetator and hauter and that this (d) is not the the penetator and hauter and that this (d) is not the the penetator and hauter and that the penetator and hauter and hauter and the penetator and hauter an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · L'LA                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and that this facility is licensed to accept those TSDE Signatule Control of the penerator and hauter and that this (). I Rejected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. 1                                                                                 |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ministrative and court proceedings.<br>The shipment cannot be delivered, describe the reaso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| y.<br>Matter and that this facility is licensed to accept those TSDE Signatule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bsequent transporter(s) signature(s)                                                 |                                                                                                                                                                                                                                 | Subsec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ates, together with this manifest, only to the destination actes, together with this manifest. I understand that this manife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Subsequent transporter(s) signature(s)<br>Transporter<br>Transporter<br>Vehicle I.D. No's 1 1 1 1 1 1 1 0<br>Vehicle I.D. No's 1 1 1 1 1 1 1 1 0<br>Vehicle I.D. No's 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      | 1, 1/ 1/443                                                                                                                                                                                                                     | Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ULER'S CERTIFICATION: I certify acceptance of int<br>ular for transportation i further certify that I shall deliv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vanicie NO. 1 1 1 1 1 1 1 20 4 2 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signative                                                                            | ⊢                                                                                                                                                                                                                               | Transfer Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y be used in administrative and court proceedings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Transporter Signa Lia<br>() () () () () () () () () () () () () (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lenge H Kall 414                                                                     |                                                                                                                                                                                                                                 | tion of 1979 PA64 and/or 1989 PA13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ol> <li>EPA, I further certify that the involution volutes a viola<br/>ormation requested by the manifest constitutes a viola</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>10</td> <td>of the Department of Transportation and<br/>ind that the failure to acourately report all</td> <td>ording to the applicable regulations<br/>in the manifast is factual. I understat</td> <td>served are in proper condition for the management of a construction accurate the information contained o</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                   | of the Department of Transportation and<br>ind that the failure to acourately report all                                                                                                                                        | ording to the applicable regulations<br>in the manifast is factual. I understat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | served are in proper condition for the management of a construction accurate the information contained o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0     2     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       0     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                | _                                                                                                                                                                                                                               | named materials are properly class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VERATOR CERTIFICATION: I Cently that the above r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| De la contratione de la contratione de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de la contration de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MN-COMP 0044750                                                                      | -                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MN-COMP 0044750     Date Shi       Generator Signature     MN-COMP 0044750       Dec Signature     MO. Date Shi       Dec Signature     N. COMP 0044750       Dec Signature     N. COMP 004675       Transporter (s) signature(s)     N. Comp 004075       TSDE Signature     N. Comp 004075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADOUD TOLN, SDAN CREATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Generator Signature     MN-COMP 0044750     Dare Shi       Generator Signature     MN-COMP 0044750     Mo. Dare Shi       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D     D       D     D     D       D     D     D <td></td> <td></td> <td>Iructions.</td> <td>0.<br/>Include Salety precentions and special handling ins</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                 | Iructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.<br>Include Salety precentions and special handling ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Generator Signature     MN-COMP 0044750     Date Still       Omerator Signature     MN-COMP 0044750     MN-COMP 00463       Omerator Signature     MN-COMP 0044750     MN-COMP 00463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     Darie Shi       Image: Signature     MN-COMP 0044750     MN-COMP 0044750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Image: Comparison of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature       Image: Signature     Image: Signature     Image: Signature     Image: Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I       I     I     I <td></td> <td></td> <td></td> <td>2.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I     I       I     I     I     I     I     I     I       I     I     I <td></td> <td></td> <td></td> <td>TION REQUIRE XOLD</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TION REQUIRE XOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1       1     1 <td></td> <td></td> <td></td> <td>e he</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Com         May 10         1.5         2.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Container Form Total<br>No. Type 3 3 3 4 9 Weight or Volume Unite                    | <b> </b>                                                                                                                                                                                                                        | name if there is no D.O.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No. Har. Container Form<br>Code No. Type 3 2 3 9 Weight or Volume Units<br>Code No. Type 3 2 3 9 Weight or Volume Units<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | If must then one transporter is to be utilized. pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No. Class No. Type 10 10 10 Volume Unite<br>Code No. Type 10 10 10 Volume Unite<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                    | . I.D. Number<br>B. B. D. B. C. S. S.                                                                                                                                                                                           | Transporter's EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No.     Haz.     Container     Form       No.     Close     No.     Type     Total       No.     Line     D     D     D       No.     No.     D     D     D       No.     Line     Line     Line     Line       No.     D     D     D     D       No.     D     No.     D     D       No.     D     D     D     D       No.     D     D     D     D       No.     D     D     D     D       D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (33) (51-73)                                                                         | 4310                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Image: Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Section State Sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                 | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phone Number<br>Phone Number<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(1 |                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O. NORTHINGTON AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Phone Number<br>Phone Number<br>Ph                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                                                                                                                                                                                                                                 | Transporters Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prome Number       Freiling Sine Era ID. Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       Prome Number       No.       Code       No.       Code       No.       Code       No.       O.       Dense       Dense <td>WATHE DUPORAL</td> <td></td> <td>Primary I</td> <td>Canaralor's Nama</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATHE DUPORAL                                                                        |                                                                                                                                                                                                                                 | Primary I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Canaralor's Nama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

-


|          | _              | WASTE DISPOSAL MANIFEST & Act 64 Waste (HAZARDOUS)                                                                                                                                                                                                                      | (HAZARDOUS)                                                                                                                                           | r 🗌 Act 136 Weste                                             | F                      | U Other                                                  | 2                          | Ĩ                     | 4C22U                                                                                                                                                                                                                              | アゴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|----------------------------------------------------------|----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|          |                | Primary Trans<br>INLAND                                                                                                                                                                                                                                                 | NOLTULION                                                                                                                                             | CONTHOL                                                       |                        | WAYNE                                                    | DISID                      | OBAL                  | DISPOSAL                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |
|          |                | SSISSIPPI MIVEN ILVD . 1544 W                                                                                                                                                                                                                                           | TEH<br>19000                                                                                                                                          |                                                               |                        | Facility Addres 29350                                    | BELEVILLE                  | ISO N.                | SEAVICE                                                                                                                                                                                                                            | рн.<br>195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                               |
|          |                | PAUL MINN 55116 BLOOM BLOOM PAUL                                                                                                                                                                                                                                        | LYDA 4044                                                                                                                                             |                                                               | <u>†</u>               |                                                          | mber                       |                       |                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |
| •        | JIFIC          |                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                               | :                      | 313)                                                     | 697-7830                   | 1830                  | - 12                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                        |
|          |                | De-1027                                                                                                                                                                                                                                                                 | umber 71                                                                                                                                              |                                                               |                        | Eacility (Site EPA 1, 0, Number<br>Τ Τ Τ Ο Ο Κ Β Ο Ο Ο Ο | site`EPA I.0<br>Ω. Å. ₿. Ω | р. Р. р.)<br>р. 9 р.) | 0,6,3,3,3,1,0,0,0                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1 |
|          | <u></u>        |                                                                                                                                                                                                                                                                         | 980                                                                                                                                                   |                                                               |                        | -                                                        |                            |                       | al spinn of sales                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                               |
| <u> </u> | Ì              |                                                                                                                                                                                                                                                                         |                                                                                                                                                       | H period to the second                                        |                        | Container                                                | Form                       | 1 1                   | Total                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hazar<br>or LI                                                                  |
| \$31     |                | 2 U.S. D.O.T. Shipping Name (or common name if there is no D.O.T.<br>5 shipping name).                                                                                                                                                                                  | D.O.T. Hazard Class                                                                                                                                   | U.N.N.A. No. C                                                | 50                     | No. Type                                                 | Solid<br>biupiJ            | <u>ک.</u><br>۲۳۵      | yelpht of Yolume                                                                                                                                                                                                                   | Unite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUN<br>NUN                                                                      |
| 374MC    |                | • • •                                                                                                                                                                                                                                                                   | Outra                                                                                                                                                 | NA9189 1                                                      | 5                      | box 1                                                    |                            |                       |                                                                                                                                                                                                                                    | TD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |
| юя со    | DITAME         |                                                                                                                                                                                                                                                                         |                                                                                                                                                       | C TESS SUITABLY                                               |                        | ź                                                        |                            |                       |                                                                                                                                                                                                                                    | 14 V ] 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |
| 1483N3   | INLO           |                                                                                                                                                                                                                                                                         |                                                                                                                                                       | <ul> <li>A. S. /li></ul>  | ÷                      |                                                          |                            |                       | ا عداد المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم المحلم                                                                                                                    | 1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |
| 10       | ETZAW          |                                                                                                                                                                                                                                                                         |                                                                                                                                                       | nv periodi, or<br>no periodi, or                              |                        |                                                          | 145 14<br>151 14           | <br>                  | ا مركبة المركبة br>المركبة المركبة | 10.60.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |
|          |                | 5                                                                                                                                                                                                                                                                       | п.                                                                                                                                                    |                                                               |                        | • • •                                                    |                            |                       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |
|          | · · · · ·      |                                                                                                                                                                                                                                                                         |                                                                                                                                                       | ar tradical and an and an an an an an an an an an an an an an |                        |                                                          | 22 E<br>1                  | 94<br>72<br>74        | ALL CALCINE STATE                                                                                                                                                                                                                  | 1) 1) 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |
|          | SINAMM         | Liciude Saleiy precentions a<br>EXCAVATED WASAR                                                                                                                                                                                                                         | IS NON TOXIC                                                                                                                                          | , HON KEACTIVE, NON                                           | NON.                   | AV ISOUHOO                                               | <b>XAIS</b>                |                       | AND NON TORITAR                                                                                                                                                                                                                    | TABLE IN A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART OF A PART |                                                                                 |
|          | 00 18 5        |                                                                                                                                                                                                                                                                         | classified, described, packaged, marked and<br>titons of the Department of Transportation and                                                         | <b></b>                                                       | Generator Signature    | ature                                                    | MN                         | MN-COMP               | 0044751                                                                                                                                                                                                                            | II Date<br>MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |
|          | U.S<br>infe    |                                                                                                                                                                                                                                                                         | PA136.1 further understand that this manifest                                                                                                         |                                                               |                        | Å.                                                       | X                          | Kal                   | 00                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7127                                                                            |
| Sares    | HA<br>Wa<br>Wa | the above identified Transporter<br>leliver the hazardous I.D. No.<br>titon specified by the Subsequent<br>vilest can be used in.<br>Transporter                                                                                                                        | No. 1                                                                                                                                                 | 666 0<br>1000                                                 | Subsequent tra         |                                                          | er(s) signature(           | V<br>V                | <ul> <li>and fur trees to<br/><ul> <li>and further solutions</li> </ul> </li> </ul>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                              |
| COMP     | <u> </u>       | 1                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                               |                        |                                                          | - 1                        |                       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |
| S313     |                | TSUP CERTFICATION: I certify receipt at this facility of the above identified wastes and the wastur. I also certify their the westes were accompanied by a manifest property certified by be facting is the destination indicated on the manifest. Lipdosetsadethetinia | nd that this facility is licerised to accept those<br>by both the generator and hauler and that this<br>eucodia administrative and court procordings. |                                                               | Sprature<br>1 Silo EPA |                                                          | NU2001210                  | م<br>لالمالي<br>ال    | - rd Accepted<br>D Rejected                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dale Roce                                                                       |
| 19405    |                |                                                                                                                                                                                                                                                                         | 23/2                                                                                                                                                  | 87                                                            | a Surch                | Was a Surcharge Assessed?                                | (essed?                    |                       |                                                                                                                                                                                                                                    | o,łOdSza –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NBO                                                                             |
|          | AL.            | ALL SPILLS MUST BE REPORTED TO THE MICHIGAN POLLUTION CMERCENCE ALE                                                                                                                                                                                                     | SYS                                                                                                                                                   | 1 V VI                                                        | -170                   |                                                          |                            | i i                   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |

| L              | <b>&gt;</b> ¦- | Primary Transporter's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                               |
|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                |                | n co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
| · · ·          |                | Silo Address 966 5. MIGIDSIPPI RIVER BLVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICE DR.<br>CH 48195                                                                                             |
|                | 211A           | BT PAUL NUM 22110 TO THE PROPERTY AND A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONT |                                                                                                                 |
|                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second second second second second second second second second second second second secon |
|                |                | 1 U.J.Z. 1 OX12-0.22<br>Construct site EPA 10. Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |
|                | _              | WANDOKOOTTO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ia<br>E                                                                                                         |
|                | <u> </u>       | than one T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |
| <u>'</u>       | 1              | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2011                                                                                                            |
|                |                | 2 U.S. D.O.T. Shipping Name (or coinmon name if there is no D.O.T. Hazard Class U.N./N.A. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olume units W                                                                                                   |
| NPLET          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 81X                                                                                                           |
| 00 H           | CITA           | ICITA!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |
| 0145           | NHJ:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199 AN 225 24 20 20                                                                                             |
| ENE            | ENI E          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10112152282411111                                                                                               |
| 9              | LSAN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1. 2011 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                            |
|                | SIN            | Include Salaty procentions and special handling instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TONTZABLE COMPLETE                                                                                              |
|                | IBMMG          | FICAVATRD WASTR, PAINT BUDDE AND SOLL, THIS WABIE IN NUN TULIU, MUR PANDE AND PAINT A PANDE AND WASTR AND PAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                | <u> </u>       | CENERATOR CERTIFICATION: I certify that the above named materials are properly classified, described, packaged, marked and Generator Signature (Annumber 2004) CENERATOR CERTIFICATION: I certify that the above named materials are properly classified, described, packaged, marked and Generator Signature (Annumber 2004) COMP (0044752)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |
|                | <u> </u>       | don the manifest le factual. I understand that the failure to accurately report all of Manual 11 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and 12 and | 0202                                                                                                            |
| ł              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date(s) Rr                                                                                                      |
| A31FC<br>8315. |                | wisities for transportation. I further certify that I shall deliver the hazardous 10. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| сомь"<br>-5-75 |                | Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |
| Ţ              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accepted Date Rec                                                                                               |
| 515ء<br>ز      |                | 15 UF CERTIFICATION: TOURY TOURY TOURY TO AN AND A STATUST Properly Certified by both the generator and having and that the Warter And Warter And Warter and Facility Site EPAJD. Number A statistic is the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of the feature of t | Rejected DZZ &                                                                                                  |
| COMPL<br>TST   |                | 1. Unscribe any significant discrepancies between manifest and shipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIONAL RESPONSE CE                                                                                              |
|                |                | ALL SPILLS MUST UE REPORTED TO THE MICHIGAN POLLUTION EMERGENCY ALERTING SYSTEM, IN MICHIGAN AT BUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |

APPENDIX B BORING AND WELL-LOGS FORD MOTOR COMPANY

4

MN-COMP 0044753



| · · · · ·                                                     | OG OF BORING                         | NO. 8-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |            |                        | ]            |
|---------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|------------------------|--------------|
| OWNER                                                         | AR                                   | CHITECT-EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GINEER           |            | -                      |              |
| Ford Motor Company                                            |                                      | DJECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |            |                        | -{           |
| SITE<br>Twin Citles Assembly Plant                            | For                                  | rd Hydroged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ologic Stu       |            |                        | <u> </u>     |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNCONFINED C     | OMPRESSIVE | STRENGTH TONS/ET.      | '            |
|                                                               |                                      | ξe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 2 3        | 4 5                    |              |
| HT NOTATION                                                   | N OF MATERIAL                        | λ<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Hereita<br>Her | PLASTIC          | CONTEN     |                        |              |
| DESCRIPTIC<br>DESCRIPTIC<br>NOILLE NO<br>HECOVERY<br>RECOVERY |                                      | UNIT DAY<br>LBS./FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                |            |                        |              |
| HTAN HIAN AND AND AND AND AND AND AND AND AND A               |                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            | 10N (BLOWS/FT.)        |              |
| 30 0 SURFACE ELEVATION                                        | •                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 2030       | ÎĨØ                    | 55           |
| 9 SS River deposits<br>Thinly interbed                        | led grayish brow                     | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |            |                        |              |
| sandy silts and                                               | very fine sands                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |                        |              |
| (SM-HL) - moist                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
| 35.0                                                          | <b>P1</b>                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            | 20                     |              |
| 10 SS Light brown ver                                         | y fine sand with<br>little silt - (S | м)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | "          | 30                     | ł            |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
| 40.0           and gravel with                                | ine to coarse sa<br>little silt -    | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |            |                        | $\checkmark$ |
| 11 SS (GM-SM) - moist                                         | to wet                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        | _}⊗          |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        | 7            |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               | vel, little sand                     | d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |            |                        |              |
| 45.0<br>12 SS                                                 | any sacuracea                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               | :                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | ┼╌╢        |                        |              |
| Light brown ver                                               | y fine sand, so                      | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |            |                        |              |
| 50.0<br>13 SS slit, little g                                  | ravel - (SM) - sa                    | ət.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Ø          | 27                     |              |
| End of boring                                                 | at 51.0 feet.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
| 2" PVC well ins                                               | talled                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               | N-COMP 0044755                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |            |                        |              |
|                                                               | ·                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        | :            |
|                                                               | •.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
|                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                        |              |
| WATER LEVEL OBSERVATIONS                                      | 1                                    | . <u></u> ,*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORING S         |            | 12/28/                 |              |
| W.L. 42.0' W.D.                                               | SOIL TESTING                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BORING<br>RIG CH | COMPLETE   | D 12/31/<br>FOREMAN RM |              |
| W.L. B.C.R. A.C.R.                                            | OF MINNEBO<br>2405 ANNAPO            | LIS LANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAWN            | DW         | APPROVED RJ            |              |
| ·····                                                         | MINNEAPOLIS,                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JOB #            | 92776      | SHEET 2 of             |              |
| · · · · · · · · · · · · · · · · · · ·                         | The stratifica                       | tion lines re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |            | mate boundar           | у 👔          |

| LOG OF BORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NG NO.                                                                                        | 2                    |          |                      |            | ·:           |                                              |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|----------|----------------------|------------|--------------|----------------------------------------------|-----------|
| t t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ARCHITE                                                                                       |                      | GINEER   |                      |            |              | <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> | <u> </u>  |
| OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                      |          |                      |            | • •          | •                                            |           |
| Ford Motor Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROJECT                                                                                       | NAM                  |          |                      |            |              |                                              | <u> </u>  |
| SITE<br>Twin Cities Assembly Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ford Hyd                                                                                      |                      | ologic   |                      |            |              | •                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      | UNCONFIN | ED COM               |            | STRENG       | H TONS                                       | /FT       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                                                                                           | Ϋ́с.                 | 1        | 2                    | 3          | 4            | 5                                            |           |
| NO USE SCRIPTION OF MATERIAL<br>HISID AMPLE SAMPLE<br>HTSID AMPLE SAMPLE<br>HTSID AMPLE<br>HTSID AMPLE | :                                                                                             | 2년<br>-              | PLAS     |                      | WATE       |              | LIOUI                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | UNIT DRY<br>LBS./FT. |          | % (                  |            | NT %.        | LIMIT -                                      | %<br>. /` |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      | STANDA   | RD ""N"              |            | ATION (E     | 10WS/F                                       | ĥ         |
| SURFACE ELEVATION 715.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                      |          | 20                   | ⊗-<br>30   | 40           | - 50                                         | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      | Ī        |                      |            |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          |                      |            |              | - 1                                          |           |
| Boulders, cobble and concret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e block                                                                                       |                      |          |                      |            |              | <b>.</b>                                     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                             | [                    |          | 1                    |            |              |                                              |           |
| 5.0 Removed with backhoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . /                                                                                           | ļ                    |          | ļ                    |            |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | <u> </u>             |          |                      |            | <u> </u>     | ·                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          | 1                    |            |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          |                      |            |              |                                              |           |
| Fill, dark brown gravel, sla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ag,                                                                                           | ļ                    |          | Ø                    | 20         |              |                                              |           |
| 10.0       sand and clay, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • .                                                                                           |                      |          | 1                    |            | 1            |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          | ¢                    | 20         |              |                                              |           |
| 2  SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                      |          | 1                    | $\searrow$ |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                             | ļ                    | <b>I</b> | 1                    | Ì          | $\searrow$   |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | <b>_</b>             | ┨┤       |                      | }          | ł            | $\rightarrow \downarrow$                     | _         |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ                                                                                             |                      |          | .                    |            |              |                                              |           |
| 3 SS Dark brown fine to coarse s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and,                                                                                          |                      |          |                      | •          |              |                                              |           |
| trace silt - (SP), moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                             |                      | 1        |                      |            |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                                                                             |                      |          |                      |            |              |                                              | /         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                             |                      |          |                      |            |              |                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          |                      |            | <u> </u>     | x 40                                         | -         |
| 4 SS Light brown, very fine to m<br>sand, trace silt - (SP), we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      | 1        |                      |            |              |                                              | l         |
| Salid, Liace Stite (517, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·L                                                                                            |                      |          | l                    |            |              | []                                           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | 1                    |          | l                    | 1          |              | 1                                            | l         |
| 25.0 Light brown fine to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sand                                                                                          |                      |          | · ·                  | ļ          |              | 1.                                           |           |
| 5 ss with some gravel, trace sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                      |          |                      | · ·        |              | 34                                           |           |
| (SW-SP), wet to saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                      |          | ł                    | 1          |              | 1                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >                                                                                             |                      | 1        | 1                    |            |              |                                              |           |
| MN-COMP 0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 756                                                                                           | ŀ                    | l l      |                      |            |              |                                              |           |
| 30.0 MIN-COMI 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                               | I                    |          | 1                    |            |              |                                              | ł         |
| 6 ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                      |          | 1                    | 1          | 8            | 37                                           | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                             | Ì                    | ł        | 1                    |            | 1            | 1                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | ļ                    |          | <u> </u>             |            |              |                                              |           |
| WATER LEVEL OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                      |          | NG STA               |            |              | 1/18/                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL TESTING SERVICES                                                                         |                      |          |                      |            |              | 1/18/                                        | _         |
| W.L. B.C.R. A.C.R. OF MINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SUIL TESTINU SERVILES<br>OFMINNESOTA, INC.<br>2405 ANNAPOLIS LANE<br>MINNEAPOLIS, MINN. 55441 |                      |          |                      | 15         |              | MAN F                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                      |          |                      |            | APPROVED RJK |                                              |           |
| 2405 ANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                      |          | <u>vn Dv</u><br># 92 |            | -1           | त 1 c                                        | _         |

| L                                     | OG OF BORING NO    |                      | •          |          |           |                   |                       |                 |
|---------------------------------------|--------------------|----------------------|------------|----------|-----------|-------------------|-----------------------|-----------------|
| DWNER                                 | ARCHI              | ECT-ENC              | GINEEF     | 1        |           | •••               | •                     |                 |
| Ford Motor Company                    |                    |                      |            |          |           |                   |                       |                 |
| SITE                                  |                    | CT NAME              |            |          |           | •                 |                       | 1               |
| Twin Citles Assembly Plant            | Ford H             | ydrogeol             | OGIC       | Study    | DOCCON    | COTRON            |                       |                 |
|                                       |                    |                      | UNCONFI    |          |           | 2 21864           | <u> </u>              |                 |
|                                       |                    | 50                   | 1          | 2        | 3         | 4                 | 5                     |                 |
| NOLLY W W                             | IN OF MATERIAL     | <u>≿</u> ⊑́          | PLAS       |          | WAT       |                   | LIQU                  |                 |
| DESCRIPTION                           |                    | 107.8<br>107.8       | LIMIT      | <b>%</b> |           | NI %              | LIMIT                 | $-\Delta$       |
| NO UN BAMPLE DESCRIPTIO               |                    | UNIT DAY<br>LBS./FT. | STANDA     | RD ""N"  |           |                   | relows/               |                 |
| O - O - SUBFACE ELEVATION             | -<br>7             |                      | 10         | 20       | ——⊗<br>30 |                   | 50                    | -<br>-          |
| 3010                                  |                    |                      |            |          | —-T       | Ø,                | 37                    |                 |
| (SW-SP)                               |                    |                      |            |          |           | . 1               | ベー                    |                 |
|                                       |                    |                      |            |          | ļ         |                   |                       | l Í             |
|                                       |                    |                      | ╏╍╍╍┼      |          | {         |                   |                       | $\overline{}$   |
|                                       |                    |                      |            | ]        |           |                   |                       |                 |
| 7 SS                                  |                    | ł                    |            |          | ļ         |                   |                       |                 |
| Brown, fine to                        | coarse sand with   |                      |            |          | Ì         | -                 |                       |                 |
| little gravel,                        | extremely dense -  | ł                    | i i        | ļ        |           |                   | ļ                     |                 |
| (SW), saturated                       |                    |                      |            | ·        |           |                   | 1                     |                 |
| 40.0                                  |                    |                      | ] ]        | ļ        |           |                   |                       |                 |
|                                       |                    |                      | 1          |          |           |                   | -                     |                 |
|                                       |                    |                      |            |          |           | 1                 | ł                     |                 |
|                                       |                    |                      |            |          |           | ł                 |                       |                 |
|                                       | · ·                |                      |            |          |           |                   | 1                     |                 |
| 44.5                                  |                    |                      |            |          |           |                   |                       | ]               |
| End of boring a 2 " PVC well in       | at 44.5 feet.      |                      |            |          |           | <b>.</b>          | <b>.</b>              | <b>.</b>        |
|                                       | Istalled           |                      | 1          |          |           |                   |                       |                 |
|                                       | :                  |                      |            |          |           |                   |                       |                 |
|                                       |                    |                      | <b>!</b> . |          |           |                   |                       | ļ               |
|                                       |                    | l l                  | 1          | 1        |           |                   | 1                     |                 |
|                                       |                    |                      |            | 1.       | Į         |                   |                       |                 |
|                                       |                    |                      |            | 1        |           | · .               |                       | 1               |
|                                       |                    |                      | 1          |          | 1         |                   |                       |                 |
|                                       |                    |                      |            |          | 1         |                   |                       |                 |
|                                       | •                  |                      |            | 1        | 1         |                   |                       |                 |
|                                       |                    |                      |            |          |           |                   |                       |                 |
|                                       | · ·                |                      | ľ          |          |           |                   |                       |                 |
|                                       |                    |                      |            |          | 1         |                   |                       |                 |
|                                       | N-COMP 0044757     |                      |            |          |           |                   | Ì                     |                 |
|                                       | · · · · ·          |                      | ļ          | 1        | ł         |                   | ľ                     |                 |
|                                       | *• <i>.</i>        |                      | 1          | ł        |           | 1                 |                       |                 |
|                                       |                    |                      | _          |          |           | <u> </u>          | 1/19/                 | <u></u>         |
| WATER LEVEL OBSERVATIONS              |                    | -000000              | BOR        | ING STA  | MPI F     | <u> </u><br>Ted 1 | <u>1/18/</u><br>1/18/ | <u>01</u><br>81 |
| W.L. 29.5' W.S.<br>W.L. B.C.R. A.C.R. | SOIL TESTING SE    |                      | RIG        | CME-     | 45        | FOF               | REMAN                 | RM              |
| W.L. B.C.H. J A.C.H.                  | 2405 ANNAPOLIS     | LANE                 | DRA        |          | DW        | APF               | ROVED                 | RJK             |
| W.C.                                  | MINNEAPOLIS, MIN   |                      | JOB        | # 92     |           |                   |                       | of 2            |
|                                       | The stratification | lines re             | Dresen     | t the a  |           | ximat             | e bou                 | ndary           |

|       | ļ            |           |             |        |                  | LC                                    | DG OF BORI    | NG NO.       |                      |              | <del>.</del>          |                                       |              |              | 1         |
|-------|--------------|-----------|-------------|--------|------------------|---------------------------------------|---------------|--------------|----------------------|--------------|-----------------------|---------------------------------------|--------------|--------------|-----------|
| *<br> | OWNE         | R         |             |        | ·                |                                       |               | ARCHITE      | CT-EN                | GINEE        | R                     |                                       |              | · · · ·      |           |
| 1.0   | Ford         |           | or          | Co     | mp               | any                                   |               | i            |                      |              |                       |                                       |              |              |           |
| 3     | SITE         |           |             |        |                  |                                       |               | PROJECT      |                      |              | _                     |                                       |              |              |           |
| a     | Twin         | Clt       | ies         | : A    | 155              | embly Plant                           |               | Ford Hy      | droged               |              |                       |                                       | C CTOL       |              |           |
|       |              |           |             |        | I                |                                       |               | <b>, ,</b>   | Ŀ                    |              |                       | MPRESSIV                              |              | GIR IUN      | S/H./     |
|       | Z            | o         | ۲.E         | 51.    | 1                | DECORINTION                           | N OF MATERIAL |              | ¥σ.                  |              | 2                     | <u>3</u>                              | 4            | <u>5</u>     |           |
|       | TH<br>ATION  | E NO.     | AMF         | 0<br>Ш | ER               | DESCRIPTION                           | OF MATERIAS   | :            | Ϋ́ος<br>Έ            | PLAS<br>LIMI |                       | WA1<br>CONTI                          | ier<br>Ent % |              |           |
| ┛╢    | EP.          | AMPLE     | TYPE SAMPLE | MPL    | §                |                                       |               | 1            | UNIT DRY<br>LBS./FT. | X            |                       |                                       | `            |              | $-\Delta$ |
| ì     | <u>0</u> w   | SAI       | ž           | SA     | Ū,               |                                       |               |              | Э                    |              |                       | " PENET                               | )            |              |           |
|       | $\times$     |           |             |        | $\frac{1}{1}$    |                                       | 701.99        |              |                      |              | <u> </u>              | <u>0 30</u>                           | ) 40         | 50           |           |
|       |              | 1         | <u>ss</u>   | Ш      | Ш                |                                       | ci            |              |                      | ⊗ 3          |                       |                                       |              |              |           |
|       |              | ĺ         |             |        | $\square$        | Dark brown very some silt, trace      |               |              |                      |              |                       |                                       |              |              | •         |
| •     |              | 2         | ss          |        | Ш                | (SM-OL), moist                        |               |              |                      | ⊗ 3          |                       |                                       |              |              |           |
| Ī     | 5.0          |           |             | Π      |                  | · · ·                                 | •             |              |                      |              |                       |                                       | ·            | .            |           |
| 1     |              | 5         |             | Ħ      | Π                |                                       |               |              |                      | 84           |                       |                                       |              | ╤╾┨          |           |
| 3     |              | <u>13</u> | <u>ss</u>   |        | H                |                                       |               |              |                      | ĺ ∖ Ì        |                       |                                       |              |              |           |
| Ì     |              | 1.        |             | Π      | Π                | Light brown, ver<br>sllt - (SP), mois |               | trace        |                      | 8            | <b>_</b>              |                                       |              |              |           |
| -     |              | 4         | SS.         | Ш      |                  | этте (эт7, щот;                       | 5 L           | ۰.           | ł                    | Ň            | $\langle \rangle$     |                                       |              |              |           |
| 1     | 10.0         | <b>ļ</b>  | <u> </u>    | $\Pi$  | Π                | · · · · · · · · · · · · · · · · · · · | ·             | <u>.</u>     |                      |              |                       |                                       |              |              |           |
|       |              | 5         | 55          | II     | 11               | Brown fine to me                      | dium sand t   | race to      |                      |              |                       | 824                                   |              |              |           |
| -     |              | 1         |             |        |                  | little gravel -                       |               |              |                      |              |                       |                                       |              |              |           |
|       |              | 1         |             |        |                  | moist to wet                          |               | 1            |                      |              |                       |                                       |              |              |           |
| -     | 15.0         | <u> </u>  |             |        | Π                | i                                     |               | :            |                      |              |                       |                                       |              |              |           |
|       |              | <u>k</u>  | ßS          | Ш      | Ш                | Brown medium to                       |               |              |                      |              |                       | 8                                     | 29           |              | ļ         |
| 1 -   |              | 1         |             | ł      |                  | some gravel, tra<br>fragments - (SW)  |               |              |                      |              |                       |                                       |              |              | 1         |
|       |              | 1         |             |        |                  | rragments - (Sw)                      | - sacurateu   |              |                      |              |                       |                                       | •            |              |           |
|       |              | <b>]</b>  |             | +-     |                  |                                       |               |              | <u> </u>             |              |                       |                                       |              |              |           |
|       | 20.0         | <b>,</b>  | БS          |        |                  | ÷ .                                   |               | i.           | ł                    |              |                       | 8                                     | 28           |              |           |
|       |              | Ť         | f           | 10     | +                | Gray fine to coa                      |               |              | 1                    |              | ļ                     |                                       |              |              |           |
| _     |              | 1         | 1           | ļ      |                  | silt, some grave<br>(SW) - saturated  |               | -            |                      |              | ļ                     |                                       |              | ļ            |           |
|       |              | ]         | 1           |        |                  | (SW) - Bacuraceu                      |               | :            |                      | 1            |                       |                                       | l            | 1            |           |
|       | 25.0         |           | -           | ┽      | $\frac{1}{1}$    |                                       |               | i            | -                    |              |                       | <del> </del>                          |              |              |           |
|       |              | 4         |             |        |                  | End of boring at<br>2" PVC well inst  | : 24.5 ft.    | ;            |                      | 1            | Į –                   | ł                                     |              | 1            |           |
|       |              | 1         |             |        | ļ                |                                       |               |              |                      | 1            | 1                     | 1                                     |              |              |           |
|       |              | ]         |             |        |                  |                                       |               |              |                      | 1            |                       |                                       |              | 1            |           |
|       |              | 4         |             |        |                  | M                                     | IN-COMP 004   | 4758         |                      | 1            |                       |                                       |              | 1            |           |
|       | <b>'</b>     | 1         |             |        |                  | i i                                   |               | · ·          |                      |              |                       |                                       |              | ł            | •         |
|       |              | Ξ         |             |        |                  |                                       | ••            | :            | 1                    | 1            | {                     |                                       | •            |              |           |
|       |              | 1         |             | ļ      |                  | -                                     |               | •<br>:       |                      |              | 1                     | <u> </u>                              | 1            | <u> </u>     |           |
|       |              |           |             | _      |                  | OBSERVATIONS                          |               |              |                      |              | G STA                 |                                       |              | 11/1         |           |
|       | W.L.<br>W.L. | 1         | 4.0         |        | <u>W.</u><br>.C. |                                       | SOIL TESTI    | NG SERVII    | CES                  | BORIN        | <u>ig co</u><br>1E-45 | MPLETE                                | FOREN        | 11/17<br>(AN | /81<br>rm |
|       | .v.L.        |           |             | 0      | <u>.v</u> .:     | n. j A.U.n.                           | 2405 ANNA     | POLIS LANE   |                      | <u> </u>     | N DW                  |                                       | APPRO        |              | RM<br>RJK |
|       | ,            |           |             |        |                  |                                       | MINNEAPOLI    | S, MINN. 554 | 41                   |              | <b># 927</b>          |                                       | 1            | г <u>1</u> о | f 1       |
|       | '            |           |             |        |                  |                                       | The stratili  | cation line  | 5 80.78              |              |                       | · · · · · · · · · · · · · · · · · · · | _            |              |           |

•

•

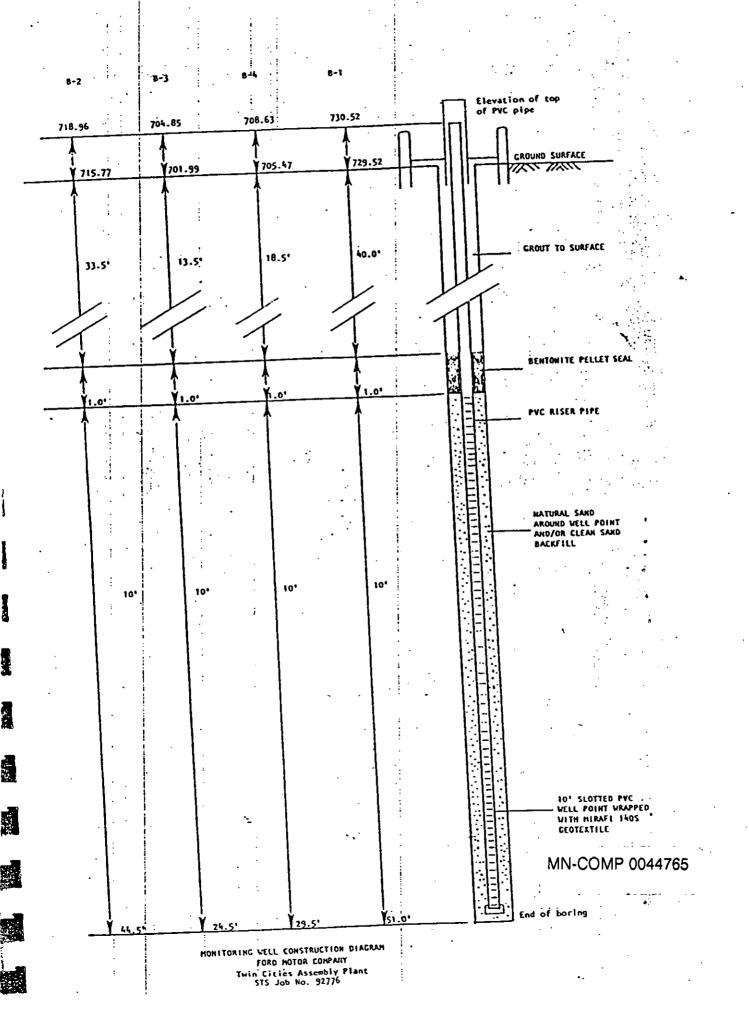
| *<br>1t<br>(OL) -<br>and | NAME              | DIOGIC<br>UNCONFIN<br>1<br>PLAST<br>LIMIT<br>X<br>STANDA<br>10 | Study<br>IED COMP<br>2<br>TIC<br>%<br>RD "N"<br>20<br>7<br>7<br>                                        | WATER                                           |                                                                           | s<br>IQUID<br>MIT %                                                                                                          |
|--------------------------|-------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| and<br>th                | rogeo             | DIOGIC<br>UNCONFIN<br>PLAST<br>LIMIT<br>X<br>STANDA            | 1ED COMF<br>2<br>TIC<br>% (<br>1<br>1<br>20<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7 | WATER<br>CONTENT<br>PENETRAI                    |                                                                           | 5<br>IQUID<br>MIT %<br>                                                                                                      |
| and<br>th                | rogeo             | DIOGIC<br>UNCONFIN<br>PLAST<br>LIMIT<br>X<br>STANDA            | 1ED COMF<br>2<br>TIC<br>% (<br>1<br>1<br>20<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7 | WATER<br>CONTENT<br>PENETRAI                    |                                                                           | 5<br>IQUID<br>MIT %<br>                                                                                                      |
| *<br>1t<br>(OL) -        | 34.               | UNCONFIN<br>PLAST<br>LIMIT<br>X<br>STANDA<br>10                | 1ED COMF<br>2<br>TIC<br>% (<br>1<br>1<br>20<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7 | WATER<br>CONTENT<br>PENETRAI                    |                                                                           | 5<br>IQUID<br>MIT %<br>                                                                                                      |
| *<br>1t<br>(OL) -<br>and | že                | 1<br>PLAST<br>LIMIT<br>X<br>STANDA                             | 2<br>TIC<br>%                                                                                           |                                                 |                                                                           | 5<br>IQUID<br>MIT %<br>                                                                                                      |
| *<br>1t<br>(OL) -<br>and |                   | LIMIT<br>X<br>STANDA<br>10                                     | × 13                                                                                                    |                                                 |                                                                           | MIT %<br>                                                                                                                    |
| *<br>1t<br>(OL) -<br>and |                   | LIMIT<br>X<br>STANDA<br>10                                     | × 13                                                                                                    |                                                 |                                                                           | MIT %<br>                                                                                                                    |
| *<br>1t<br>(OL) -<br>and | UNIT DA<br>LBS./F | LIMIT<br>X<br>STANDA<br>10                                     | × 13                                                                                                    |                                                 |                                                                           | MIT %<br>                                                                                                                    |
| *<br>1t<br>(OL) -<br>and |                   |                                                                | 20<br>7<br>8<br>13                                                                                      |                                                 | 40                                                                        | 50                                                                                                                           |
| *<br>1t<br>(OL) -<br>and | 2                 |                                                                | 20<br>7<br>8<br>13                                                                                      |                                                 | 40                                                                        | 50                                                                                                                           |
| 1t<br>(OL) -<br>and      |                   | 0                                                              | 7                                                                                                       | 4                                               | 8                                                                         | 44                                                                                                                           |
| 1t<br>(OL) -<br>and      |                   |                                                                |                                                                                                         |                                                 | X                                                                         | 44                                                                                                                           |
| (OL) -                   |                   |                                                                |                                                                                                         |                                                 | X                                                                         | 44                                                                                                                           |
| and                      |                   |                                                                |                                                                                                         |                                                 | X                                                                         | 44                                                                                                                           |
| and                      |                   |                                                                |                                                                                                         |                                                 | X                                                                         | 44                                                                                                                           |
| :h                       |                   |                                                                | \<br>                                                                                                   |                                                 | X                                                                         |                                                                                                                              |
| :h                       |                   |                                                                | ⊗.,                                                                                                     |                                                 | X                                                                         |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         |                                                 | X                                                                         |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         | 8                                               | X                                                                         |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         | 8                                               | X                                                                         |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         | 8                                               | 28                                                                        |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         | 8                                               | 28                                                                        |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         |                                                 | $\setminus$                                                               |                                                                                                                              |
| :h                       |                   |                                                                |                                                                                                         |                                                 | $\uparrow$                                                                |                                                                                                                              |
| h                        | 1                 | 1                                                              | 1 1                                                                                                     |                                                 |                                                                           |                                                                                                                              |
| h                        |                   | · ·                                                            | 1                                                                                                       | 4                                               | 1                                                                         | Ъл г                                                                                                                         |
|                          | ļ                 | 1                                                              |                                                                                                         |                                                 |                                                                           | 6 0 5                                                                                                                        |
| 1-SP) -                  |                   |                                                                | <b> </b> ·                                                                                              |                                                 |                                                                           | $\Lambda$                                                                                                                    |
|                          | 1                 |                                                                |                                                                                                         |                                                 | X                                                                         | ſ Į                                                                                                                          |
| :                        |                   | 1                                                              | 1                                                                                                       | 1                                               |                                                                           |                                                                                                                              |
|                          | 1                 | <b>I</b> .                                                     | 1                                                                                                       | $  \lambda$                                     |                                                                           | ļ                                                                                                                            |
| :                        | ł                 |                                                                | 1                                                                                                       | Ø                                               | 4                                                                         | 1                                                                                                                            |
|                          |                   |                                                                | 1                                                                                                       | 1                                               | $\sim$                                                                    | ļ                                                                                                                            |
|                          |                   |                                                                | 1                                                                                                       |                                                 | .                                                                         |                                                                                                                              |
|                          | Į                 |                                                                | ł                                                                                                       |                                                 | 1                                                                         |                                                                                                                              |
|                          |                   |                                                                |                                                                                                         |                                                 |                                                                           |                                                                                                                              |
| · - 、                    | <b>1</b>          | 1                                                              | 1                                                                                                       | -                                               | { }                                                                       |                                                                                                                              |
| )44759                   | 1 -               |                                                                |                                                                                                         |                                                 | ·                                                                         | ł                                                                                                                            |
| ^                        | 1                 | ļ                                                              |                                                                                                         | 1                                               |                                                                           | ļ                                                                                                                            |
|                          |                   |                                                                |                                                                                                         |                                                 |                                                                           |                                                                                                                              |
| <u> </u>                 | -[                |                                                                |                                                                                                         | -                                               |                                                                           |                                                                                                                              |
|                          | ł                 | 1                                                              |                                                                                                         | 1                                               | 1.162                                                                     | 1                                                                                                                            |
|                          | 1                 |                                                                | l ·                                                                                                     | 1 ·                                             |                                                                           |                                                                                                                              |
|                          |                   |                                                                |                                                                                                         |                                                 |                                                                           |                                                                                                                              |
|                          |                   |                                                                |                                                                                                         |                                                 |                                                                           | /19/81                                                                                                                       |
|                          |                   |                                                                |                                                                                                         |                                                 | FOREM                                                                     |                                                                                                                              |
|                          |                   | 1 111/3                                                        |                                                                                                         |                                                 | APPRO                                                                     |                                                                                                                              |
|                          |                   |                                                                | AWN                                                                                                     | 0                                               |                                                                           |                                                                                                                              |
| POLIS LAN                | NE                | DR/                                                            |                                                                                                         | 2776                                            | SHEET                                                                     | 1 01                                                                                                                         |
|                          |                   | NG SERVICES                                                    | NG SERVICES BOR<br>BOTA, INC. RIG                                                                       | NG SERVICES<br>BORING C<br>BORING C<br>RIG CME- | NG SERVICES<br>BORING STARTED<br>BORING COMPLET<br>RIG CME-45<br>DRAWN DW | NG SERVICES<br>SOTA, INC.<br>APOLIS LANE<br>BORING COMPLETED 11/19<br>BORING COMPLETED 11/19<br>RIG CME-45<br>DRAWN DW APPRO |

|                    |              |             |               | LOG OF BOR                                                                        | ING NO.                               | 5                    |          |             |                                        |                           |                |            |
|--------------------|--------------|-------------|---------------|-----------------------------------------------------------------------------------|---------------------------------------|----------------------|----------|-------------|----------------------------------------|---------------------------|----------------|------------|
| OWNER              |              |             |               |                                                                                   | ARCHITE                               | CT-EN                | GINE     | R           |                                        |                           |                | ·          |
| Ford M             | ote          | nr f        | Con           |                                                                                   |                                       |                      |          |             |                                        |                           |                |            |
| SITE               | <u>y . (</u> | <u></u>     |               |                                                                                   | PROJECT                               | NAM                  | =        |             | 1                                      | :                         |                | _          |
| Twin C             | iti          | ies         | As            | sembly Plant                                                                      | Ford Hy                               | droge                | ologi    | c Stu       | dy                                     | •                         |                |            |
|                    | T            |             | Т             |                                                                                   |                                       |                      | UNCON    | INED CO     | MPRESSI                                | E STRENG                  | TH TON         | IS/FT.     |
|                    |              | щ,          | <u>.</u>      |                                                                                   |                                       | Ψ.                   | 1        | 2           | ()<br>3                                | 4                         | 5              |            |
| ŏ                  | ġ            | A P         | °l≿           | DESCRIPTION OF MATERIAL                                                           |                                       |                      | PLA      | STIC        | WA'                                    | ren t-                    | LIOL           | סו         |
| I ES I :           | <u>ا</u> ۲   | SAI         | <u> </u>      |                                                                                   |                                       | 3S./                 |          | т %         | CONT                                   | ENT %                     | LIMIT          |            |
| DEPTH<br>ELEVATION | SAMPLE       | TYPE SAMPLE |               |                                                                                   |                                       | UNIT DRY<br>LBS./FT. | STAN     | DARD "N     | " PENET                                | RATION (                  | BLOWS          | ר∠–<br>נחי |
|                    | ω            | F           | שומ           | SURFACE ELEVATION 7 701.5                                                         |                                       |                      |          | 0 20        | —————————————————————————————————————— |                           | 50             | <u>,</u>   |
|                    | $\neg$       |             |               | Dark brown topsoil, organic                                                       |                                       |                      |          | 8           |                                        | <u> </u>                  | <u> </u>       | ,<br>      |
|                    | !            | ss          | 1             | with some coarse sand and g                                                       |                                       |                      |          |             | <u> </u>                               |                           |                |            |
|                    |              | -           | $\frac{1}{1}$ | Brown medium to coarse sand<br>silt, some gravel - (SP)- m                        |                                       |                      |          |             |                                        |                           | , a            |            |
| 2                  |              | ss          |               | 1 317 - 11 317 - 11                                                               | 0151                                  |                      |          |             |                                        | $\mathbf{W}_{\mathbf{k}}$ | ;              |            |
| 5.0                | -            | =           |               |                                                                                   | · · · · · · · · · · · · · · · · · · · |                      |          |             |                                        |                           |                |            |
|                    |              |             | Πħ            | Crowel and robble come fin                                                        |                                       |                      |          |             |                                        | N.                        |                |            |
|                    |              | SS          | II            | Gravel and cobble, some fin<br>trace silt - (GP), moist                           | e sano,                               |                      |          |             |                                        | ~ <sup>\$</sup>           | 40             |            |
|                    | _            |             |               |                                                                                   | ;                                     |                      |          |             | $ \rightarrow $                        | $\leq$                    |                |            |
| 4                  |              | ss          |               | Dark brown very fine sand,<br>little silt - (SH-SP) - mois                        |                                       |                      | •        | ¢           | 20                                     | I I                       |                |            |
| 10.0               |              |             | Ĩ             | Dark brown sllt with trace                                                        | to little                             |                      |          | 7           |                                        |                           |                |            |
|                    |              | 55          | $\Pi$         | very fine sand, horizontal<br>lenses of black silt - ((ML                         |                                       |                      |          | $\alpha$    | •                                      |                           |                |            |
|                    |              |             | ЩF            | Gray very fine to fine sand<br>trace to little silt - (SP-<br>SOLVENI ODOR, moist | with                                  |                      |          | A L         |                                        |                           |                |            |
|                    |              |             |               | SOLVENT ODOR, moist                                                               | 30)                                   | 1                    |          |             |                                        |                           | l              |            |
|                    |              |             |               | Black fine sand with some s<br>Strong Solvent Odor- <u>wet</u> t                  | ilt (SH)                              | <u> </u>             | <b> </b> |             |                                        | $\vdash$                  | ~              |            |
| 15.0               |              |             | ╥╟            | Gray gravel and cobble, lit                                                       |                                       | 1                    | ļ        |             |                                        |                           |                | $\vdash$   |
|                    | 5            | ss          |               |                                                                                   |                                       |                      |          |             |                                        |                           |                | <u> </u>   |
|                    |              |             |               | Light brown gravel and cobb                                                       | le.                                   | [                    |          |             |                                        |                           |                |            |
|                    |              |             |               | trace sand and trace clay (                                                       |                                       |                      |          |             | 1                                      | 1 ·                       |                | ŀ          |
|                    | 7            | SS          |               | saturated                                                                         |                                       |                      | l ·      | Ì           |                                        |                           |                |            |
| 20.0               | -            |             |               |                                                                                   |                                       | 1                    |          |             |                                        |                           |                |            |
|                    |              | • •         |               | End of boring at 19.5 feet.<br>Boring grouted from bottom                         |                                       | Ì                    |          |             |                                        |                           |                |            |
|                    |              | <b>.</b>    |               | ground surface.                                                                   |                                       |                      |          |             | [                                      | · .                       |                |            |
|                    |              |             |               |                                                                                   | •.                                    |                      |          |             |                                        |                           |                |            |
|                    |              |             |               | ÷                                                                                 |                                       |                      |          |             | {                                      |                           |                |            |
|                    |              |             |               |                                                                                   | •                                     |                      | 1        | ŀ           |                                        |                           |                |            |
|                    |              | ļ           |               | •                                                                                 | 1                                     |                      |          | 1           | ł ·                                    |                           |                |            |
|                    |              |             |               | *(OL-GH)                                                                          | <                                     |                      |          |             |                                        |                           |                |            |
|                    |              | ļ           |               | MN-COMP 004                                                                       | 4760                                  |                      |          | ł           | 1                                      |                           |                |            |
|                    |              |             |               |                                                                                   | •                                     |                      |          |             | ł                                      |                           |                |            |
|                    |              |             |               |                                                                                   |                                       | 1                    |          |             |                                        |                           |                | 1          |
|                    |              |             |               | •                                                                                 |                                       | 1                    | Į.       | ł           | 1                                      |                           | }              |            |
|                    |              |             |               |                                                                                   |                                       | 1                    | Į        |             |                                        |                           |                |            |
| w/                 | ATE          | R L         | EVE           | L OBSERVATIONS                                                                    |                                       |                      | BORI     | I<br>NG STA | RTED                                   | 1                         | - <u>20-</u> 8 | 31         |
| W.L.               | _            | 1.0         | ~~~           |                                                                                   | ING SERVI                             | CES                  | BORI     | NG CO       | MPLET                                  | ED 11-                    | -20-8          | 31_        |
| W.L.               |              |             | 8.0           | R. A.C.R. OF MINN                                                                 | ESOTA, INC.                           |                      |          | ME-45       |                                        | FOREM                     |                |            |
| W.L.               |              |             |               |                                                                                   | APOLIS LANI<br>.18, MINN, 55          |                      | DRAV     |             |                                        | APPRO                     |                | RJK        |
| 1 1                |              |             |               |                                                                                   |                                       |                      | JOB      | # 92        | 776                                    | SHEET                     | · 1 c          | of 1       |

| <b></b>            |                                                                       |     |     |                        |                   | LO                                     | G OF BORI      | NG NO.                                   | 8-6         |           | <u> </u>          |           |          |          |      |
|--------------------|-----------------------------------------------------------------------|-----|-----|------------------------|-------------------|----------------------------------------|----------------|------------------------------------------|-------------|-----------|-------------------|-----------|----------|----------|------|
| OWN                | IER                                                                   |     |     |                        | <del></del>       |                                        |                | ARCHITE                                  | CT-EN       | SINEER    |                   |           |          |          |      |
| 1                  | d Mot                                                                 | tor | ·c  | omr                    | par               | iy <u> </u>                            |                |                                          |             |           |                   |           |          |          |      |
| SITE               |                                                                       |     |     |                        |                   | •                                      |                | PROJECT NAME<br>Ford Hydrogeologic Study |             |           |                   |           |          |          |      |
| Twir               | n Cit                                                                 | tie | 25  | Ass                    | sen               | nbly Plant                             | <u></u>        | Fora nya                                 | rogeo       | UNCONFINE |                   |           | C STRENC |          | 2017 |
|                    |                                                                       | Γ   |     | Π                      |                   | ·                                      |                |                                          |             |           |                   | O         |          |          |      |
|                    |                                                                       | u   |     |                        |                   |                                        |                |                                          | ξe          |           | 2                 | 3         | 4        | 5        | ]    |
| N N                | ġ                                                                     | ļ   |     | <u>≻</u>               |                   | DESCRIPTION                            | OF MATERIAL    |                                          |             | PLAST     |                   | WAT       |          |          | 0    |
| DEPTH<br>BLEVATION | DESCRIPTION<br>BEECONER NO.<br>SAMPLE NO.<br>SAMPLE NO.<br>SAMPLE NO. |     |     |                        |                   | L<br>BS:                               | X              | 76<br>                                   | •           |           |                   | $-\Delta$ |          |          |      |
|                    | SAMPLE                                                                |     | Å N |                        | •                 |                                        |                | · · · · · · · · · · · · · · · · · · ·    | S I         | STANDAR   | D ""N"            |           | RATION ( | BLOWS/F  | τı   |
|                    | ر<br>م                                                                | ۱۴  | - U | ۳                      | s                 |                                        | 759.93'        |                                          |             | 10        | 20                | ®         |          | 50       |      |
|                    |                                                                       | ╀╴  | -†  | $\left  \cdot \right $ |                   | ······································ |                |                                          |             | 8         | 5                 |           |          |          |      |
|                    | 1                                                                     | S   | s   |                        | Į                 |                                        |                |                                          |             |           |                   | 1         |          |          |      |
|                    |                                                                       | 1_  | _   |                        | Į                 | •                                      |                |                                          |             |           | $\mathbf{i}$      |           | 1        |          | •.   |
|                    |                                                                       | s   | s   | IΨ                     | $\left\{ \right.$ |                                        |                |                                          |             |           | f                 | 9 21      | 1        |          | ļ    |
|                    |                                                                       | ╀   | ╢   | ╢─                     | 1                 |                                        |                |                                          | 1           |           |                   |           | ļ        | -        |      |
| 5.0                | <u> </u>                                                              |     |     |                        |                   |                                        |                |                                          |             |           | 1                 |           | •        | ł        |      |
|                    |                                                                       | R   | в   |                        |                   |                                        |                |                                          |             |           | ļ                 |           |          |          |      |
|                    |                                                                       |     |     | <b>  </b> .            |                   |                                        |                | •                                        | 1           |           |                   |           |          |          |      |
|                    |                                                                       |     |     |                        | ŀ                 |                                        |                |                                          |             |           |                   |           |          |          |      |
| 10.                |                                                                       |     |     |                        | ŀ                 |                                        |                |                                          |             |           |                   |           |          |          |      |
|                    | Ĭ                                                                     | ł   |     |                        | F                 | ill; rubble, co                        | bble, grave    | 1, sand                                  |             |           |                   |           |          | Į        |      |
|                    |                                                                       |     |     |                        | a                 | and green shale (                      | (Decorah) c    | lay ∸ _                                  |             |           |                   |           |          |          |      |
|                    |                                                                       |     |     |                        | m                 | olst                                   |                | •                                        |             |           |                   |           |          |          |      |
|                    |                                                                       |     |     |                        |                   |                                        | *              |                                          |             | 1 1       |                   | 1         |          |          |      |
| 15                 |                                                                       |     |     |                        |                   |                                        |                | ·                                        | ł           |           |                   |           |          |          |      |
| Ë                  |                                                                       |     |     |                        |                   | : .                                    |                | :                                        |             |           |                   |           |          | •        |      |
|                    |                                                                       |     |     |                        |                   |                                        | •              | •                                        |             |           |                   | 1         |          |          |      |
|                    |                                                                       | ł   |     |                        |                   | :                                      |                | :                                        |             |           |                   | 1         |          | 1        | ļ    |
|                    |                                                                       |     |     |                        |                   |                                        |                | ·                                        |             |           |                   |           |          |          |      |
| 20                 |                                                                       |     |     |                        |                   |                                        |                |                                          |             |           |                   |           |          |          | ļ    |
|                    |                                                                       |     |     |                        |                   | ·                                      |                | !                                        |             |           |                   |           |          |          |      |
|                    |                                                                       |     |     |                        |                   |                                        |                | i                                        |             |           |                   | l         | · ·      | ł        |      |
| F                  |                                                                       |     |     |                        | ł                 | -                                      |                |                                          |             |           |                   | 1         | ł        |          | 1    |
| F                  |                                                                       |     |     |                        |                   |                                        |                | •                                        | 1           |           |                   |           |          |          |      |
| 25                 | .0                                                                    |     |     | ╢╢                     | +                 |                                        | <u> </u>       |                                          |             |           |                   |           |          |          |      |
| E                  |                                                                       |     |     | <b>    </b>            | _                 | Boulder (Limesto                       | one)           | ·                                        |             |           |                   |           |          | <u> </u> | +    |
|                    |                                                                       |     | ł   |                        |                   |                                        |                | :                                        |             | 1         | ļ                 |           | ļ        |          |      |
|                    |                                                                       |     |     |                        |                   | White Sandstone                        |                | 1<br>P                                   | <b>.</b>    |           | Į                 |           |          | · ·      |      |
| E                  |                                                                       |     | l   |                        |                   | St. Peter For                          | mation         |                                          |             | 1         | 1                 | 1         |          |          |      |
| 30                 |                                                                       |     |     |                        |                   |                                        |                | 0044704                                  |             | 1         | ł                 |           |          | 1        | 1 -  |
| F                  | =                                                                     |     | ļ   |                        | :                 |                                        | MN-COMP        | 0044761                                  |             |           | 1                 |           |          | 1        |      |
| F                  | (                                                                     |     |     |                        |                   | Continued                              | <del>.</del> · |                                          |             | ł         | 1                 |           | 1        |          |      |
| E                  | (                                                                     |     | L   |                        | Ľ                 | ·                                      | <u></u>        |                                          |             | ROBIN     | <u> </u><br>16 ST | ARTED     | 11/      | 18/8     | 1    |
|                    |                                                                       | TE  | R   |                        | -                 | OBSERVATIONS                           |                |                                          | HUEG        |           |                   | OMPLE     |          | 1/24     | /81  |
|                    | /.L.<br>/.L.                                                          |     |     |                        | <u>rý</u><br>C.R  |                                        | OF MIN         | TING SERV                                | riu£ð<br>). | RIG       | CME-              | 45        | FORE     |          | RM   |
| · ⊢                | v.L.                                                                  |     |     | 0.0                    | <u>.n</u>         | ·                                      | 2405 AN        | NAPOLIS LA                               | NE          | DRAW      | N D               | <u>W</u>  |          | OVED     |      |
| l F                |                                                                       |     |     |                        |                   |                                        |                | DLIB, MINN. I                            |             | JOB       | # 92              | 776       |          | T 1      |      |
|                    | <u> </u>                                                              |     |     |                        |                   |                                        |                | ification li                             |             | present   | the               | appro     |          |          |      |

ļ

6


|                    |           |                   |                |     |                                      | ARCHITE                         |                      | SINEE        | R           |                                              | - · ·                                         | ·            |           |
|--------------------|-----------|-------------------|----------------|-----|--------------------------------------|---------------------------------|----------------------|--------------|-------------|----------------------------------------------|-----------------------------------------------|--------------|-----------|
| OWNE               |           |                   | . ,            |     |                                      | ARCHITE                         | UI-EIN               | ⊶ات¥ب ب      | ••          |                                              |                                               |              |           |
| SITE               |           |                   |                |     | npany                                | PROJECT                         |                      | AME          |             |                                              |                                               |              |           |
| Twin               | ı Ci      | itie              | es             | A   | ssembly Plant                        | Ford Hydroge                    |                      |              |             |                                              | C CTOFNO                                      | 111 701      | <u></u>   |
|                    |           |                   | Π              |     |                                      |                                 |                      | UNCONF       | INED COI    | O                                            | E STRENG                                      |              |           |
| ~                  |           | u l               | 1.             |     |                                      |                                 | ξ'n                  |              | 1           | <del>3</del>                                 |                                               | 5            | -         |
| DEPTH<br>ELEVATION | ,<br>v    | SAMPLE            | 0151           | Ϋ́  | DESCRIPTION OF MATERI                | AL                              | UNIT DAY<br>LBS./FT. |              | STIC<br>T % | CONTE                                        | er<br>Ent %                                   | LIQU         | ло<br>Г 🌱 |
| EVA.               | SAMPLE    | ມ<br>ອ            | APLE           | Š   |                                      |                                 | LBS                  | X — ·        |             | •                                            | RATION                                        |              | ,<br>/ग   |
|                    | SAN       | TYPE S            | SAN            | ШШ  |                                      |                                 |                      | 51ANL<br>    |             | 8                                            | )                                             |              | 0         |
| 30.0               |           | ┨                 | $\frac{1}{11}$ |     | SURFACE ELEVATION +                  | <u> </u>                        |                      | <sup>1</sup> |             | <u>,                                    </u> | <u>,                                     </u> |              |           |
|                    | 1         | ĸв                |                |     | White Sandstone                      |                                 |                      |              |             |                                              | · · •                                         |              |           |
|                    | ſ         |                   |                |     | St. Peter Formation                  |                                 |                      | <b> </b>     |             |                                              |                                               | !            |           |
|                    |           |                   |                |     |                                      |                                 |                      | i            |             |                                              |                                               |              | l         |
| -35-               | <u>d</u>  |                   | Щ.             |     |                                      |                                 |                      |              |             |                                              | ┝╼╼┥                                          | <del></del>  | ╀╴        |
|                    | 1         |                   |                |     | End of boring at 34.8 fee            | et.                             | ]                    | l            |             |                                              | ъ.                                            |              | ţ         |
| <u> </u>           |           |                   |                |     | Boring grouted from botto<br>surface | m to ground                     | a                    | 1            |             | ļ                                            |                                               |              |           |
| <b> </b>           |           |                   |                |     | 50,1000                              |                                 |                      |              |             |                                              |                                               |              |           |
|                    | ].        | ·                 |                |     |                                      |                                 |                      |              |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 |                      |              |             | · ·                                          |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 | • .                  |              |             | l                                            |                                               |              |           |
|                    | -         |                   |                |     | 1.                                   |                                 |                      |              |             | }                                            |                                               | ł            |           |
|                    |           |                   |                |     |                                      |                                 |                      |              |             | 1                                            |                                               | [            |           |
|                    | 7         |                   |                |     | · · ·                                |                                 |                      |              |             |                                              | •                                             | 1            |           |
|                    |           | ·                 |                |     |                                      | •.                              |                      |              |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      | :                               |                      |              |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 |                      | ·            |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      | :                               |                      |              |             | ł                                            |                                               | 1            |           |
|                    |           | 1                 | 2              |     |                                      |                                 |                      | 1            |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      | `                               |                      |              |             |                                              | -                                             |              |           |
|                    |           |                   |                |     |                                      |                                 |                      |              |             |                                              |                                               |              | -         |
|                    |           |                   |                |     |                                      | •                               |                      |              |             |                                              |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 |                      | 1            | ł           | 1                                            |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 |                      |              |             |                                              | ļ                                             |              |           |
|                    |           |                   |                |     | •                                    |                                 | <b>.</b>             |              |             |                                              | •                                             |              |           |
|                    |           |                   |                |     | MN-COMP                              | 0044762                         |                      | l            | ł           |                                              |                                               |              |           |
|                    | $\exists$ |                   |                |     |                                      |                                 |                      |              |             |                                              |                                               | ſ            |           |
|                    | _         |                   |                |     |                                      | · · ·                           |                      |              |             | ·                                            |                                               |              |           |
|                    |           |                   |                |     |                                      |                                 |                      |              | RING ST     |                                              | 1                                             | <u> </u>     | /81       |
| w.i                |           | <u>ATEF</u><br>Dr |                | LE\ | EL OBSERVATIONS                      | resting sep                     | VICES                | во           | RING (      | COMPLE                                       | TED 1                                         | 1/24/        | /8        |
| W.I                | _         |                   | 1              | 8   | C.R. A.C.R. OF                       | MINNESOTA, IN                   | IC.                  |              | CME         |                                              |                                               | EMAN<br>ROVE | _         |
| w.i                |           |                   |                |     |                                      | S ANNAPOLIS L<br>EAPOLIS, MINN. |                      |              | AWN D       |                                              |                                               | ET 2         |           |
|                    |           |                   |                |     |                                      | stratification                  | the set of the       |              | B #92       |                                              |                                               |              |           |

| PROJEC | CT NAME: FORD SITE C                                                         |           | HOLE DESIGNATION:                                                                                              | MW-6     |               |             |
|--------|------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|
| PROJEC | CT NO.: 2853                                                                 |           | DATE COMPLETED:                                                                                                | APRIL 1  | or 2<br>0, 19 | 90<br>90    |
| CLIENT | FORD                                                                         |           | DRILLING METHOD:                                                                                               | HSA      |               |             |
| LOCATI | ON: ST. PAUL, MINNEAPOLIS                                                    |           | CRA SUPERMSOR:                                                                                                 | J. MICHE | ELS           |             |
|        | STRATIGRAPHIC DESCRIPTION & REMARKS                                          | ELEVATION | MONITOR                                                                                                        |          | MPLE          |             |
| ft BGS | · · · · · · · · · · · · · · · · · · ·                                        | IT AMSL   | INSTALLATION                                                                                                   |          | S<br>T        | N'<br>V A   |
|        |                                                                              |           | ا ا ا                                                                                                          | N BER    | A<br>T<br>E   | L<br>L<br>E |
|        | ML(SILT)FILL, 10-40% clay, green, dry                                        |           | CONCRETE SEAL                                                                                                  |          |               |             |
| 26     |                                                                              |           | D. S.<br>CONCRETE SEAL                                                                                         |          |               |             |
| 2.5    |                                                                              |           |                                                                                                                |          |               |             |
| 5.0    | ML(SILT)FILL, brick, red-brown, dry                                          |           |                                                                                                                | 1SS      | $\square$     | 28          |
| J.V    |                                                                              | 1         | 6 BOREHOLE                                                                                                     |          | Д             | 20          |
| 7.5    |                                                                              |           | BOREHOLE                                                                                                       | 255      | IXI           | 25          |
| · . •  | GC(GRAVEL)FILL. coarse. dry                                                  | -8.0      |                                                                                                                | 100      | [             | 20          |
| · 10.0 |                                                                              | 10.0      |                                                                                                                | 355      | Д             | 22          |
|        | CL(CLAY)FILL, 10-30% silt, 10-30% sand and coarse gravel, well graded        |           |                                                                                                                | 455      | М             | 40          |
| 12.5   | No recovery                                                                  |           |                                                                                                                |          | H             |             |
|        |                                                                              |           | BENTONITE                                                                                                      | 555      | $\square$     | 100         |
| - 15.0 |                                                                              |           |                                                                                                                | 655      | Μ             | 40          |
|        |                                                                              |           |                                                                                                                |          | Ю             | ,           |
| 17.5   |                                                                              |           | 2".<br>S STEEL CASING                                                                                          | 755      | М             | 17          |
|        |                                                                              |           |                                                                                                                | 855      | $\mathbf{N}$  | 23          |
| - 20.0 |                                                                              |           |                                                                                                                |          | $\square$     |             |
|        |                                                                              |           | 100 EEE                                                                                                        | 955      | Х             | 41          |
| - 22.5 |                                                                              |           |                                                                                                                | 1055     | $\square$     | 0           |
|        |                                                                              |           | 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FEB 100 FE | 1055     | $\square$     | 8           |
| - 25.0 |                                                                              |           |                                                                                                                | 1155     | X             | 19          |
|        | SW(SAND), 20-50% gravel, brown, dry,<br>ALLUVIUM and GC(GRAVEL), 20-50% sand | 26.0      | BENTONITE<br>PELLET SEAL                                                                                       |          | $\bowtie$     |             |
| - 27.5 | ALLUVIUM and GC(GRAVEL), 20-50% sand                                         |           |                                                                                                                | 1255     | Å             | 15          |
|        |                                                                              |           |                                                                                                                | 1355     | $\mathbf{N}$  | 18          |
| - 30.0 |                                                                              |           |                                                                                                                |          | $\vdash$      |             |
|        | MN-COMP 0044763                                                              |           | SAND PACK                                                                                                      |          |               |             |
| - 32.5 |                                                                              | 7         |                                                                                                                |          | 1             |             |
|        |                                                                              |           |                                                                                                                |          |               |             |
|        |                                                                              | 1         |                                                                                                                |          |               |             |


•

`

|              | I NAME: FORD SI | ·                    | BURDEN)              | HOLE DESIGNATION:                                                              | MW-6          |
|--------------|-----------------|----------------------|----------------------|--------------------------------------------------------------------------------|---------------|
| PROJECT      |                 | τω Ο                 |                      | DATE COMPLETED:                                                                | (Page 2 of 2) |
| CLIENT:      | FORD            |                      |                      | DRILLING METHOD:                                                               |               |
|              |                 |                      |                      | CRA SUPERMSOR:                                                                 |               |
| LOCATIO      |                 | L. MINNEAPOLIS       |                      |                                                                                |               |
| 1            | STRATIGRAPHIC D | ESCRIPTION & REMARKS | ELEVATION<br>ft AMSL | MONITOR                                                                        | SAMPLE        |
| t BGS        |                 |                      |                      |                                                                                | NU ALUE       |
| 35.0         |                 |                      |                      | 6"<br>BOREHOLE<br>2"<br>STEEL CASING<br>SAND PACK                              | 1455 14       |
| 37.5<br>40.0 |                 |                      | <b>T</b>             |                                                                                | 1555 18       |
| 42.5         | No recovery     |                      |                      | WELL SCREEN                                                                    | 16SS 25       |
| 45.0         |                 |                      |                      |                                                                                | AC            |
| 47.5         | END OF HOLE @   | 9 48.0 FT. BGS       | - 48.0               | SCREEN_DETAILS:                                                                |               |
| 50.0 .       |                 |                      |                      | Screened Interval:<br>37.0 to 47.0' BGS<br>Length -10.0'                       |               |
| 52.5         |                 |                      |                      | Diameter -2.0"<br>Slot # 10<br>Material -Stainless Stee<br>Sand pack interval: |               |
| - 55.0       |                 |                      |                      | 27.0 to 48.0' BGS<br>Material —Natural                                         |               |
| - 57.5       |                 |                      |                      |                                                                                |               |
| - 60.0       |                 |                      |                      |                                                                                |               |
| - 62.5       |                 | MN-COMP 0044764      |                      |                                                                                |               |
| - 65.0       |                 |                      |                      |                                                                                |               |



L. The



| RO.FC        | OVERBUE<br>T NAME: FORD SITE B                                                | - •             | HOLE DESIGNATION:                                                                          | MW-1                      | 1        |
|--------------|-------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|---------------------------|----------|
|              | T NO.: 2853                                                                   |                 | DATE COMPLETED:                                                                            | AUGUST 1, 1               | 989      |
| CLIENT:      | · · · · · ·                                                                   |                 | DRILLING METHOD:                                                                           | HSA                       |          |
|              |                                                                               |                 | CRA SUPERVISOR:                                                                            | J. MICHELS                |          |
|              |                                                                               | FLEVATION       | MONITOR                                                                                    | SAMPU                     |          |
| EPTH<br>tBGS | STRATIGRAPHIC DESCRIPTION & REMARKS                                           | ft AMSL         | INSTALLATION                                                                               |                           | 14.      |
|              | REFERENCE POINT (Top of Riser)<br>GROUND SURFACE                              | 812.26<br>809.9 | ð<br>F                                                                                     | N S<br>U A<br>B<br>E<br>R |          |
|              | ML—CL(SILT/CLAY)FILL, trace grayvel, dark gray                                |                 | POST COMENT                                                                                | 155                       | 5        |
| 2.5          | ML(SILT), some clay, trace sand, bluish gray<br>moist, product odor           |                 |                                                                                            | 255                       | 6        |
| 5.0          | SP(SAND), medium grained, gray, moist, product odor                           | 805.9           | BOREHOLE                                                                                   | 352                       | 5        |
| 7.5          | CL-ML(CLAY/SILT), some gravel, black organic material, gray, wet to saturated | 803.9           | PELLET SEAL                                                                                | 455                       | 7        |
| 1.0          |                                                                               |                 | 2°#<br>STEEL CASING                                                                        |                           |          |
| 10.0         |                                                                               | 798.4<br>797.9  | WELL SCREEN                                                                                | 5SS X                     | 24<br>70 |
| 12.5         | END OF HOLE & 12 FT BGS                                                       | - 797.9         | SCREEN DETAILS:<br>Screened Interval:<br>10.0' to 12.0' BGS                                |                           |          |
| 15.0         | 2. HNu over auger = 300;                                                      |                 | Length -2.0"<br>Diameter -2.0"<br>Slot # 10                                                |                           |          |
| - 17.5       |                                                                               |                 | Material — Stainless St<br>Sand pack interval:<br>7.0' to 12.0' BGS<br>Material — #30 Sand | ecl                       |          |
| - 20.0       |                                                                               |                 |                                                                                            |                           |          |
| - 22.5       |                                                                               |                 |                                                                                            |                           |          |
| - 25.0       |                                                                               |                 |                                                                                            |                           |          |
| - 27.5       |                                                                               |                 |                                                                                            |                           |          |
| - 30.0       |                                                                               |                 |                                                                                            |                           |          |
| 32.5         | MN-COMP 0044767                                                               |                 |                                                                                            |                           |          |
|              |                                                                               |                 |                                                                                            |                           |          |
| NO           | TES: MEASURING POINT ELEVATIONS MAY CHA                                       | NGE: REFE       | R TO CURRENT ELEVATIO                                                                      | N TABLE                   |          |

.

.

Į

ł

ļ

]

ļ

.

| (OVERBUI<br>ITE B<br>JL, MINNESOTA<br>DESCRIPTION & REMARKS<br>RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILLT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor<br>ovician Platteville Formation):<br>testone<br>0 12 FT. BGS<br>S HNu = 200 ppm<br>S HNu = 200 ppm | ELEVATION<br>ft AMSL<br>813.24<br>810.4 | HOLE DESIGNATION: M<br>DATE COMPLETED: A<br>DRILLING METHOD: H<br>CRA SUPERVISOR: J<br>MONITOR<br>INSTALLATION<br>DC CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CROUT<br>CRO | UGUST 2, 1989<br>ISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JL, MINNESOTA<br>DESCRIPTION & REMARKS<br>RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor                                                                                                                           | ft AMSL<br>813.24<br>810.4<br>802.4     | DATE COMPLETED: A<br>DRILLING METHOD: H<br>CRA SUPERVISOR: J<br>MONITOR<br>INSTALLATION<br>DC GROUT<br>CG CROUT<br>CG CROUT                                                                                                                                                                                                                                                                                                                                  | NUGUST 2, 1989         ISA         ISA         MICHELS         SAMPLE         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N |
| DESCRIPTION & REMARKS<br>RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor<br>ovician Platteville Formation):<br>testone<br>Q 12 FT. BGS                                                                              | ft AMSL<br>813.24<br>810.4<br>802.4     | DRILLING METHOD: H<br>CRA SUPERVISOR: J<br>MONITOR<br>INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISA<br>MICHELS<br>N SAMPLE<br>N ST N<br>M A<br>E E UU<br>R E E<br>1SS 5<br>2SS 7<br>3SS 6<br>4SS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DESCRIPTION & REMARKS<br>RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor<br>ovician Platteville Formation):<br>testone<br>Q 12 FT. BGS                                                                              | ft AMSL<br>813.24<br>810.4<br>802.4     | CRA SUPERVISOR: J<br>MONITOR<br>INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A MICHELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DESCRIPTION & REMARKS<br>RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor<br>ovician Platteville Formation):<br>testone<br>Q 12 FT. BGS                                                                              | ft AMSL<br>813.24<br>810.4<br>802.4     | MONITOR<br>INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE<br>N S N<br>U T V<br>B T U<br>R E U<br>1SS 5<br>2SS 7<br>3SS 6<br>4SS 1<br>5SS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RENCE POINT (Top of Riser)<br>IND SURFACE<br>ILT)FILL, some gravel, gray, dry<br>AY), gravelly, gray and black,<br>dor<br>ovician Platteville Formation):<br>nestone<br><b>0</b> 12 FT. BGS                                                                                                | ft AMSL<br>813.24<br>810.4<br>802.4     | INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N S N<br>U A T LUE<br>1SS 5<br>2SS 7<br>3SS 6<br>4SS 1<br>5SS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AY), gravelly, gray and black,<br>dor<br>evician Platteville Formation):<br>mestone<br>12 FT, BGS                                                                                                                                                                                          | <u>810.4</u><br>802.4                   | CSC CREEN DETAILS:<br>Screened Intervol:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M     A       BE     E       1SS     5       2SS     7       3SS     6       4SS     1       5SS     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AY), gravelly, gray and black,<br>dor<br>evician Platteville Formation):<br>mestone<br>12 FT, BGS                                                                                                                                                                                          | 802.4                                   | DOLL SCREEN DETAILS:<br>Screened Intervol:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 255 7<br>355 4<br>455 1<br>555 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                            |                                         | Length – 2.0°<br>Diameter – 2"<br>Slot # 10<br>Material – Stainless Stee<br>Sand pack interval:<br>7.0° to 12.0° BGS<br>Material – #30 Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                            |                                         | MN-COMP 004476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                            | RING POINT ELEVATIONS MAY CH            | DING DOINT FLEVATIONS MAY CHANGE: REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MN-COMP 00447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                 | STRATIGRAPHIC AND II<br>(OVERBU                  | NSTRUME<br>JRDEN)    | NTATION LOG                                                           | (L                             |
|-----------------|--------------------------------------------------|----------------------|-----------------------------------------------------------------------|--------------------------------|
| PROJE           | CT NAME: FORD SITE B                             |                      | HOLE DESIGNATION: 1                                                   | W-3                            |
| PROJE           | CT NO.: 2853                                     |                      | DATE COMPLETED:                                                       |                                |
| CLIENT          | FORD                                             |                      | DRILLING METHOD:                                                      |                                |
| LOCATI          | ON: ST. PAUL, MINNESOTA                          |                      |                                                                       | J. MICHELS                     |
| DEPTH<br>ft BGS | STRATIGRAPHIC DESCRIPTION & REMARKS              | ELEVATION<br>ft AMSL | MONITOR<br>INSTALLATION                                               | SAMPLE                         |
|                 | REFERENCE POINT (Top of Riser)<br>GROUND SURFACE | 813.22<br>810.2      |                                                                       | N S<br>U A<br>B<br>E<br>E<br>E |
|                 | Concrete                                         | 809.7                | CO CEMENT                                                             | <u>R</u>                       |
| - 2.5           | SW(SAND)FILL, medium coarse, brown, moist        |                      |                                                                       | 155 X                          |
| - 5.0           | ML(SILT), some sand, blue-green, moist           | 806.2                | BOREHOLE                                                              | 255                            |
| 7.5             |                                                  |                      |                                                                       | 355                            |
| - 10.0          | OL(SILT), sandy, black, moist to saturated       |                      | 2"<br>STEEL CASING                                                    | 455 X                          |
| 10.0            |                                                  |                      | WELL SCREEN                                                           | 5SS 📈                          |
| 12.5            | END OF HOLE O 12 FT. BGS                         | 798.2                | SCREEN DETAILS:<br>Screened Intervat:                                 |                                |
| 15.0            |                                                  |                      | 10.0° to 12.0° BGS<br>Length -2.0°<br>Diameter -2"<br>Slot # 10       |                                |
| 17.5            |                                                  |                      | Material — Stainless Stee<br>Sand pack interval:<br>7.0' to 12.0' BGS |                                |
| 20.0            |                                                  |                      | Material — #30 Sand                                                   |                                |
| 22.5            |                                                  |                      |                                                                       |                                |
| 25.0            |                                                  |                      |                                                                       |                                |
| 27.5            |                                                  |                      |                                                                       |                                |
| 30.0            |                                                  |                      |                                                                       |                                |
| 32.5            | MN-COMP 0044769                                  |                      |                                                                       |                                |
| -2.5            |                                                  |                      | •                                                                     |                                |
| NOTES           | MEASURING POINT ELEVATIONS MAY CHAN              |                      |                                                                       |                                |

|                      | IAME: FORD SITE B                                                 |                      | HOLE DESIGNATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BH-A                           |
|----------------------|-------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| PROJECT N            |                                                                   |                      | DATE COMPLETED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUNE 19, 1989                  |
| CLIENT:              | FORD                                                              |                      | DRILLING METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                              |
| LOCATION:            |                                                                   |                      | CRA SUPERMSOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|                      |                                                                   | <b>E C U T O U</b>   | MONITOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE                         |
| DEPTH   STR<br>H BGS | RATIGRAPHIC DESCRIPTION & REMARKS                                 | ELEVATION<br>ft AMSL | INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |
|                      | GROUND SURFACE                                                    | 810.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N S N<br>U A A<br>B T L<br>E E |
|                      | oncrete                                                           | 809.5<br>809.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155 X 7                        |
| \pr                  | P(SAND)FILL, medium grained, tan, dry,<br>roduct odor             | 003.0                | BOREHOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| 2.5 M                | L(SILT), sandy, some clay, black and gray,<br>joist, product odor |                      | CEMENT/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| ·                    |                                                                   |                      | COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN | 255 2                          |
| 5.0                  |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   | 200 C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 355 X 5                        |
| - 7.5 EI             | ND OF HOLE • 7.5 FT. BGS                                          | - 802.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 10.0               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 12.5 N             | lote: 1SS = OVA = 40 ppm                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 15.0               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 17.5               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 20.0               | ×.                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      | ₹                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 22.5               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 25.0               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 1 77 E               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 27.5               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 30.0               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 30.0               | MN-COMP 0044770                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| - 32.5               |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| 52.5                 |                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                      |                                                                   |                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |

.

| PRO.IF(                                                                   | T NAME: FORD SITE B                                                                                |           | HOLE DESIGNATION:            | 8HB                                                                                                               |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                           | T NO.: 2853                                                                                        |           | DATE COMPLETED:              | JUNE 19, 1989                                                                                                     |
| CLIENT                                                                    |                                                                                                    |           | DRILLING METHOD:             | HSA                                                                                                               |
| LOCATI                                                                    |                                                                                                    |           | CRA SUPERVISOR:              | J. MICHELS                                                                                                        |
| _                                                                         |                                                                                                    | ELEVATION | MONITOR                      | SAMPLE                                                                                                            |
| DEPTH<br>ft BGS                                                           | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                | ft AMSL   | INSTALLATION                 | N S V                                                                                                             |
|                                                                           | GROUND SURFACE                                                                                     | 810.0     |                              | M A A<br>B T L<br>E E L<br>R E                                                                                    |
| - 2.5<br>- 5.0<br>- 7.5<br>- 10.0<br>- 12.5<br>- 15.0<br>- 17.5<br>- 20.0 | 2SS OVA = 40 ppm<br>3SS OVA = 45 ppm<br>4SS OVA = 40 ppm<br>5SS OVA = 150 ppm<br>6SS OVA = 100 ppm | 809.5     | BORDHOLE<br>BORDHOLE<br>BOUT | 1SS       10         2SS       2         3SS       3         4SS       1         5SS       6         6SS       10 |
| - 25.                                                                     |                                                                                                    |           |                              |                                                                                                                   |
| - 27.                                                                     | 5                                                                                                  |           |                              |                                                                                                                   |
| - 30.                                                                     | 0                                                                                                  |           |                              |                                                                                                                   |
| - 32                                                                      | 5 MN-COMP 0044771                                                                                  |           |                              |                                                                                                                   |

. 7

Ť

## APPENDIX C

WELL ABANDONMENT LOGS FORD SITE C

MN-COMP 0044772

-

-----

\_)

24 (0) 42

GME CONSULTANTS, INC.

CONSULTING ENGINEERS 14000 21st Ave. No. / Minneapolis, MN 55447 / 612/559-1859

June 6, 1989

Mr. Steve Mockenhaupt Conestoga-Rovers & Associates 382 West County Road D St. Paul, Minnesota 55112

GME Project No. 2014

Re: Report for monitoring well abandonment and monitoring well surface protection at the Ford Plant in South St. Paul, Minnesota

Dear Mr. Mockenhaupt:

On March 3, 1989, we received authorization for the abandonment of existing monitoring wells, and the installation of surface protection at this site in Minneapolis, Minnesota. In accordance with your acceptance of our proposal, we have completed our services. This project was completed in compliance with our understanding of Minnesota Department of Health (MDH) regulations. Enclosed is our report including the MDH well abandonment logs, and a description of our services.

## MONITORING WELL ABANDONMENT

Two existing monitoring wells (B-2 and B-4) were abandoned. Our drill crew retrieved as much down-hole 2 inch PVC riser pipe as possible by hand and with the Mobile B-24 rig. The wells were then grouted with neat cement to within two feet of the surface. Native soil was used to fill the remaining space in the boreholes.

You also requested that we upgrade the above ground protection for three existing monitoring wells at the site. Our drill crew installed three, 4 inch diameter by 8 foot long protective steel posts and one, 4 inch diameter by 5 foot long locking protective steel cap at B-1, B-3, and B-5. At B-5, the existing 2 inch PVC riser pipe was cut-off below grade and replaced with a new section. All the protective posts were cemented into place.

MN-COMP 0044773

GEOTECHNICAL • MATERIALS • ENVIRONMENTAL SOILS

WILLIAM C. KWASNY, P.E.

THOMAS P. VENEMA, P.E. KENNETH J. LaFOND, P.E. WILLIAM E. BLOEMENDAL, P.E.

#### Mr. Steve Mockenhaupt

2

The monitoring well abandonment procedures and above ground protection installation were supervised by our Minnesota Licensed Water Well Driller in accordance with MDH regulations.

#### GENERAL QUALIFICATIONS

This report is a summary of the services performed at the Ford Plant site in South St. Paul, Minnesota. No warranty, either expressed or implied, is presented in this report with respect to the soil and groundwater conditions at this site.

We appreciate the opportunity to be of service to you for this project. If you have any questions regarding this report or if we may be of further assistance to you, please do not hesitate to contact us.

Sincerely,

GME CONSULTANTS, INC. hands amo

James A. Nordstog Director of Drilling Operations Hydrogeologist

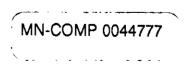
homas I Move

Thomas H. Moore Minnesota Licensed Water Well Driller

Enclosures: MDH Monitoring Well Abandonment Logs

JAN:WCK:jan

MN-COMP 0044774


STATE OF MINNESOTA DEPARTMENT OF HEALTH ... #2 ABANDONED WELL RECORD 1. LOCATION OF WELL MINNESOTA UNIQUE WELL NO. (leave blank if not known) County Name <u>amseu</u> Township Hame unship Humber Range Rumber Section No. Frection 4. WELL DEPTH (completed) Date sealed (н) 44.5 m. 23 Ö 5-31-89 NWSE \$ Numerical Street Address and City of Well Location or Distance from Road 5. DRILLING METHOD (17 known) Intersection [ Cable tool 4 Reverse 7 Driven 10 Dug toom Mississipp; Blud, St. Paul, Mm Z Hollow Rod S Air - B Bored 11 500 3 Rotary 6 Jetted St Power Auger Show exact location of well (in section grid with "X") Sketch map of well location 6. OBSTRUCTIONS Ford Plant Vell obstructed 🗋 Yes 🚺 Ko Obstructions removed Tes D No If obstructions cannot be enclosed removed. contact HDH before sealing. Ε v 7. USE Ī Monitoring · 1 Domestic 8 Heat Loop 9 Public 2 Irrigation 9 Industry 3 Test Vell 6 Nunicipal 10 Comercial 7 Air Conditioning 11 \_ 1 PROPERTY OWNER'S MANE Mailing Address if different than 8. CASING(S) Ford Mutor Company property address indicated above 4 Threaded 1 Black 966 5. Mississippi Blvd. St. Paul, Mn Z[] Galv. S Velded 6 Statuless Steel Not Known J Plastic MARDNESS OF з. FORMATION LOG in, to \_ COLOR FORMATION FROM 10 If not known, indicate formation log from new well or nearby well. • 1n. to \_ ft. 9. SCREEN cobbles, boulders 0 Wot nown Screened well from ft. to (If known) gravel, sand 7 13 DVDUM Open Hole from \_ ft. to ft. 10. STATIC WATER LEVEL \_\_\_\_\_\_\_ft. \_\_\_\_\_\_ below \_\_\_\_\_\_ above land surface Date t Sand brown 13 25 0and-*AVAVLL* 25 14 nwn Date Measures 11-18-81 11. WELLHEAD COMPLETION Found Buried I Pitless Adapter 2 Besement offset 3 Well Pit 16. REMARKS, ELEVATION, SOURCE OF DATA - CASINGS REMOVED, CASINGS PERFORATED, ETC. 12. GROUTING INFORMATION Enclosed site map. W Meat Comment 2 Bentonite 1 Clmint Grout material Clment 100 Deo 2 Ft. cv. yas Site min #2 near cement 13. NEAREST SOURCES OF CONTAMINATION feet \_\_\_\_ direction type Vell disinfected before sealing? [] Yes Hot Present N/A Turbine S Reciprocating 14. PUNP Removed Type: I Submersible ર] મહ Centrifugal •**O**\_ 15. EXISTING WELLS (Please sketch locations of abandomed and active wells in remarks section or on back.) Other unused woll(s) on property? [] Yes [] No Abandoned: [] Permanent [] Temporary [] Not sealed 17. WATER WELL CONTRACTORS CERTIFICATION This well was sealed under my jurisdiction and this report is true to the best of my knowledge and belief. MN-COMP 0044775 GME Consultants, Inc Licensee Business Na License No. 11=HR Address 14600 101 Mm Date 110042 Date 6-9-81 lom OFFICIAL ABANDCHED WELL RECORD (May be used for Property Transfer) Name of Driller INPORTANT: FILE WITE DEED

STATE OF MINNESOTA DEPARTMENT OF HEALTH \_\_\_\_ #4 ABANDONED WELL RECORD MINNESOTA UNIQUE WELL NO. (leave blank 16 not known) L. LOCATION OF VEL County Name amsur Township Name Range Number Section No. Fraction 4 of 4. WELL DEPTH (completed) mship Ku Date sealed 230 ft. 29.5 5-31-89 NW- 5E 5 Numerical Street Address and City of Well Location or Distance from Road S. DRILLING METHOD (If known) 1 Cable tool 4 Reverse 7 Driven 10 Dug Intersection trom Mississippi Blvd, St. Vaul, Mm Z Hollow Rod S Air 8 Bored 12 6 Jetted St Power Auger 1 totary Show exact location of well [in section grid with "1"] Il location 6. OBSTRUCTIONS Ford Planty Enclosed Netrop Vell obstructed 🗖 Yes 🕅 No Obstructions removed Tes No If abstructions cannot be removed, contact HDH before sealing. Ε ¥ 7. USE T Manitaring I Domestic 8 Heat Loop 2 Irrigation S Public 9 Industry 3 Test Vell 6 Municipal 10 Comercial 7 Air Conditioning 11 2000 MUTON CUMPANY Provers 1000 MUTON CUMPANY Provers 966 S. MITSIFFIPPI BING. Mailing Address if different than 8. CASING(S) property address indicated above 1 Black 4 Threaded Ð. **2**∏ ω1v. S Welded 1 Statuless Steel Not Known ST Plastic St. Paul, Mn HARDNESS OF in. to ft 3. FORMATION LOG COLOR FORMATION FROM to. If not known, indicate formation log from new well or nearby well. fn, to ft. 9. SCREEK 0 1 Drown nown n. w NOTU. Screened well from 2 1 \_ft. to Youn Open Hole from \_ ft. 10. STATIC WATER LEVEL \_\_\_\_\_\_\_ ft. \_\_\_\_\_ below \_\_\_\_\_ above land Surface Date 1 lick Z 7 7 29 Date Measured / 1- 19 - 81 nown 11. VELLHEAD COMPLETION 1 Pitless Adapter Found Burled 8 Basement offset 20 Vell Pit 16. REMARKS, ELEVATION, SOURCE OF DATA - CASINGS REMOVED, CASINGS PERFORATED, ETC. 12. GROUTING INFORMATION Enclosed site map. W Meat Cement 2 Bentonite 2 Grout material to ft. cu. vos Site min #4 EOB Surface <del>10</del> 13. HEAREST SOURCES OF CONTAMINATION \_ feet \_\_\_ \_\_\_\_ direction type Well disinfected before sealing? 🔲 Tes 14. PUHP Removed Act Present Type: 1 Submersible 3 L.S. Turbine S Reciprocating a Jec Centrifugal 6 15. EXISTING WELLS (Please stetch locations of abanconed and active wells in remarks section or on back.) Other unused well(s) on property? () Yes D Ro Abandoned: [] Permanent D Temperary D Not sealed MN-COMP 0044776 17. WATER WELL CONTRACTORS CERTIFICATION This well was sealed under my jurisdiction and this report is true to the best of my knowledge and belief. 6ME Consultants, Inc Licensee Business Hame License No. ACOTESS 14000 213- 1412 INn Date 11 DOVS lon Date (1-9-89 OFFICIAL ABANDONED WELL RECORD (May be used for Property Transfer) Name of Orillar INPORTANT: FILE WITE DEED

APPENDIX D

TEST PIT LOGS FORD SITE C

.



Ţ

.

| TP1-87<br>12/4/87<br>BACKHOE -<br>CAT 211 LC<br>S. MOCKENHAUPT                                                    | Σ                     | WN-COMPONENT                                                                                                                                                  |    |
|-------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                     | DIAGRAM               |                                                                                                                                                               | )  |
|                                                                                                                   | ELEVATION<br>ft Amsl  | -                                                                                                                                                             |    |
| NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191<br>FORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA | ATIGRAPHY DESCRIPTION | (SP) SAND, fine to medium grained,<br>trace silt, trace gravel, dry.<br>Occasional seams of sandy silt (ML)<br>End of Test Pit at 9.0' BGS<br>Hole backfilled |    |
| PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION:                                                             | DEPTH<br>ft BG<br>0   |                                                                                                                                                               | 13 |

--

•

Marine .

No.

| <ul> <li>TP2-88</li> <li>1/19/88</li> <li>b: BACKHOB -<br/>CAT 211 LC</li> <li>S. MOCKENHAUPT</li> </ul>          | RAM                                | MN-COMP 0044779                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                     | DIAGRAM                            | WIN-CO                                                                                                                                                                                                                                                                     |
|                                                                                                                   | ELEVATION<br>ft AMSL               |                                                                                                                                                                                                                                                                            |
| NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191<br>FORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS | (SM) SAND, silty, some limestone,<br>some well rounded gravel and cobbles<br>Layered silt (ML) and clay (CL),<br>brown to light brown<br>(SP) SAND, very fine grained, brown<br>to light brown<br>End of Test Pit at 12.0' BGS, Hole<br>End of Test Pit at 12.0' BGS, Hole |
| PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION:                                                             | DEPTH<br>ft BG                     |                                                                                                                                                                                                                                                                            |

12.2

.

. .

.

.

Ì

|         | TP2A - 88<br>1/19/88<br>BACKHOR -<br>CAT 211 LC<br>S. MOCKENHAUPT                                                    |                                                                                                                                                                  | MN-COMP 0044780 |
|---------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 9 0     | HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                        | DIAGRAM                                                                                                                                                          |                 |
| р т т Ц |                                                                                                                      | ELEVATION<br>ft AMSL                                                                                                                                             |                 |
| E S M E | NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191<br>FORD MOTOR COMPANY<br>N: ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS<br>(Test Pit dug into side of bluff)<br>Building rubble: very large pieces<br>of concrete (>3'g) glass, iron,<br>lumber Grade |                 |
| -       | PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION:                                                                | FT ABV<br>GRADE                                                                                                                                                  |                 |

i

.

| CON: TP3-88<br>1/19/88<br>HOD: BACKHOR -<br>CAT 211 LC<br>S. MOCKENHAUPT                                        | DIAGRAM                            |                                                                                                                                                                                                                                                                                                                               | MN-COMP 0044781                                                                    |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| BOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                   |                                    |                                                                                                                                                                                                                                                                                                                               | WN-CC                                                                              |
| 4<br>4<br>4                                                                                                     | ELEVATION<br>ft AMSL               |                                                                                                                                                                                                                                                                                                                               |                                                                                    |
| AME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>0.: 2191<br>FORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS | <pre>(SM) SAND, some gravel, silty, brown<br/>to light brown<br/>seam of black/gray silty sands (SM),<br/>very strong odor from 2.0' to 3.0'<br/>BGS (sample taken)<br/>BGS (sample taken)<br/>clean silty sands (SM) from 3.0' to<br/>4.5' BGS<br/>4.5' BGS<br/>6.5 SanD, gray, some odor as 2.0'<br/>to 3.0' BGS soil</pre> | Bnd of Test Pit at 12.0' BGS<br>gray color and odor to 12.0 BGS<br>Hole Backfilled |
| PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION:                                                           | DEPTH<br>ft BG                     | o − 0 0 4 0 0 − 0 0 0 7 7 5                                                                                                                                                                                                                                                                                                   | 4 C                                                                                |

. 1

.

.

ļ

| TP4-88<br>1/19/88<br>BACKHOB -<br>CAT 211 LC<br>S. MOCKBNHAUPT                                                    |                                                                                                                                 |                                                 |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                     | DIAGRAM                                                                                                                         | MN-COMP 0044782                                 |
| • · · ·                                                                                                           | ft AMSL                                                                                                                         |                                                 |
| NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191<br>PORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS<br>(SP) SAND, very fine grained, some<br>silt, moist<br>occasional lenses of sandy silt (ML) | End of Test Pit at 10.0' BGS<br>Hole Backfilled |
| PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION:                                                             | DEPTH<br>ft BG<br>3 2 - 0 6                                                                                                     | 4 v v v v v v v v v v v v v v v v v v v         |

--

A STATE

.

| I: TP5-88<br>1/19/88<br>D: BACKHOB -<br>CAT 211 LC<br>S. MOCKENHAUPT                                              | RAM                                |                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR:                                     | DIAGRAM                            | MN-COMP 0044783                                                                                                                                                                               |
|                                                                                                                   | ELEVATION<br>ft AMSL               |                                                                                                                                                                                               |
| NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191<br>PORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS | (CL-ML) CLAY and SILT, sandy, gray<br>to gray/blue, moist<br>(SP) SAND, fine to very fine<br>grained, trace silt, trace gravel,<br>light brown to brown<br>Hole Backfilled<br>Hole Backfilled |
| PROJECT N<br>PROJECT N<br>CLIENT:<br>LOCATION:                                                                    | DEPTH<br>ft BG                     |                                                                                                                                                                                               |

2 1 1

and a

A V

Ì

Ì

.

|                     | DESIGNATION: TP6-88<br>COMPLETED: 1/19/88                            | EXCAVATION METHOD: BACKHOE -<br>CAT 211 LC |                        | DIAGRAM                            |   |                                                         |                                                                                        |       | MN-COMP 0044784                                 |
|---------------------|----------------------------------------------------------------------|--------------------------------------------|------------------------|------------------------------------|---|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------|-------------------------------------------------|
| IT LOG              | HOLE<br>DATE                                                         | EXCAV                                      | CRA S                  | ELEVATION<br>ft AMSL               |   |                                                         |                                                                                        |       |                                                 |
| ч<br>Т 2 8 Т .<br>Ч | NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>NO.: 2191 | FORD MOTOR COMPANY                         | N: ST. PAUL, MINNESOTA | STRATIGRAPHY DESCRIPTION & REMARKS | - | (ML) SILT, very sandy, occasional<br>seams of yellow SM | (SW-GW) SAND and GRAVEL, fine to<br>coarse grained, some large well<br>rounded cobbles |       | End of Test Pit at 11.0' BGS<br>Hole Backfilled |
|                     | PROJECT NAME:<br>PROJECT NO.:                                        | CLIBNT:                                    | LOCATION:              | DEPTH<br>ft BG                     | 0 | - N                                                     | <br>∽                                                                                  | ~ ∞ ∽ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |

.

.

•

CEN

| TP7-88                                                  | 1/19/88<br>Backhor -                  | ×               | Y                                  |                                                                                                                                                                                        |
|---------------------------------------------------------|---------------------------------------|-----------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOLB DESIGNATION:                                       | DATE COMPLETED:<br>RXCAVATION MRTHOD: | CRA SUPERVISOR: | DIAGRAM                            | MN-COMP 0044785                                                                                                                                                                        |
|                                                         |                                       |                 | ELEVATION<br>ft AMSL               |                                                                                                                                                                                        |
| NAME: PRELIMINARY ASSESSMENT OF<br>WASTE DISDOSAL AREAS | NO.:                                  | ST. PAUL, M     | STRATIGRAPHY DESCRIPTION & REMARKS | Building rubble, concrete, railroad<br>ties, timbers<br>(SP) SAND, very loose<br>St. Peter sand, yellow to white<br>yellow to white<br>Brd of Test Pit at 11.0' BGS<br>Hole backfilled |
| PROJECT NAME:                                           | PROJECT<br>CI.TRW"-                   | LOCATION:       | DEPTH<br>ft BG                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                  |

Ļ

| PROJECT NAME:<br>PROJECT NO.:<br>CLIENT:<br>LOCATION: | NAME:<br>NO.:<br>N:         | PRELIMINARY ASSESSMENT OF<br>WASTE DISPOSAL AREAS<br>2191 2191 2<br>FORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA |                      | HOLE DESIGNATION:<br>DATE COMPLETED:<br>EXCAVATION METHOD:<br>CRA SUPERVISOR: | TP8-88<br>1/19/88<br>BACKHOE -<br>CAT 211 LC<br>S. MOCKENHAUPT |
|-------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|
| DRPTH<br>ft BG                                        | STRA                        | STRATIGRAPHY DESCRIPTION & REMARKS                                                                            | ELEVATION<br>ft AMSL | DIAGRAM                                                                       |                                                                |
| 0 - 7                                                 | (GW) GRAV<br>grained,       | GRAVEL and COBBLES, very coarse<br>ed, trace sand.                                                            |                      |                                                                               |                                                                |
| ი 4 თ                                                 |                             |                                                                                                               |                      | · · · · · · · · · · · · · · · · · · ·                                         | · · · · · · · · · · · · · · · · · · ·                          |
| 9 Γ α                                                 |                             |                                                                                                               |                      |                                                                               |                                                                |
| o on c                                                | Small                       | at 9.5'                                                                                                       |                      | · · · · · · · · · · · · · · · · · · ·                                         | · · ·                                                          |
| 2 2 2                                                 | (SP) SI<br>change<br>End of | SAND, very fine grained, color<br>ge to gray/black (sample taken)<br>of Test Pit at 12.0' BGS                 |                      |                                                                               |                                                                |
| 1 1 1                                                 | Hole                        | Hole backfilled                                                                                               |                      | MN-COMP 0044786                                                               |                                                                |

-

.

أعتاده

1

| CELIMINARY ASSESSMENT OF<br>STE DISPOSAY'AREAS<br>IST DISPOSAY'AREAS<br>IST DISPOSAY'AREAS<br>IST DISPOSAY'AREAS<br>IST DISPOSAY'AREAS<br>IST DISPOSAY<br>RD MOTOR COMPANY<br>FIDE GRANT<br>APHY DESCRIPTION & REMARKS FL AMSL<br>APHY DISTRIPTION & REMARKS FL | TP9-88<br>1/19/88<br>BACKHOE -<br>CAT 211 LC<br>S. MOCKENHAUPT                                                               |                                            |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|
| UBLIMINARY ASSESSMENT OF<br>USTE DISPOSALY AREAS<br>ISTE DISPOSALY AREAS<br>ISTE DISPOSALY AREAS<br>ISTE DISPOSALY AREAS<br>ADHY DESCRIPTION & REMARKS<br>APHY DESCRIPTION & REMARKS<br>APHY DESCRIPTION & REMARKS<br>ange, trace silt.<br>ange, trace silt.<br>ange, trace silt.<br>ange, trace silt.<br>ange, trace silt.<br>ange, trace silt.<br>ange trace silt.<br>ange trace silt.<br>ang tray, wet to<br>silty, gray, wet to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 DESIGNA<br>3 COMPLET<br>NVATION M<br>SUPERVIS                                                                              | DIAGRA                                     | MN-COMP 0044787          |
| <pre>EELIMINARY ASSESSMEN<br/>STE DISPOSALY AREAS<br/>91<br/>NRD MOTOR COMPANY<br/>* PAUL, MINNESOTA<br/>APHY DESCRIPTION &amp;<br/>APHY DESCRIPTION &amp;<br/>ivery fine grained<br/>ange, trace silt.<br/>fiseams of fine grained<br/>silty, gray, wet t<br/>silty, gray, wet t<br/>tited</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELEVATION<br>ft amst.                                                                                                        | Lt AMSL                                    |                          |
| NAME:<br>NO.:<br>STRAT<br>STRAT<br>Yellow<br>SM) SA<br>SM) SA<br>aturat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRELIMINARY ASSESSMEN<br>WASTE DISPOSAN'AREAS<br>2191<br>FORD MOTOR COMPANY<br>ST. PAUL, MINNESOTA<br>FIGRAPHY DESCRIPTION & | ry fine grained<br>trace silt.<br>The grav | gray, wet<br>t 12.0' BGS |

.

÷

l

I

ļ

ļ

ļ

ļ

!

APPENDIX E

`

-

.

DATA QUALITY ASSESSMENT GROUNDWATER AND SURFACE WATER SAMPLES FORD SITE C

MN-COMP 0044788

| TO:   | Jon Christofferson                                                                                                                                | REFERENCE NO.: 2853 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| FROM: | David Dempsey                                                                                                                                     | DATE: June 7, 1990  |
| RE:   | Data Quality Assessment and Validation for Seve<br>Groundwater Samples Collected During the Apr<br>Sampling Event at the Ford Site C Project Site | en .<br>il 1990     |

The following details a data quality assessment and validation for seven groundwater samples collected on April 19, 1990 at the Ford Site C Project Site. The samples were analyzed for site-specific parameters, namely, volatile organic compounds (VOC) and metals by Pace Laboratories, Inc. (Pace).<sup>1</sup> Quality assurance criteria were established by the analytical methods.<sup>2</sup>

#### Holding Time Periods

Holding time periods were established by the analytical methods and are summarized below:

VOC -14 days from sample collection to completion of analysis

Metals -6 months from sample collection to completion of analysis, except for mercury -28 days from sample collection to completion of analysis for mercury

As all samples met the above criteria, the data were found to be acceptable based upon the holding time periods.

#### Method Blank Samples

The potential for sample contamination through laboratory protocols was measured by means of method blank samples. The VOC method blank sample contained methylene chloride at a concentration of  $1.42 \,\mu g/l$ . Methylene chloride data for samples

<sup>1</sup>Analytical methods were taken from 40 CFR Part 136 Appendix A and "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, revised March 1983 and are summarized below:

| VOC    | -601/602    |
|--------|-------------|
| Metals | -200 Series |

<sup>2</sup>Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988 and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, July 1, 1988.

MN-COMP 0044789

- -----

•----

W-041990-JM-01, W-041990-JM-02 and W-041990-JM-03 were qualified as non-detect (U), as a result. Similarly, the metals method blank sample was found to contain analytes copper and zinc at concentrations of 0.023 mg/l and 0.05 mg/l, respectively. Sample W-041990-JM-06 had its copper datum qualified as non-detect (U), while no action upon the zinc data was required. Of interest was the fact that no method blank sample was reported for selenium. However, as all samples were reported to be free of selenium, no action upon the selenium data was necessary.

## Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was to be monitored via surrogate recoveries. To date, no surrogate data have been received from Pace. Therefore, matrix spike/matrix spike duplicate data were solely used to judge the VOC data.

## Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy was monitored by MS/MSD analyses. An in-house sample at Pace underwent MS/MSD analyses for VOC. Therefore, direct application of these data was not possible. The method was shown to have been precise as the percent recoveries were within control limits established by Pace.

Sample W-041990-JM-04 underwent a matrix spike analysis for the metal analyte selenium, while sample W-041990-JM-06 had matrix spike analyses performed for metal analytes arsenic and zinc. All remaining metal analytes had matrix spike analyses performed upon in-house samples. Arsenic and selenium percent recoveries fell below the control limits set by Pace; therefore, the results for all samples for these analytes were qualified as estimated (UJ). As the percent recoveries for the remaining metals were within limits, the methods were shown to be accurate.

## Laboratory Duplicate Analyses

The level of analytical precision for metals analyses was measured through laboratory duplicate analyses. The duplicate analysis for barium was performed upon sample W-041990-JM-02, while in-house samples at Pace were used for the remaining analytes duplicate analyses. Only lead analyses were shown to have an unacceptable level of precision. Therefore, all lead data were qualified as estimated (UJ).

#### <u>Rinsate Sample</u>

Cleanliness of sampling equipment was checked by collection of rinsate sample W-041990-JM-03. The only analyte detected within the sample was methylene chloride. However, this methylene chloride datum was qualified as non-detect (U) based upon the method blank sample. Therefore, the sampling equipment was properly cleaned prior to collection of samples.

MN-COMP 0044790

MN-COMP 0044791

## Field Duplicate Samples

Overall precision of this sampling event was monitored by collection of field duplicate samples W-041990-JM-04 and W-041990-JM-05. Both samples were found to be free of all target analytes, indicating that an acceptable level of precision was achieved.

### **Overall Assessment**

Methylene chloride data for sample W-041990-JM-01, W-041990-JM-02 and W-041990-JM-03 were qualified as non-detect (U) based upon method blank sample data. Metals analytes arsenic, lead and selenium had all results qualified as estimated (UJ). The remaining data were found to be acceptable for the quanitative assessment of analytes within the groundwater at the project site.

cc: Bruce Clegg

## MEMORANDUM

| TO:   | Steve Mockenhaupt                                                                                    | REFERENCE NO.: 2853                           |
|-------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| FROM: | Dave Dempsey                                                                                         | DATE: August 1, 1990                          |
| RE:   | Data Quality Assessment and Validation for Sever<br>Collected during the June 1990 Sampling Event at | n Groundwater Samples<br>the Ford Site C Site |

The following details a data quality assessment and validation for seven groundwater samples collected on June 6, 1990, at the Ford Site C site. Samples were analyzed for volatile organic compounds (VOC) and metals by Pace Laboratories Inc. (Pace).<sup>1</sup> Quality assurance criteria were established by analytical methods.<sup>2</sup>

## Holding Time Periods

Holding time periods are established in analytical methods and are summarized below:

VOC - 14 days from sample collection to completion of analysis

Metals- 6 months from sample collection to completion of analysis, except for mercury - 28 days from sample collection to completion of mercury analysis

Reviewing analysis dates showed that all holding time periods were met.

## Method Blank Sample

Laboratory contamination of samples was checked for with method blank samples. The VOC method blank sample contained no target analytes. However, zinc was detected at a concentration of 0.066 mg/l within metals method blank sample. Zinc data for samples W-060690-RF-01, W-060690-RF-02, W-060690-RF-04 through W-060690-RF-06 were qualified as non-detect (U).

## Surrogate Compound Percent Recoveries

Individual sample results for VOC analyses were assessed using surrogate compound fluorobenzene recoveries. Examining the recoveries revealed that VOC Method 602 was in control. No surrogate compound was used to check the accuracy of Method 601. Hence, MS/MSD recoveries were used to assess Method 601 results.

VOC - 40 CFR 601/602 Metals - USEPA 200 Series

<sup>2</sup>Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988, and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses", July 1, 1988.

MN-COMP 0044792

<sup>&</sup>lt;sup>1</sup>Analytical methods are taken from 40 CFR Part 136, Appendix A, and "Chemical Methods for Analysis of Water and Wastes", USEPA-600/4-79-020, Revised March 1983 and are summarized below:

## Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Effects upon the data due to matrix interference were checked via MS/MSD analyses. Pace sample 21699 underwent VOC MS/MSD analyses. As all percent recoveries fell within limits, the level of precision was acceptable.

Sample W-060690-RF-07 underwent matrix spike analysis for target metals. The silver percent recovery was low. Therefore, silver data were qualified as estimated (UJ) for all samples.

#### Laboratory Duplicate Analyses

Precision for metals analyses was measured by means of duplicate analyses. Samples W-060690-RF-03 and W-060690-RF-06 had duplicate analyses for analytes mercury and selenium, respectively. Precision for both were acceptable. No other duplicate analyses were performed by Pace, therefore, field duplicate samples were used to assess precision.

#### **Rinsate Sample**

Cleanliness of sampling equipment was checked with rinsate sample W-060690-RF-01. Target VOC detected were 1,1,1-trichloroethane, tetrachloroethene and 1,1-dichloroethene. As all investigative samples were free of these analytes, no action upon the data was necessary.

Zinc was also detected within this sample. However, the zinc datum was qualified as non-detect (U) based upon the method blank sample.

#### Field Duplicate Samples

Precision was measured by collecting field duplicate samples W-060690-RF-04 and / "W-060690-RF-05. As both sets of data were within limits of agreement, the precision was acceptable.

#### **Overall Assessment**

Silver data were qualified as estimated (UJ) for all samples, while five samples had zinc data qualified as non-detect (U). Remaining data are acceptable to quantitatively assess target analyte concentrations.

cc: Bruce Clegg

MN-COMP 0044793

-----

# APPENDIX F

# SOIL EXPLORATION REPORT AND LOGS, 1984 FORD UST SITE AREA

MN-COMP 0044794

مهيد بالتاريخ والمساد المستحد



# SOIL EXPLORATION

662 CROMWELL AVENUE ST. PAUL, MN 55114 PHONE 612/645-6446

October 29, 1984

a sister corporation to TWIN CITY TESTING AND ENGINEERING LABORATORY INC.

Pope Associates, Inc. 533 St. Clair Avenue St. Paul, MN 55102

Attn: Robert L. Pope

Gentlemen:

SUBJ: Subsurface Exploration Program Proposed Hazardous Waste Building Ford Motor Plant St. Paul, Minnesota #120-12734

We have conducted a subsurface exploration program and foundation review for the referenced project. We are transmitting eight copies of our report. This work was done in accordance with your verbal authorization on October 22, 1984.

About 50% of the soil samples will be held at this office for one month and will then be discarded unless we are notified to hold them for a longer period of time.

We trust that this report will provide you with the needed information. If questions arise concerning interpretation of the data, please contact us for review.

Very truly yours,

Wilfeel a. Wahl

Wilfred A. Wahl, P.E.

WAW/rjr

Encs.

OFFICERS: CHARLES W. BRITZIUS chairman of the board NORMAN E. HENNING president ROBERT F. WITTMAN executive vice president CLINTON R. EUE secretary/treasurer

> HOME OFFICE: \* \* ST. PAUL, MN

OFFICES IN: MANKATO, MN ROCHESTER, MN WAITE PARK, MN

MN-COMP 0044795

\_\_\_\_\_

AS A MUTUAL PROTECTION TO CLIENTS. THE PUBLIC AND OURSELVES. ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF THE CLIENT.

REPORT OF SUBSURFACE EXPLORATION PROGRAM PROPOSED HAZARDOUS WASTE BUILDING FORD MOTOR PLANT ST. PAUL, MINNESOTA #120-12734

#### INTRODUCTION

朝

We understand the proposed construction at this site will consist of a onestory, slab-on-grade structure. The building will be approximately 60' by 63' in plan dimensions.

In accordance with your verbal authorization on October 22, 1984, we have conducted a subsurface exploration program for the proposed construction. The scope of our work on this project is as follows:

- 1. Explore the subsurface soil and bedrock conditions by means of three test borings.
- 2. Provide recommendations for foundation support of the proposed building.
  - 3. Provide recommendations for site preparation for support of the foundation.

Our work program for accomplishment of the above objectives included three soil test borings, a few laboratory tests and observation of the recovered soil samples.

MN-COMP 0044796



#### Page 2 - #120-12734

The purpose of this report is to describe our field operations, to present the results of our field and laboratory tests and to provide you with our engineering recommendations.

### EXPLORATION PROGRAM RESULTS

# Site Conditions

The building will be constructed south of the existing paint building. There is an existing storm sewer that runs in a north-south direction in about the center of the building. The site is relatively level with surface elevations at the boring locations varying from 95.2' to 95.9'.

### Subsurface Conditions

The subsurface soil conditions encountered at the boring locations are shown on the attached boring logs. We wish to point out that the subsurface conditions at other times and locations on this site may differ from those found at our test locations. If different conditions are encountered during construction, it is necessary that you contact us so that our recommendations can be reviewed.

The test boring logs also indicate the probable geologic origin of the encountered soil.

It will be noted from the boring logs that shale was encountered at depths of from 3' to  $6\frac{1}{2}$ ' at the boring locations. The soil conditions overlying the shale were quite variable. Mixed alluvium consisting primarily of weathered

# MN-COMP 0044797

### SOIL EXPLORATION

## Page 3 - #120-12734

limestone and some soil was encountered at boring 1. At boring 2, the soil consisted of sand with a little gravel, coarse alluvium. At boring 3, the overburden consists of fill.

The overlying soils generally are medium dense to very dense. The primary exception is the very loose sand encountered at a depth of about 5' at boring 2.

All of the borings terminated in shale. The shale is part of the Decorah Formation which is underlain with the Platteville Limestone Formation. Our geological data indicates the depth to the top of the Platteville Formation should be about 30' at this site. The shale contains lenses and thin layers of limestone. The borings were obstructed at depths varying from 8.6' to 15.7'. It is our opinion that the obstructions represents thin layers of limestone within the Decorah Formation rather than the underlying Platteville Formation. The N values in the shale vary from 13 to well over 100 blows per foot.

### Water Levels

Water level measurements were made in the borings and the data is included on the logs. Ground water was encountered at boring 1 and 3 just above the underlying shale. Seasonal and yearly fluctuations of the ground water levels can be anticipated.

MN-COMP 0044798

# **SOIL exploration**

### Page 4 - #120-12734

#### ENGINEERING REVIEW

### **Project Information**

The following data represents our understanding of the project. It comprises an important part of our engineering review. If, as the project develops, there are changes from the stated values, we request that you contact us for additional review.

We understand the proposed construction at this site will consist of a onestory, slab-on-grade structure. The building will be approximately 60' by 63' in plan dimensions. The building will be essentially a steel-frame metal clad building with concrete foundation walls supported on a concrete slab. The slab will be approximately 1' below existing grade. We anticipate the average loading under the slab, including live load, will be on the order of 500 to 600 psf (pounds per square foot).

## Discussion

ļ

It is our opinion that the soils and underlying shale are capable of supporting the foundation loads with an adequate factor of safety against shear failure and with minimal settlement.

However, the shale is known to be expansive. No laboratory tests were conducted on samples from this site to further evaluate the expansive properties. However, based on previous tests on the Decorah Shale, the typical swell pressure would be on the order of 6 to 8 tons per square foot. Under very

MN-COMP 0044799

# SOIL EXPLORATION

# Page 5 - #120-12734

light loads, the percent swell is on the order of 3% to 4%. As a result, the swelling is most critical under the very light structures and especially under lightly loaded floor slabs.

For swelling to occur, the shale must come in contact with a source of water. At this particular site, ground water was encountered immediately above the shale at two of the boring locations. Therefore, it is quite probable that the upper portion of the shale has already undergone some swelling.

Therefore, supporting the lightly loaded structure on or immediately above the shale will entail some risk. However, the majority of the Ford Plant is supported on the shale. In many areas, the floor slab is only a short distance above the underlying shale. We understand that there have been no unusual problems with foundations or floor slabs in the existing plant due to swelling.

Therefore, based on this information, it is our opinion that the structure can be supported on a slab foundation above existing shale with only minimal risk of future excessive differential swelling.

# Foundation Recommendations

0

14

Ĩ

N.

Q

LEVAL 1

1.0

Because of the wide variation in the composition of the soils (colluvium, alluvium and fill) immediately below the slab elevation, we suggest that the building area be subcut to a minimum depth of 18" below the bottom of

SOIL EXPLORATION \_

Page 6 - #120-12734

the floor slab. Additional subcutting could be performed if localized fill is encountered extending to a greater depth. We then recommend placing a relatively clean, free-draining granular soil to the bottom of slab elevation. This fill should be compacted to a minimum of 95% of standard Proctor density. The slab can then be supported directly on the controlled fill at normal elevation. The excavation and compacted fill should extend beyond the edge of the slab a distance equal to the depth of compacted fill beneath the slab foundation.

Originally, it was planned to place a draintile system at the bottom of the granular fill. We recommend that no draintile be installed. We feel it is important to attempt to maintain the present moisture condition in the underlying shale, since a change in moisture content could cause a change in volume.

### Site Observation

1

We recommend that the excavation be observed by a soil engineer before placing any newly compacted fill. We also recommend that density tests be taken in the fill as it is placed to document that proper compaction is being obtained.

### FIELD EXPLORATION PROCEDURES

Three soil test borings were made on October 24, 1984. The borings were put down at the locations shown on the attached sketch. The locations were changed somewhat from the suggested locations because of material stored on

MN-COMP 0044801

# SOIL EXPLORATION .

## Page 7 - #120-12734

the site and due to existing utilities. The surface elevations were referenced to the top of the hydrant where shown, taken as 100.0', an assumed elevation.

# Soil Sampling

Soil sampling was performed in accordance with ASTM: D 1586-67. Using this procedure, a 2" 0.D. split barrel sampler is driven into the soil by a 140 lb weight falling 30". After an initial set of 6", the number of blows required to drive the sampler an additional 12" is known as the penetration resistance or N value. The N value is an index of the relative density of cohesionless soils and the consistency of cohesive soils. Thin wall tube samples were obtained according to ASTM: D 1587-67 where indicated by appropriate symbol on the boring logs.

### Soil Classification

As the samples were obtained in the field, they were visually and manually classified by the crew chief in accordance with ASTM: D 2487-83 and 2488. Representative portions of the samples were then returned to the laboratory for further examination and for verification of the field classification. In addition, selected samples were submitted to a program of laboratory tests. Logs of the borings indicating the depth and identification of the various strata, the N value, the laboratory test data, water level information and pertinent information regarding the method of maintaining and

MN-COMP 0044802

# SOIL EXPLORATION

Page 8 - #120-12734

advancing the drill holes are attached. Charts illustrating the soil classification procedure, the descriptive terminology and symbols used on the boring logs are also attached.

### EXPLORATION LIMITATIONS

The recommendations contained in this report represent our professional opinions. These opinions were arrived at in accordance with currently accepted engineering practices at this time and location. Other than this, no warranty is implied or intended.

This report was prepared by:

Wilfred A. Wahl Wilfred A. Wahl, P.E.

This report was reviewed by:

SOIL EXPLORATION .

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the Laws of the State of Minnesota

Wilfred a. Wahl

Date 10-29-84 Reg. No. 6969

Proofread by: M. Counteau

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the State of Minnesota.

RICHARD S. DU

Dete 10-29-84- Registration No. 8656

| •             |                                                                                                                                            | TEST BORIN            |             |           |         |      |          |          | _            |            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-----------|---------|------|----------|----------|--------------|------------|
| JOB NO        |                                                                                                                                            | TICAL SCALE           | = <u>3'</u> |           | E       |      | 5 NO     | 1        |              |            |
| DEPTH         | DESCRIPTION OF MATERIAL                                                                                                                    |                       |             | ANT.      |         | MPLE |          |          | <u>INFS(</u> |            |
| IN<br>FEET    | SURFACE ELEVATION95.9'                                                                                                                     | GEOLOGIC<br>ORIGIN    | N           |           | · · · · | TYPE | ┞───     |          |              | 0          |
|               | CLAYEY SAND W/A LITTLE (See#1)(SC)                                                                                                         | MIXED*                | +           |           | 1       | SB   | <u> </u> |          | PL           | <u> </u>   |
| 1 <u>2</u>    | WEATHERED LIMESTONE W/SOME PIECES O<br>HARD LIMESTONE, a little silty<br>sand and gravel, brown, moist to<br>about 3' then wet, very dense |                       | 34          |           | 2       | SB   |          |          |              |            |
| 4             | (GM)                                                                                                                                       |                       | 40          | V         | 3       | SB   |          |          |              |            |
| -             | SHALE, gray, contains a few lenses<br>of limestone                                                                                         | DECORAH<br>FORMATION  | 43          |           | 4       | SB   | 18       | *<br>111 |              |            |
| 4             |                                                                                                                                            |                       | 100<br>0.3  |           | 5       | SB   |          | 5        |              |            |
| 9             | Obstruction                                                                                                                                | *ALLUVIUM             |             |           |         |      |          |          |              |            |
|               | #1 - GRAVEL, brownish gray, soft<br>(SC)                                                                                                   |                       | -           |           |         |      |          |          |              |            |
| -             | *Estimated Dry Density                                                                                                                     |                       |             |           |         |      |          |          |              |            |
| -             |                                                                                                                                            |                       |             |           |         |      |          |          |              |            |
|               | <b>`</b> .                                                                                                                                 |                       |             |           |         |      |          |          |              |            |
|               | · · ·                                                                                                                                      |                       |             |           |         |      |          |          |              |            |
|               |                                                                                                                                            |                       | -           |           |         |      |          |          |              |            |
| 4             | MN-COMP 0044804                                                                                                                            |                       |             |           |         |      |          |          |              |            |
|               |                                                                                                                                            |                       | -           | 10        | 24      |      |          |          |              |            |
|               |                                                                                                                                            |                       |             |           | 24-     |      | °        | OMPLET   | -            | -24        |
| DATE<br>10-24 | 9:55 $3\frac{1}{2}$ 2' $3\frac{1}{2}$                                                                                                      | DEPTHS WATER<br>LEVEL | METHOD      | <u>HS</u> | A C     | -9'  |          |          | @            | <u>10:</u> |
| <u>10-24</u>  | 10:20 9' 9' 9'                                                                                                                             |                       | ]           |           |         |      |          |          |              |            |
| 10 - 70       | 10:25 9' None 2'                                                                                                                           |                       | <u> </u>    |           |         |      |          |          |              |            |

i

ľ

|                          | LOG OF T                                                                                             | EST BORIN            | IG            |                 |                       |              |       |          |                     |        |
|--------------------------|------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------|-----------------------|--------------|-------|----------|---------------------|--------|
|                          | 120-12734 VERTIC                                                                                     | AL SCALE 1"          | = 3           |                 | (                     | BORING       | 5 NO  | 2        |                     |        |
| JOB N                    | CT PROPOSED HAZARDOUS WASTE BUILDING                                                                 | - FORD MOT           | ro <u>r</u> c | <u>ompa</u>     | <u>NY -</u>           | ST.          | _PAII |          | INNES               |        |
| DEPTH                    | DESCRIPTION OF MATERIAL                                                                              | GEOLOGIC             |               |                 |                       |              |       |          | ORY TE              |        |
| FEET                     |                                                                                                      | ORIGIN               | N             | w               |                       | TYPE         | w     | D        | <u>L.L.</u><br>P.L. | Qu     |
|                          | SAND W/A LITTLE GRAVEL, fine to<br>medium grained, brown, moist,<br>medium dense (SP)                | COARSE<br>ALLUVIUM   | - 1           | 2               | 1                     | SB           |       |          |                     |        |
|                          |                                                                                                      |                      | 1             | 2               | 2                     | SB           |       |          |                     |        |
| 4                        | SAND W/A LITTLE GRAVEL, medium<br>grained, brown, moist to 5½' then<br>waterbearing, very loose (SP) |                      | 1             | ł               | <b>Z</b> <sub>3</sub> | SB           |       |          |                     |        |
| 6 <u>1</u>               | SHALE, gray, contains a few lenses<br>of limestone                                                   | DECORAH<br>FORMATION |               | <u>00</u><br>.9 | 4                     | SB           |       | <b>5</b> |                     |        |
|                          |                                                                                                      |                      | 7             | 9               | 5                     | SB           |       |          |                     |        |
|                          | -                                                                                                    |                      |               | 100             | 6                     | SB           |       |          |                     |        |
| 15.3                     |                                                                                                      |                      |               | <u>00</u><br>.7 | 7                     | SB           |       |          |                     | -      |
|                          | Obstruction                                                                                          |                      |               |                 |                       |              |       |          |                     |        |
|                          |                                                                                                      |                      | -             |                 |                       |              |       |          |                     |        |
|                          |                                                                                                      |                      | -             |                 |                       |              |       |          |                     |        |
|                          | MN-COMP 0044805                                                                                      |                      |               |                 |                       |              |       |          |                     |        |
|                          |                                                                                                      |                      | -+            |                 | 10-3                  | 24-84        |       |          | 10                  | )-24-8 |
|                          | WATER LEVEL MEASUREMENTS                                                                             | <u> </u>             |               |                 | -                     |              |       | COMPLE   |                     |        |
| DAT                      | DEPTH DEPTH DEPTH                                                                                    |                      | <u>∟</u>      | THOD            | H <u>S</u>            | <u>A 0-1</u> | 41'   |          | @_                  | 11:20  |
| <u>10-</u><br><u>10-</u> |                                                                                                      |                      |               |                 |                       |              |       | <u> </u> |                     |        |
| 10-                      |                                                                                                      |                      |               | _               | <u></u>               |              |       |          |                     |        |
|                          |                                                                                                      | 1                    |               | NEW CH          | EF                    | <u> </u> ł   | lhite |          |                     |        |

.

|                                                                                  |                    |                                              |                    | LO               | G OF TE   |       |             |                        |    |        |          |      | _     |                   |        |
|----------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------|------------------|-----------|-------|-------------|------------------------|----|--------|----------|------|-------|-------------------|--------|
| JOB NO                                                                           | 1                  | 20-12734                                     |                    |                  | VERTICAL  |       | <u>1" =</u> | 31                     |    |        | ORING    |      | 3     |                   |        |
| PROJECT PROPOSED HAZARDOUS WASTE BUILDING - FURIL MUTUR LUMPANY - ST PAUL MINNES |                    |                                              |                    |                  |           |       |             |                        |    |        |          |      |       |                   |        |
| DEPTH<br>IN<br>FEET                                                              | SURFACE            |                                              |                    | OF MATERIAL      |           | GEOLO |             | N                      | WL |        | TYPE     |      | D     | <u>L.L</u><br>P.L | 0u     |
| <br> <br>                                                                        | AND CLA<br>a few p | IXTURE O<br>YEY SAND<br>ieces of<br>black an | W/A LIT<br>blackto | TLE GRA          |           | FILL  |             | 20                     |    | 1      | SB       |      |       |                   |        |
| 3                                                                                | SHALE,             | gray, co                                     |                    | a few le         | nses      | DECOR | AH          | · 13                   |    | 2<br>3 | SB<br>SB | 32   | 90*   |                   |        |
| -                                                                                | of lime            | stone                                        |                    |                  |           | FORMA |             | -                      |    | 4      | зт       |      |       |                   |        |
| -                                                                                |                    |                                              |                    |                  |           |       |             | 37                     |    | 5      | SB       | 24   | 101   |                   |        |
|                                                                                  |                    |                                              |                    |                  |           |       | ×           | -<br><u>100</u><br>0.7 |    | 6      | SB       |      | ъ.    |                   |        |
| 8.6                                                                              |                    | Obstru                                       | ction              |                  |           |       |             | -                      |    |        |          |      |       |                   |        |
| -                                                                                | *Estima            | ited Dry                                     | Density            |                  |           |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  | -                  |                                              |                    |                  |           |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  | •                  |                                              |                    |                  |           |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  |                    |                                              |                    |                  |           |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  |                    | <b>.</b><br>                                 |                    |                  |           |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  |                    |                                              |                    |                  | -         |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  |                    |                                              | MN-CON             | NP 00448         | 06        |       |             | -<br> <br>             |    |        |          |      |       |                   |        |
|                                                                                  | -                  |                                              |                    | - · -            | ·         |       |             |                        |    |        |          |      |       |                   |        |
|                                                                                  |                    |                                              |                    |                  | <b>-</b>  |       |             |                        |    |        | 4-84     |      |       | 10                | )-24-1 |
|                                                                                  |                    | T                                            | r <u> </u>         | AEASUREMEN       | ITS       |       |             |                        |    |        |          | _    | COMPL |                   | 1:1    |
| DATI                                                                             |                    | SAMPLED<br>DEPTH                             | CASING<br>DEPTH    | CAVE-IN<br>DEPTH | BAILED DE | PTHS  | LEVEL       | METH                   | 00 | HS     | A 0-     | 8.6' |       | @                 |        |
|                                                                                  | 24 1:10            | 8.6'                                         | 8.6'               | 8.6'             | to        |       | None        |                        |    |        |          |      |       |                   |        |

# APPENDIX G

LABORATORY REPORT SOLVENT SHIPMENT SEPTEMBER 1989 FORD UST SITE

MN-COMP 0044807

• •··•

Report:RCI300

## AVGANICS RC INVENTORY 16-Jan-90 04:17 PM SAMPLE LABORATORY REPORT FORM

.

| Company : FORD MOTOR COMPANY<br>Location:<br>Customer Nr: FO1445 | CHROMATOGRAPHIC ANALYSIS  |
|------------------------------------------------------------------|---------------------------|
| Location:                                                        |                           |
| Customer Nr: F01445                                              | ACTIVES                   |
| Saresperson. Granch. K                                           | V.J / Acetone             |
| Analyzed By: SS Date: 09/28/89                                   | 8.0 % N-Butyl Acetate     |
| Approved By: SS                                                  | 0.0 % Cyclohexanone       |
|                                                                  | 0.0 % Ethyl Acetate       |
| ***************************************                          | 0.0 % Glycol Ether EB     |
|                                                                  | 0.0 % Glycol Ether EE     |
| Lab Analysis Nr: A020502                                         | 0.2 % Glycol Ether EEAc   |
| Sales lab Nr:                                                    | 0.0 % Glycol Ether EM     |
| Incoming Nr: 1909484                                             | 0.0 % Glycol Ether EEP    |
| Retain Lab Nr:                                                   | 0.0 % Glycol Ether EP     |
| PCB Lab Nr: P909246                                              | 0.0 % Glycol Ether PM     |
| Lab Type: QCA                                                    | 0.5 % Glycol Ether PMA    |
| Part Nr: RW007400                                                | 0.0 % Isobutyl Acetate    |
| Waste Master Nr: 00007421                                        | 0.0 % Isopropyl Acetate   |
| Authorization Nr: 022814                                         | 1.0 % MEK                 |
| Batch Nr:                                                        |                           |
| Lot Nr:                                                          | 13.5 % MIBK               |
| Other Nr:                                                        | 0.0 % N-Propyl Acetate    |
| other Mr.                                                        | 0.0 % Tetrahydrofuran     |
|                                                                  | ALCOHOLS                  |
|                                                                  | 4.5 % N-Butanol           |
| LABORATORY DATA                                                  | 0.0 % Ethanol             |
|                                                                  | 1.5 % Isobutanol          |
| Waste Density: 0.882 pH: 7.10                                    | 1.0 % Isopropanol         |
| Solvent Density: pH:                                             | 1.5 % Methanol            |
| Total Distillate: 37/50 Solids: NF                               | 0.5 % N-Propanol          |
| % Yield: 50                                                      | 1.0 % Water               |
| % Chlorides: PCB (ppm):                                          | 0.0 % Diacetone Alcohol   |
| Acid Acceptance:                                                 |                           |
| APHA Color: Odor:                                                | BILUENTS                  |
| BTU/16: BTU/Gal:                                                 | 1.5 % Heptane             |
| % Water by KF:                                                   | 0.0 % Hexane              |
| Flash Point (ICC Deg E):                                         | 0.0 % Mineral Spirits     |
| Liss Ibine (ice bey i/.                                          | 3.5 % 100 Flash Naphtha   |
|                                                                  | 0.0 % Stoddard Solvent    |
|                                                                  |                           |
| Matanial Consumption AA                                          | 12.5 % Toluene            |
| Material Comments: AA                                            | 2.0 % VMP Naphtha         |
| Recommend:                                                       | 45.0 % Xylene             |
| Label:                                                           |                           |
| UN/NA Nr:                                                        | CHLORINATEDS              |
| Dot Hazard Class:                                                | 0.0 % Methylene Chloride  |
| EPA Waste Code Nr:                                               | 0.0 % Perchloroethylene   |
| DOT PSN:                                                         | 0.0 % 1,1,1-Trichloro-    |
| ======================================                           | ethane                    |
| Commerits:                                                       | 0.0 % 1,1,2-Trichloro-    |
|                                                                  | 1,2,2-Trifluordethan      |
|                                                                  | 0.0 % Trichloroethylene   |
|                                                                  | 0.0 % NDS                 |
| · ·                                                              | MISC                      |
|                                                                  | 0.0 %                     |
|                                                                  |                           |
|                                                                  | 0.0 %                     |
|                                                                  | *** 0.0 % /               |
| *** Information contained is believed to be                      |                           |
| *** correct to the best of our knowledge                         | *** 0.0 % MN-COMP 0044900 |
| ★★★ correct to the best of our knowledge                         |                           |

# APPENDIX H

į

LABORATORY REPORT SOIL EXCAVATION BY FORD NOVEMBER 6, 1989 FORD UST SITE

|                                  | Ories, nc.                                | REPORT OF      | LABORATOF      | RY ANALY     | /SIS                                      | Ollioes:<br>Minneapolis, Minneaota<br>Tampa, Florkis<br>Coralville, Iowa<br>Novato, California<br>Leawood, Kanaas |
|----------------------------------|-------------------------------------------|----------------|----------------|--------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 966 s. MI                        | or Company<br>ssissippi River<br>MN 55116 | Blvd.          | PACE P         |              | 91106516                                  | irvine, California<br>Asheville, North Carolina<br>Charlotte, North Carolina<br>Wappingers Falls, New York        |
| Attn: Mr                         | . John Rohlf                              |                |                |              |                                           | ., -                                                                                                              |
| Date Coll<br>Date Rece           | eived:                                    |                | ·<br>·         | . • •        | 421540<br>11/05/89<br>11/06/89<br>Solvent |                                                                                                                   |
| <u>Parameter</u>                 |                                           |                | Units          | MDL          | Recovery                                  | _                                                                                                                 |
| ORGANIC /                        | NALYSIS                                   |                |                | •            |                                           |                                                                                                                   |
| TNDTVTOU                         | AL PARAMETERS                             |                |                |              |                                           |                                                                                                                   |
| Moisture                         |                                           |                | 2              | 1.0          | 7.3                                       |                                                                                                                   |
| MDH VOLA<br>Date Ana<br>Chlorome |                                           | IL EXTRACT-465 | •              | 340          | 11/13/89                                  |                                                                                                                   |
| Bromometi                        |                                           | · · · ·        | ug/kg<br>ug/kg | 240<br>380   | ND<br>ND                                  |                                                                                                                   |
|                                  | difluoromethane                           |                | ug/kg          | 380          | ND                                        |                                                                                                                   |
| Vinyl ch<br>Chloroet             |                                           |                | ug/kg          | 380          | · ND                                      |                                                                                                                   |
| CITOTOEL                         | nane ~                                    |                | ug/kg          | 240          | ND                                        |                                                                                                                   |
|                                  | e Chloride                                |                | ug/kg          | 240          | 260                                       |                                                                                                                   |
| Acetone                          | - <b>()</b>                               |                | ug/kg          | 10000        | •                                         | · ·                                                                                                               |
| Allyl ch                         | ofluoromethane                            |                | ug/kg          | 100          | ND                                        |                                                                                                                   |
|                                  | loroethylene                              |                | ug/kg          | 1000<br>76   | ND<br>ND                                  | • .                                                                                                               |
| Tetrahyd                         |                                           |                | ug/kg<br>ug/kg | .3600-       | ND                                        |                                                                                                                   |
|                                  |                                           |                |                | .0000        | , n <u></u>                               |                                                                                                                   |
|                                  | loroethane                                | • •            | ug/kg          | 50           | ND                                        |                                                                                                                   |
|                                  | 2-Dichloroethyle                          | ne             | ug/kg          | 76           | ND                                        |                                                                                                                   |
| Ethyl et                         | Dichloroethylene                          |                | ug/kg          | 120          | ND                                        | •                                                                                                                 |
| Chlorofo                         |                                           |                | ug/kg          | 76           | ND                                        |                                                                                                                   |
|                                  | ichlorotrifluoro                          | ethane         | ug/kg<br>ug/kg | - 120<br>180 | ND<br>190                                 | /                                                                                                                 |
| - •                              |                                           |                | uði vð         | TOU          | 120                                       |                                                                                                                   |
|                                  | thyl ketone                               |                | ug/kg          | 5000         | ND                                        |                                                                                                                   |
|                                  | loroethane                                |                | ug/kg          | 50           | ND                                        |                                                                                                                   |
| Dibromom                         |                                           |                | ug/kg          | 360          | ND                                        |                                                                                                                   |
|                                  | ichloroethane                             |                | ug/kg          | 120          | ND                                        |                                                                                                                   |
| Carbonit                         | etrachloride                              |                | ug/kg          | 76           | ND ·                                      | <b>.</b> .                                                                                                        |
|                                  |                                           |                |                |              |                                           |                                                                                                                   |

MDL Method Detection Limit

4

.

ND Not detected at or above the MDL.

.

.

------

. .

-----

MN-COMP 0044810

.

| C ENDORISIONIEU, MM        | 1 L I 190 .    | U1Z            | J44 J974 | nal surge            | U 14+20 F.US<br>Onices:                  |
|----------------------------|----------------|----------------|----------|----------------------|------------------------------------------|
| pace.                      | REPORT OF      |                |          | Vele                 | Minneapolis, Minnesota<br>Tampa, Florida |
| <b>Taboratories</b> , inc. |                |                |          | , 010                | Consiville, Iowa<br>Novato, California   |
| Mr. John Rohlf             |                | March          | 29, 1990 | •                    | Leawood, Kansas<br>Irvine, Callomia      |
| Page 2                     |                |                | Project  |                      | Asheville, North Carolina                |
|                            | •              |                |          | 891106516            | Charlotte, North Carolina                |
| -                          |                | ·              |          | •                    | Wappingers Falls, New York               |
| PACE Sample Number:        | ·              |                |          |                      | •                                        |
| Date Collected:            |                |                |          | 421540               |                                          |
| Date Received:             |                |                |          | 11/06/89<br>11/06/89 |                                          |
|                            |                |                |          | Solvent              |                                          |
| <u>Parameter</u>           |                | Units          | MDL      | Recovery             |                                          |
|                            |                |                |          |                      | -                                        |
| ORGANIC ANALYSIS           |                | •              |          |                      |                                          |
| MDH VOLATILE ORGANICS SOI  | L EXTRACT-4650 | 2              |          |                      |                                          |
| Bromodichloromethane       |                | ug/kg          | 50       | ND                   |                                          |
| Dichloroacetonitrile       | ·              | ug/kg          | 20000    | ND                   |                                          |
| 2,3-Dichloro-1-propene     | •              | ug/kg          | 120      | ND                   | •                                        |
| 1,2-Dichloropropane        |                | ug/kg          | 50       | ND                   |                                          |
| 1,1-Dichloro-1-propene     | •              | ug/kg          | 240      | ND                   |                                          |
| cis-1,3-Dichloro-1-propen  | e              | ug/kg          | 120 -    | ND                   |                                          |
| 1,1,2-Trichloroethylene    |                | ug/kg          | 120      | ND                   |                                          |
| Benzene                    | •              | ug/kg          | 240      | ND                   |                                          |
| 1.3-Dichloropropane        |                | ug/kg          | 150      | ND                   |                                          |
| Dibromochloromethane       |                | ug/kg          | 240      | ND                   |                                          |
| 1,1.2-Trichloroethane      |                | ug/kg          | 240      | ND                   |                                          |
| trans-1,3-Dichloro-1-prop  | ene            | ug/kg          | 76       | ND                   |                                          |
| 1.2-Dibromoethane          |                | ug/kg          | 1000     | ND                   |                                          |
| 2-Chloroethylvinyl ether   |                | ug/kg          | 1200     | ND                   |                                          |
| Bromoform                  | •              | ug/kg          | 240      | ND                   |                                          |
| 1,1.1,2-Tetrachloroethane  |                | ug/kg          | 76       | ND                   |                                          |
| Methyl isobutyl ketone     |                | ug/kg          | 240      | ND                   |                                          |
| 1.2.3-Trichloropropane     |                | ug/kg          | 1000     | ND                   |                                          |
| 1,1,2,2-Tetrachloroethane  |                | Ug/kg          | 240      | ND                   |                                          |
| 1.1.2.2-Tetrachloroethyle  | ne             | ug/kg          | 240      | ND<br>ND             |                                          |
| Pentachloroethane          |                | ug/kg          | 500      | ND                   |                                          |
| Toluene                    |                | ug/kg          | 240      | 1300                 |                                          |
| Chlorobenzene              | · •            | ug/kg          | 240      | ND                   |                                          |
| Ethylbenzene               |                | ug/kg          | 240      | 3300                 |                                          |
| Cumene                     |                | 11 m II        |          |                      |                                          |
| m-Xylene                   |                | ug/kg          | 240      | ND                   |                                          |
| p-Xylene                   |                | ug/kg<br>ug/kg | 240      | 13000(1)             |                                          |
| o-Xylene                   |                | ug/kg<br>ug/kg | 240      | 14000(1)             |                                          |
|                            |                | 28169          | 240      | 4500                 | · ·                                      |
|                            |                |                |          |                      |                                          |

MDL Method Detection Limit ND Not detected at or above the MDL. (1) These compounds co-elute

•

.

-

MN-COMP 0044811

. . .

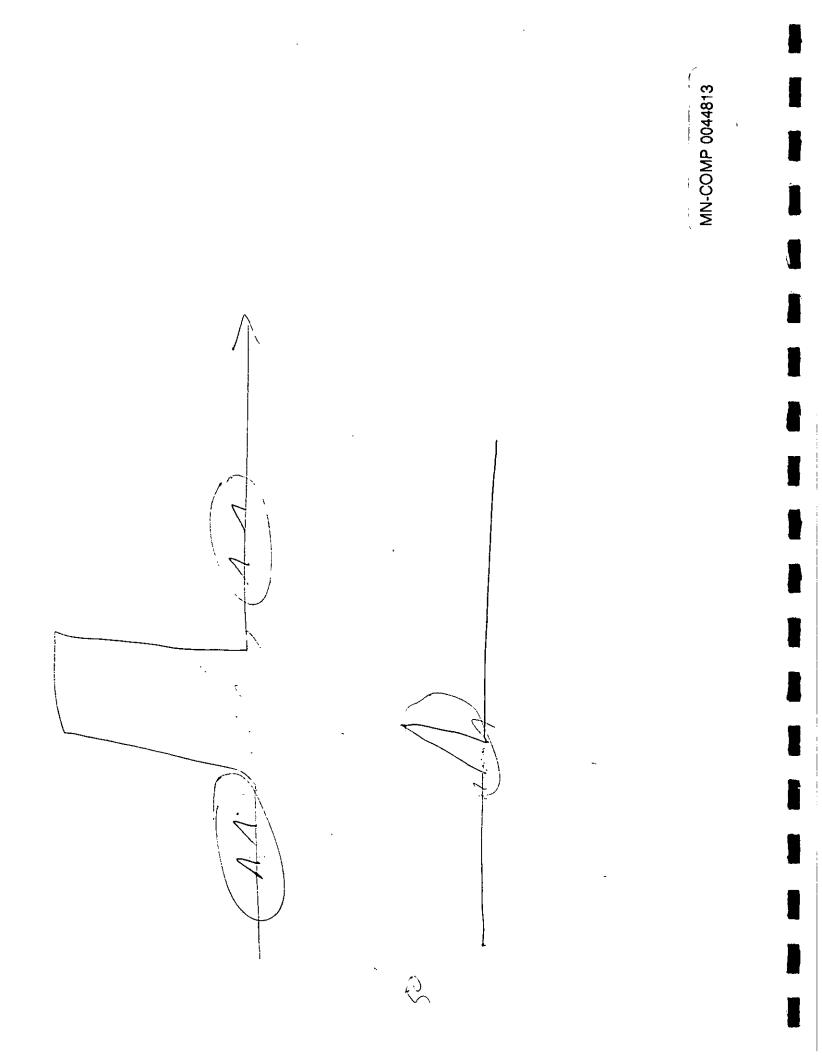
- ----

 $\|$ 

. . .

1710 Douglas Drive North D Minneapolis, MN 55422 D Phone (612) 544-5543

| PAGE REPORT OF L<br>Aboratories, inc.<br>Mr. John Rohlf<br>Page 3                                                                     | Marc                             | ORY ANA<br>h 29, 1990<br>Project<br>Number: | LYSIS                                     | Offices:<br>Minnsapolis, Minnesota<br>Tampa, Fiorida<br>Coratvilie, Iowa<br>Novsto, California<br>Leawood, Kansas<br>Irvine, California<br>Asheville, North Carolina<br>Charlotte, North Carolina<br>Wappingers Falis, New York |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PACE Sample Number:<br>Date Collected:<br>Date Received:                                                                              |                                  |                                             | 421540<br>11/06/89<br>11/06/89<br>Solvent |                                                                                                                                                                                                                                 |
| <u>Parameter</u><br><u>ORGANIC_ANALYSIS</u>                                                                                           | <u>Units</u>                     | MDL                                         |                                           | •                                                                                                                                                                                                                               |
| MDH VOLATILE ORGANICS SOIL EXTRACT-465C<br>1,3-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene<br>Dichlorofluoromethane | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 1000<br>1000<br>1000<br>240                 | ND                                        |                                                                                                                                                                                                                                 |


MDL Method Detection Limit ND Not detected at or above the MDL.

The analyses of soil samples were performed 'as received' and do not reflect analyses on a dry weight basis unless indicated.

The data contained in this report were obtained using EPA or other approved methodologies. All analyses were performed by me or under my supervision.

Susan D. Max Organic Chemistry Manager

MN-COMP 0044812 · · · · · · · ·



# APPENDIX I

# LABORATORY QA/AC PLAN PACE LABORATORIES INC.

.

MN-COMP 0044814 

.

# LABORATORY QUALITY ASSURANCE PLAN

PACE, Inc.

Submitted by:

Approved by: Roger C. Splinter, Ph.D. Vice President l

Rev. #0 - DATE: Rev. #1 - DATE: November 1, 1989 May 17, 1990

MN-COMP 0044815

\_.

# II. TABLE OF CONTENTS

bei

. 1

.

|       |                                                                                             | Page |
|-------|---------------------------------------------------------------------------------------------|------|
| Ι.    | Title                                                                                       | ı    |
| II.   | Table of Contents/List of Exhibits                                                          | 2    |
| III.  | Introduction, Program Objectives, Statement<br>of Policy                                    | 4    |
| IV.   | Laboratory Organization and Responsibility                                                  | 6    |
| ۷.    | Quality Assurance/Objectives                                                                | 10   |
| VI.   | Sampling Procedures                                                                         | 12   |
| VII.  | Sample Custody                                                                              | 29   |
| VIII. | Calibration Procedures and Frequency                                                        | 49   |
| IX.   | Analytical Procedures                                                                       | 58   |
| х.    | Data Reduction, Validation and Reporting                                                    | 76   |
| XI.   | Internal Quality Control                                                                    | 78   |
| XII.  | Performance and System Audits                                                               | 84   |
| XIII. | Preventive Maintenance                                                                      | 93   |
| XIV.  | Assessment of Precision, Accuracy, Complete-<br>ness, Representativeness, and Comparability | 95   |
| XV.   | Corrective Action                                                                           | 102  |
| XVI.  | Quality Assurance Reports to Management                                                     | 104  |
|       | References                                                                                  | 105  |

MN-COMP 0044816

- · . · . /

. . .

ľ

.

# LIST OF EXHIBITS

**j** 

Page

----

| Exhibit | #1  | PACE, Inc. Organizational Structure             | 7     |
|---------|-----|-------------------------------------------------|-------|
| Exhibit | #2  | Corporate Structure With Regional Designations  | 8     |
| Exhibit | #3  | PACE Regional Generic Structure                 | 9     |
| Exhibit | #4  | Lot Log Sheet                                   | 21    |
| Exhibit | #5  | Field Log Data Sheet                            | 27    |
| Exhibit | #6  | Chain-of-Custody Record and Analytical Request  | 30    |
| Exhibit | #7  | Sample I.D. and Condition Form                  | 31    |
| Exhibit |     | Discrepancy Report Form                         | 32    |
| Exhibit |     | Temperature Log Form                            | 37    |
| Exhibit |     | Chain-of-Custody Laboratory Control Form        | 39    |
| Exhibit |     | PACE Client Letter                              | 42    |
| Exhibit |     | Sample Disposition Form                         | 43    |
| Exhibit |     | Hazardous Material/Waste Sample Disposal Option | 47    |
| Exhibit |     | Initial Calibration Data Form                   | 56    |
| Exhibit |     | Continuing Calibration Data Form                | 57    |
| Exhibit |     | GS/MS Extractable Form                          | 72    |
| Exhibit | ••  | GC Extractable Form                             | 73    |
| Exhibit |     | Laboratory Data Flow Chart                      | 77    |
| Exhibit |     | Method Blank Summary Form                       | 79    |
| Exhibit |     | Standard Log Cards                              | 82    |
| Exhibit |     | PACE Contracts and Certifications               | 85-86 |
| Exhibit |     | Checklist for Laboratory Performance Audits     | 87-91 |
| Exhibit |     | Instrument Maintenance Log Book Form            | 94    |
| Exhibit |     | Surrogate Percent Recovery                      | 96    |
| Exhibit |     | PACE Precision Chart                            | 97    |
| Exhibit |     |                                                 | 98    |
| Exhibit | #27 | Spike Summary Form                              | 99    |
| Exhibit | #28 | Corrective Action Form                          | 103   |
|         |     |                                                 |       |

# LIST OF TABLES

| Table #1 | List of Preservatives and Holding Times for<br>Inorganic and Organic Analyses | 23-25   |
|----------|-------------------------------------------------------------------------------|---------|
| Table #2 | List of Acceptance Criteria for Organic Analytical<br>Methods                 | 50-55   |
| Table #3 | Acceptance Criteria for Quality Control Samples<br>and Instrument Calibration | 75      |
|          | MN-COMP                                                                       | 0044817 |

Section No. <u>III</u> Page <u>4</u> Doc. No. 671

## III. INTRODUCTION, PROGRAM OBJECTIVES, AND STATEMENT OF POLICY

This Generic Quality Assurance (QA) Plan is written in compliance with the elements required in the U.S. EPA, "Guidelines and Specifications for Preparing Quality Assurance Program Plans." (QAMS-004 80, September 20, 1980). This document contains the required elements of a Quality Assurance Plan and is prepared in such a way that entire sections can be referenced in subsequent specific project plans. This Laboratory QA Manual defines the systems of quality control and quality assessment that constitute the comprehensive Quality Assurance Program at PACE, Inc. Quality Control consists of specific procedures applied to all phases of analysis from sample receipt through the final reporting of results. The purpose of quality control is to insure that quality goals are met under routine operating procedures. Quality assessment involves the continuous evaluation of data and monitoring of analytical processes for the purpose of insuring that the quality control systems are performing effectively.

### PROGRAM OBJECTIVES

The major elements of the overall Quality Assurance Program are summarized below:

- Use of appropriate methodologies by technically competent, well-trained personnel with state-of-the-art instrumentation and equipment.
- Adherence to well-defined standard operating procedures with emphasis on good laboratory and measurement practices.
- Analysis and assessment of quality control samples including (but not limited to) matrix spike samples, duplicate samples, surrogate spikes; blanks, and independent laboratory control standards.
- Participation in external quality evaluation programs such as the EPA Water Pollution and Water Supply (WP & WS) Study Programs.
- Maintainance of accreditation by State, Federal, and other applicable agencies for work performed.
- Monitor internal and external compliance to procedures and to assess the performance of the analytical methods.

MN-COMP 0044818

| Section  | No. | III |
|----------|-----|-----|
| Page     |     | 5   |
| Doc. No. |     | 671 |

MN-COMP 0044819

------

### STATEMENT OF POLICY:

PACE, Inc. is committed to the policy of providing the highest quality product to its client. The validity and reliability of the information generated is maximized by the adherence to documented quality control procedures and quality assurance protocols. PACE emphasizes the application of sound quality assurance/quality control principles beginning with the initial planning of the project, through all the field and laboratory activities and ultimately to the generation of the final report. The principles of data quality objectives, representativeness, completeness, comparability, precision and accuracy are applied.

PACE is committed to providing the resources, including facilities, equipment and personnel, to ensure the adherence to rigorous QA/AC protocols. Individual Quality Assurance Project Plans are developed for monitoring analytical projects to conform with the established QA/QC protocols.

| Section N | lo. IV |
|-----------|--------|
| Page      | 6      |
| Doc. No.  | 671    |

MN-COMP 0044820

· –

# IV. LABORATORY ORGANIZATION AND RESPONSIBILITY

-

्

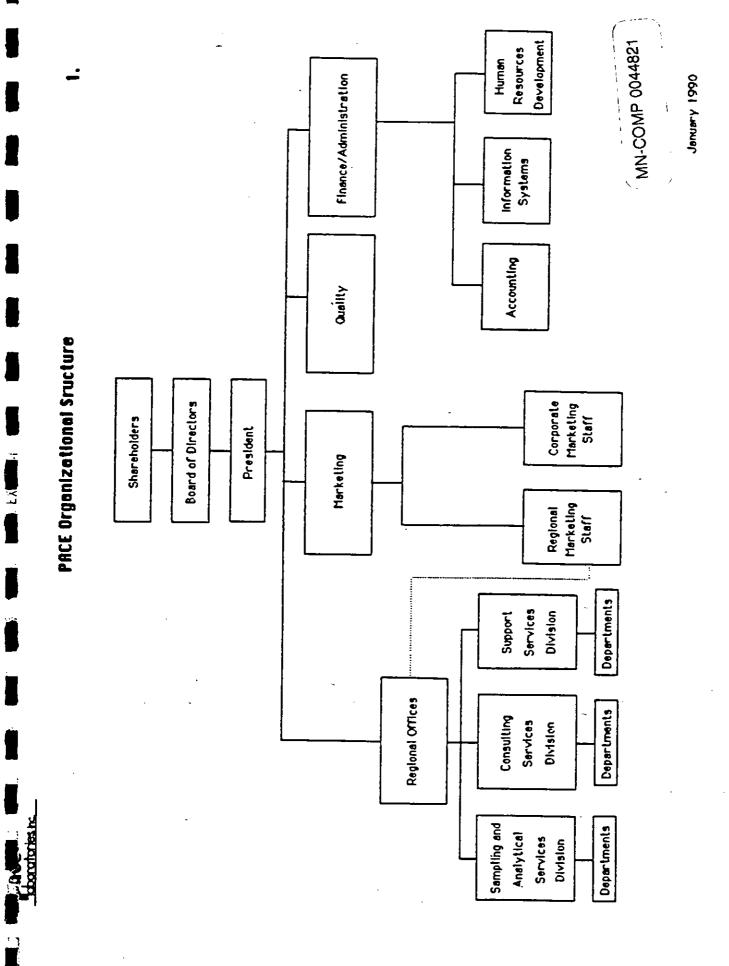
t i Cui

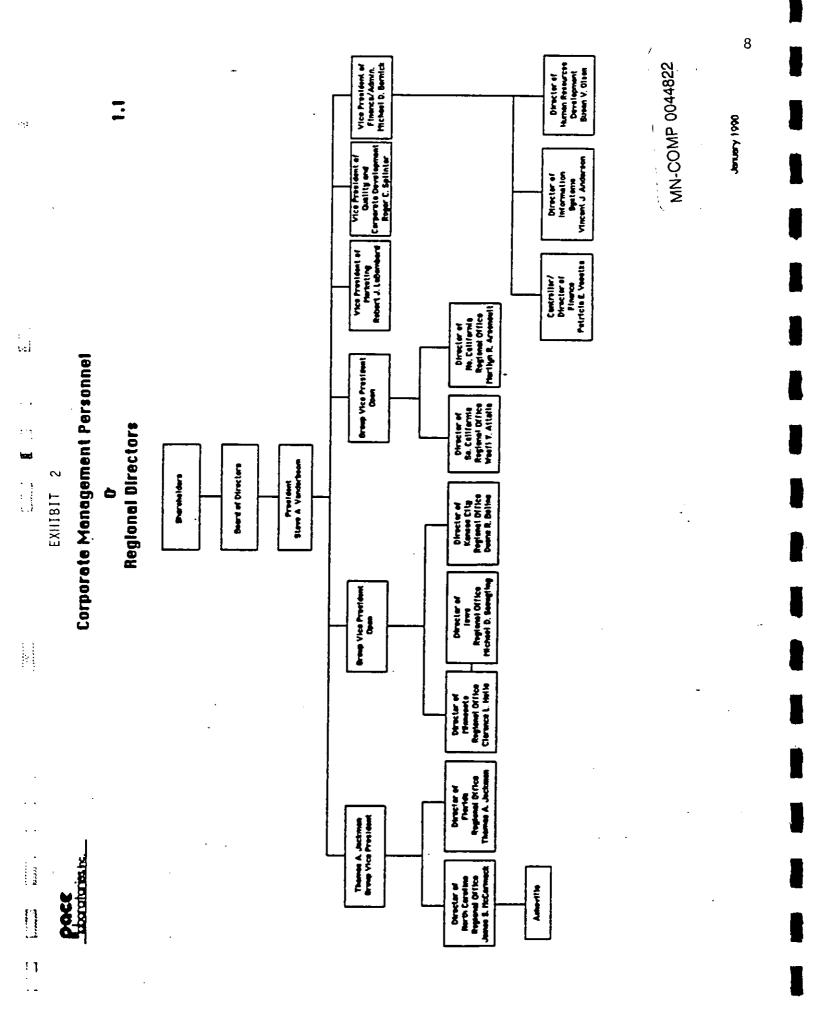
: •

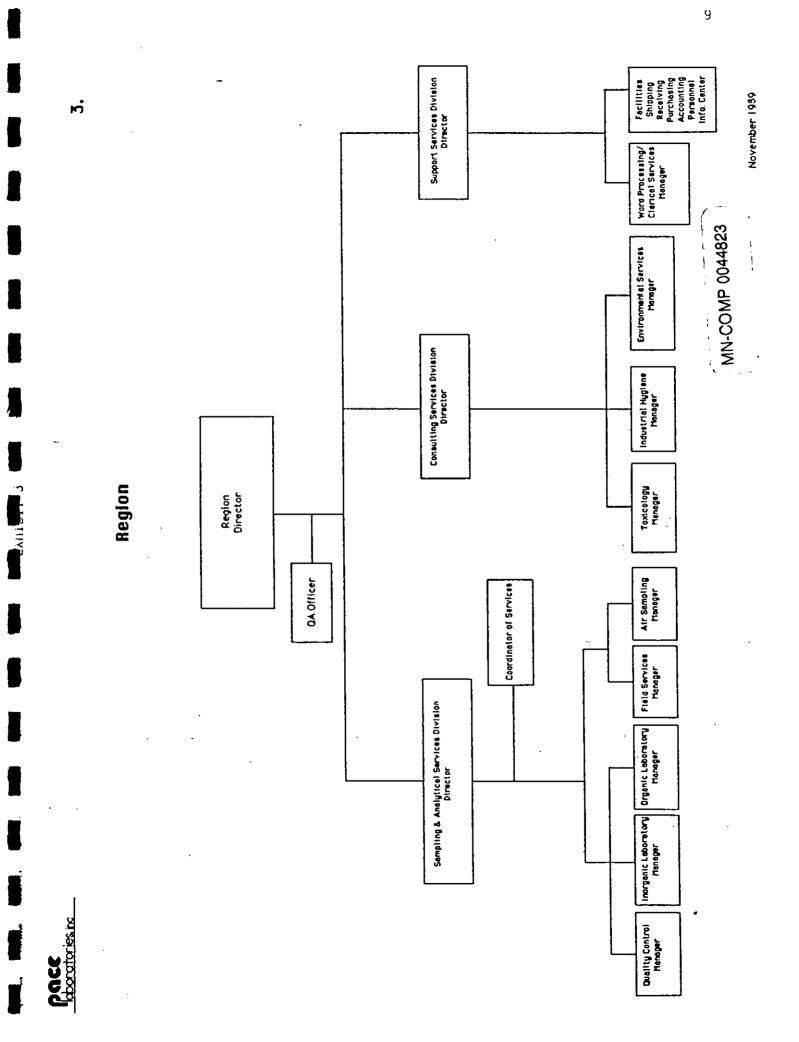
> : · :...

**.** .

s .4


1.


11


The organizational structures for PACE, Inc. are provided in Exhibits 1, 2, and 3.

| Exhibit #1 | Illustrates the PACE, Inc. Organizational Structure                              |
|------------|----------------------------------------------------------------------------------|
| Exhibit #2 | Illustrates the PACE Corporate Structure with Regional Designation               |
| Exhibit #3 | Illustrates a Typical Regional Structure Showing the<br>Quality Responsibilities |

Job descriptions are provided within Quality Assurance Project Plans, as they are designed and developed to address specific projects.







 Section No.
 V

 Page
 10

 Doc.
 No.
 671

### V. QUALITY ASSURANCE/OBJECTIVES

### A. INTRODUCTION

**K** 

The purpose of the plan is to define procedures for the documentation, evaluation, validation, and reporting of data. The objective is to provide a uniform basis for sampling, sample handling, instrument maintenance and calibration, methods control, performance evaluation and analytical data generation and reporting. Specific procedures to be used for sampling, chain of custody, calibration of field instruments (pH, conductivity meters, etc.), laboratory analysis, reporting, internal quality control, audits, preventive maintenance, and corrective actions are described in specific sections of this plan. This section addresses the objectives of accuracy, precision, completeness, representative, and comparability.

The QA objectives for precision and accuracy are to achieve the QC acceptance criteria specified in the proposed analytical procedures. For the organic and inorganic procedures, the precision and accuracy guideline requirements are specified in the individual methods.

Field Blanks and duplicates are collected and analyzed to assess field sampling activities. The results check procedural contamination and/or ambient conditions at the site.

Due to the extensive number of organic parameters and potential matrices, the development of precision and accuracy objectives and control limits for every matrix is difficult. This is typically done with (1) matrix spike and matrix spike duplicate compounds which are added to selected samples before extraction and analysis, and/or (2) surrogate spike compounds which are added to every sample, before extraction and analysis. Although the surrogate and matrix spike analyses do not provide statistically valid statements about precision and accuracy for every compound in a sample, they do give the data reviewer enough information to make judgements about precision and accuracy on a sample-by-sample basis.

Inorganic precision and accuracy data are determined by using duplicate samples (precision), matrix spike and laboratory control samples (accuracy). The following procedure is used:

Section No. V Page 11 Doc. No. 671

For a duplicate sample analysis, at least one duplicate sample is analyzed per sample matrix type (e.g. water, soil) and concentration (e.g. low, medium) per batch of samples or for each 20 samples received, whichever is more frequent, or as specified by state/project requirements. Samples identified as field blanks can NOT be used for duplicate samples analyses. If two analytical methods are used to obtain the reported values for the same element for a batch of samples (i.e., ICP, GFAA), duplicate samples will be run by each method. The relative percent difference (RPD) for each component is calculated for later use during data assessment.

Completeness is a measure of all information necessary for a valid scientific study. For completeness, it is expected that the methodology proposed for chemical characterization of the samples collected will provide data meeting QC acceptance criteria for at least 90% of all samples collected. Completeness may also be defined as a comparison of the number of tests successfully completed (with acceptable QC) to the number of tests requested.

Representativeness is a qualitative element that is related to the ability to collect a sample that reflects the characteristics of that part of the environment that is to be assessed. Sample representativeness is dependent on the sampling techniques used and is considered individually for each project. It is specifically addressed in each work plan.

Comparability is also considered during preparation of the work plan. The objective of comparability is to ensure that results of similar activities conducted by different parties are comparable. For example, the use of EPA-approved or other methods and procedures ensures comparability with data from previous or following studies.

| Section  | No. VI |
|----------|--------|
| Page     | 12     |
| Doc. No. | 671    |

#### VI. SAMPLING PROCEDURES

PACE, Inc. receives samples collected by clients and also has the capability to perform sampling for clients. PACE prepares sample containers in accordance with EPA-issued guidelines for container and preservative requirements. Technical assistance from all supervisory and management staff is available to clients if needed.

#### A. BOTTLE PREPARATION PROCEDURES

The following is the procedure used for Sample Container Preparation:

1. Purpose

Ξİ

-04

阙

[]

The purpose of this Standard Operating Procedure (SOP) is to provide clear, consistent methods for preparing containers for sample collection. Following this procedure will facilitate accurate and consistent analytical results.

### 2. Application

The policies and procedures contained in this SOP are applicable to the personnel in the container preparation area.

### 3. General Policies

- a. Always use new bottles when preparing containers for sampling (exception: One gallon, amber glass bottles used for transporting deionized water can be re-used after proper cleaning). These may be commercially-obtained precleaned bottles.
- b. Always wear disposable latex gloves when handling sample containers.
- c. Several preparation procedures require the use of acids as a preservative or cleaning agent.
  - 1. Be extremely careful when working with acids.
  - 2. Always wear safety glasses and a laboratory coat.
- d. Bottle labels will list the preservatives added and the analysis to be performed, minimizing the probability for error.
- e. When shipping pre-preserved bottles containing corrosives or oxidizers, consult proper DOT regulations.

| Section | n No. | VI  |
|---------|-------|-----|
| Page    |       | 13  |
| Doc. No | 0.    | 671 |

# 4. Procedures: Containers for Aqueous Samples

## a. Volatile Organic (VOA) Sample Container Preparation

- 1. Vial cleaning procedures.
  - Wash an entire package of vials in one washing session. Never store open packages of vials.
  - b. Soak the vials in cleaning solution (one capful of Acationox detergent, American Scientific, per sink of hot tape water) for 5 minutes.
  - c. After soaking, thrice rinse each vial thoroughly with hot tap water.
  - d. Thrice rinse each vial thoroughly with carbon filtered, deionized water (CFDI).
  - e. Stack rinsed vials in a drying tray (metal tray lined with aluminum foil, dull side exposed).
  - f. Bake the vials at 103°C for a minimum of four hours.
  - g. Cover baked vials with aluminum foil such that the dull side of the foil is in contact with the vials and set trays on a lab bench to cool.
- 2. Septum and cap cleaning procedures.
  - a. Clean entire packages of caps and septums. Do not store open bags.
  - b. Clean caps and septums separately.
  - c. The same procedures used for vial cleaning are used for cap and septum cleaning. Follow B through D in Section 1.
  - d. Spread evenly and thinly in drying trays to facilitate drying.
  - e. Dry for one hour at 103°C. Extended periods of heat can damage caps and septums.
  - f. Place clean caps and septums into a 1500 mL glass container which has been cleaned.

| Section N | o. VI |
|-----------|-------|
| Page      | 14    |
| Doc. No.  | 671   |

3. Assembling VOA vials.

-----i

- a. Place ten clean vials upright in a vial box with dividers. Recover drying trays with foil after vials have been removed.
- b. Add 4 drops of concentrated hydrochloric acid (HCL).
- c. Add (10 mg/40 ml) 0.008% sodium thiosulfate if chlorine is present (e.g. drinking water).
- d. Assemble a cap by inserting a septum in the cap such that the Teflon (white) side is exposed to the interior of the vial.
- e. Cap each vial tightly.
- f. Repeat assembly procedures until all vials are capped.

### b. Semi-Volatile Container Preparation

- 1. Glass, amber jars (250, 500, and 1000 mL) with Teflon lined caps are used to hold samples for semi-volatile analysis.
- 2. Bottles and cap liners are rinsed with reagent grade acetone. (Acetone is a target compound for EPA 8240 and an HSL compound. If acetone interferes with the analyses, use of hexane and/or methanol may be an alternative, as specified in the method.)
  - a. Acetone is highly flammable and acetone vapors are toxic.
  - b. When using acetone, wear latex gloves, safety glasses and work in a vented hood.
  - c. Pour a small amount of reagent grade acetone in the bottle to be rinsed.
  - d. Cap the bottle with a Teflon lined cap.
  - e. Shake the bottle making sure the acetone comes in contact with all sides of the bottle and the cap liner.
  - f. Empty the bottle, invert it on a drying rack and allow it to air dry.

- g. Cap the bottle with a rinsed cap.
- h. Attach a blue dot to the top of the cap indicating the container has been acetone rinsed.

Section No. <u>VI</u> Page <u>15</u> Doc. No. <u>671</u>

### c. Preparation of Containers for Metals Analysis

- 1. Polyethylene bottles (125, 250, 500, and 1000 mL) with plastic caps are used to hold water samples to be analyzed for metals.
- 2. Add a small amount of 1:1 nitric acid to a bottle.
- 3. Cap the bottle and shake vigorously, being certain the acid comes in contact with all interior surfaces.
- 4. Empty the container.
- 5. Rinse the bottle and cap thrice with deionized water.
- 6. Add the appropriate amount of 1:1 nitric acid, cap, and place a pink or red dot on the cap to indicate the container contains nitric acid preservative.

| Container Size | Quantity 1:1 Nitric Acid |
|----------------|--------------------------|
| 125 mL         | 1/4 mL                   |
| 250 mL         | 3/8 mL                   |
| 500 mL         | 3/4 mL                   |
| 1000 mL        | 1 1/2 mL                 |

## d. Nutrient Container Preparation

- 1. Polyethylene bottles (250, 500, and 1000 mL) with plastic caps are used to hold water samples for nutrient analysis.
- 2. Add the appropriate amount of sulfuric acid, diluted 1:1 from concentrate with carbon filtered deionized water, to each container.

| Container Size | Quantity 1:1 Sulfuric Acid |
|----------------|----------------------------|
| 250 mL         | 3/8 mL                     |
| 500 mL         | 3/4 mL                     |
| 1000 mL        | 1 1/2 mL                   |

3. Attach an orange dot sticker to the cap of each prepared container.

MN-COMP 0044829

| Section  | No. | ٧I  |  |
|----------|-----|-----|--|
| Page     |     | 16  |  |
| Doc. No. | •   | 671 |  |

### e. Cyanide Container Preparation

સં

ЪŃ

П

- 1. Polyethylene containers (1000 mL) with plastic caps are used to hold samples for cyanide analysis.
- Add one gram (8 to 10 pellets) or concentrated solution of sodium hydroxide and one gram of ascorbic acid to each container. If chlorine is present in the sample, use only ascorbic acid.
- 3. Attach a green dot sticker to the cap of each prepared container.
- 4. Cyanide containers have a short shelf life; do not prepare in large quantities. (See #6b)

### f. Phenol Container Preparation

- 1. Clear glass, small mouth containers (1000 mL) with "poly seal" caps are used to hold samples for phenol analysis.
- 2. Add 1 1/2 mL of sulfuric acid, diluted 1:1 from concentrate with carbon-filtered deionized water, to each container.
- 3. Attach an orange dot sticker to the cap of each prepared container.

### g. Oil and Grease Container Preparation

- Clear glass, wide-mouth containers (1500 mL) with foil lined caps are used to hold samples for oil and grease analysis.
- 2. 1000 mL amber glass containers with Teflon lined caps are acceptable.
- 3. Add five mL of 1:1 sulfuric acid to each container.
- 4. Attach an orange dot sticker to the cap of each prepared container.

MN-COMP 0044830

× ---- - - ----- .

| Section N | o. VI |
|-----------|-------|
| Page      | 77    |
| Doc. No.  | 671   |

# h. Sulfide Container Preparation

- 1. Polyethylene bottles (250 mL) with plastic caps are used to hold samples for sulfide analysis.
- 2. Add 0.5 mL of zinc acetate and NaOH (to pH greater than 9) to each container.
- 3. Attach a white dot sticker to the lid of each prepared container.

### i. Total Organic Carbon (TOC) Container Preparation

- 1. Polyethylene bottles (250 mL) with plastic caps are used to hold samples for TOC analyses.
- 2. Add 0.25 mL of 1:1 sulfuric acid.
- 3. Attach an orange dot sticker to each prepared container.

# j. Radiological Containers Preparation

- Polyethylene bottles (one gallon) with wax coated, paper lined caps are used to hold samples for radiological analysis.
- 2. Add five mL of 1:1 nitric acid to each other.
- 3. Attach a pink dot sticker to the cap of each prepared container.

# k. CFDI Water Container Preparation

- One gallon, small mouth, amber glass bottles with Teflon lined caps are used to transport CFDI water.
- 2. These containers can be reused after appropriate cleaning.
- 3. Wash the bottle in hot tap water and Acationox detergent (American Scientific Products one cap of detergent per sink of water).
- 4. Thrice rinse the bottle with hot tap water.

5. Thrice rinse with CFDI water.

- 6. Bake the bottle at 103° until dry (at least four hours).
- 7. Remove the bottle from the oven, cover the mouth with foil, and let cool.

MN-COMP 0044831

`----

| Section  | No. VI |
|----------|--------|
| Page     | 18     |
| Doc. No. | 671    |

- 8. Cap the bottle with a new, Teflon lined cap.
- 1. Other Container Preparation

-

s

 ${\cal C}_{\rm const}$ 

- 1. Polyethylene bottles (125, 250, 500, and 1000 mL) with plastic caps are used to hold samples for general chemistry analysis.
- Clear glass bottles (125, 500, and 1000 mL) with foil lined caps are used to hold samples with high oil content to be analyzed for general chemistry parameters.
- Amber glass, small neck bottles (500 mL) with Teflon-lined caps are used to hold samples for total organic halide (TOX) analysis.

# 5. Procedure: Containers for Soil Samples

- a. <u>Volatile Organic Analysis Sample Container Preparation for Soil</u> Samples
  - 1. Wide-mouth, amber glass vials (65 mL) with Teflon-lined caps are used to hold samples for volatile organic analysis.
  - 2. The same preparations procedure is used as is used in preparation of VOA containers for aqueous samples except no preservative is added to the containers. (See #4a)

### b. Semi-Volatile Container Preparation

- Wide-mouth, amber glass jars (250, 500, and 1000 mL) with Teflon-lined caps are used to hold samples for semi-volatile analysis.
- Preparation procedures are identified as those used in preparation of semi-volatile containers for aqueous samples. (See #4b)

### c. Inorganic Container Preparation

- 1. Polyethylene bottles (125, 250, 500, and 1000 mL) with plastic caps are used to hold samples for inorganic analysis.
- 2. If the samples contain a large quantity of oil, clear glass jars (125, 500, and 1000 mL) with foil lined caps are used instead of the polyethylene bottles.
- 3. Container preparation procedures are identical to those used in preparation of general containers for aqueous samples.

Section No. VI Page 19 Doc. No. <u>67</u>1

#### 6. Sample Container Quality Control and Lot Assignment

- Bottles of a given type, prepared in one session, constitute a a. lot.
- b. Lot sizes will vary, depending on the demand for a given bottle type.
  - A lot should be large enough to meet one week's demand for 1. the given bottle type. Containers for samples to be analyzed for cyanide and VOA are exceptions.
  - Due to an extremely short shelf life, cyanide containers 2. should be prepared in lot sizes required for approximately 2 days demand and prepared as necessary.
  - 3. Due to spatial limitations, VOA vials should be prepared daily.
- When a lot is prepared, it is assigned an eight character lot c. code.

1. The first two characters indicate the bottle type.

- GN: General Unpreserved MU:
- Metals Unfiltered
- NT: Nutrients
- CN: Cvanide
- PH: Phenol
- OG: Oil and Grease
- SD: Sulfide
- GV: GC VOA Water
- GC: GC VOA Solid
- GL: GC O-Amber
- GS: GC Sm Amber
- GM: GC Misc. Refrigerated
- HW: Hazardous Waste
- :00 Total Organic Carbon
- OX: Total Organic Halides
- RA: Radiological

A complete listing of codes can be found in Section I of the LDMS User's Manual

The next three digits indicate the bottle size. 2.

125: 125 mL 250: 250 ml 500: 500 mL 000: 1000 mL and one gallon

| Section ! | No. VI |
|-----------|--------|
| Page      | 20     |
| Doc. No.  | 671    |

- 3. The last three digits are the lot number. They are assigned in sequential order.
- 4. When the lot code is assigned, it is listed on the Lot Log Sheet (Exhibit 4).
- 5. The person who prepared the containers initials the Lot Sheet next to the lot code.

#### One container per lot is used to hold a deionized water blank. This blank is analyzed to determine the level of contamination in the lot.

- The appropriate analyses are performed for the given container type.
- Use carbon-filtered, deionized water for all blanks.
- Fill all containers, except VOA's, up to the neck of the bottle.
- Fill VOA's such that no bubbles are trapped when the vial is capped.
- Label each blank with the following information:

Client: PACE, QC

2.14

i 1

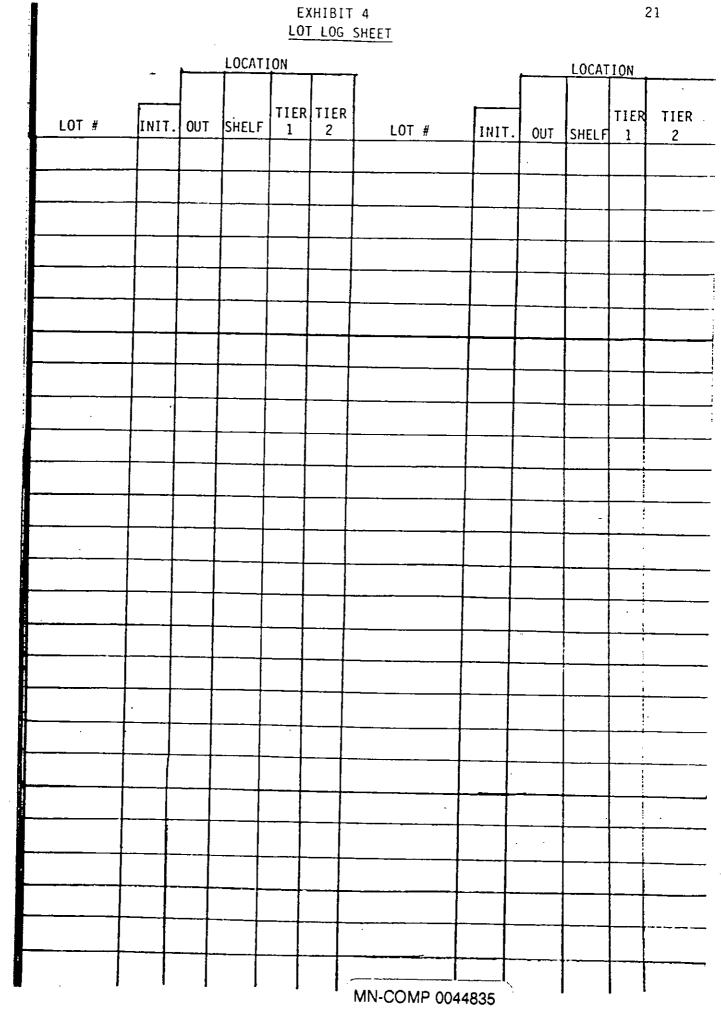
13

Sample description: (Lot Code) Date Collected: Collected by: (Initials) Time Collected: Analysis: (As indicated for the bottle type) Preservative: (Check appropriate preparation)

6. Complete a Chain-of-Custody form to accompany the samples. Client, sample description, time sampled, preservative, analysis: as listed on the bottle label.

Report to: (Name of container preparation person)

Project Name: Container QA


Requested Due Date: Priority 2

Matrix: H<sub>2</sub>O

Route samples and Chain-of-Custody to Sample Check-in.

MN-COMP 0044834

\_\_\_\_\_



<u>81</u>

| Section  | No. | VI  |  |
|----------|-----|-----|--|
| Page     |     | 22  |  |
| Doc. No. |     | 671 |  |

MN-COMP 0044836

#### 7. Sample Analysis Data Entry Form Tracking for Bottle Prep QC

Forms will be kept in an Outstanding QC file.

- a. When a Report of Laboratory Analysis is received for the project, the Sample Analysis Data Entry Form is moved to the Complete QC file.
- b. A copy of the Report of Laboratory Analysis is then routed to QC Data Entry and data are entered into the appropriate data base.
- c. The data are reviewed by the supervisor of the Bottle Preparation Area and signed off as being certified "clean" if the following criteria are met. After subtraction of the daily DI water blank, all laboratory contaminants shall be less than 2 times the detection limit. If this criterion is not met, the bottles are re-cleaned and another blank analyzed.

The following are guidelines for the addition of sample preservatives to containers. Check the list of analyses to be performed and determine the types and sizes of containers needed and required.

Add the appropriate preservative to its designated container under a hood. Pack the bottles into a cooler with blue ice for the client.

#### PREPARING ACID PRESERVATIVES

-3

11

X

42

÷. 1

All acid preservatives are prepared using a concentration of 1:1 acid to water. Reagent grade acids are used when making the 1:1 concentrations.

#### COMMON ANALYSES PRESERVATIVES

| Analysis     | Bottle Type               | Preservative                       | рН   | Approx. Amount                 |
|--------------|---------------------------|------------------------------------|------|--------------------------------|
| Metals       | l liter plastic           | 1:1 HNO3                           | 2.0  | 1.5 mL                         |
| EPA 602/8020 | 2 XVOA vials              | 1:1 HC1                            | 2.0  | 3 drops                        |
| Cyanide      | l liter plastic           | NaOH tablets                       | 12.0 | 4-5 tabs                       |
| Sulfide      | 500 mL plastic            | Zn acetate, NaOH                   | 9.0  | 2 mL Zn acetate<br>2 tabs NaOH |
| Ammonia      | l liter plastic/<br>glass | 1:1 H <sub>2</sub> SO <sub>4</sub> | 2.0  | 1.5 mL                         |
| Phenolics    | l liter amber<br>glass    | 1:1 H <sub>2</sub> SO <sub>4</sub> | 2.0  | 1.5 mL                         |

Sample containers, preservatives, and holding times for representative analytical groups are listed in Table 1. Refer to 40CFR 136 for complete information and details.



4

# Inorganic Analytical Guide

### TABLE 1

# **Common Non-Metals Analysis**

| Parameter                                             | Typical<br>Method(a)   | Comparable<br>SW-845 Mathod(a<br>If Applicable | i), Sample Container/<br>Preservative*   | Preferred<br>Volume (ml)* | EPA<br>Holding Time |
|-------------------------------------------------------|------------------------|------------------------------------------------|------------------------------------------|---------------------------|---------------------|
| Acidity                                               | EPA 305,1              |                                                | P. G/4*C                                 | 100                       | 14 Days             |
| Alkahniy                                              | EPA 310.1/310.2        |                                                | P. G/4*C                                 | 100                       | 14 Days             |
| Bacteria, Total Coliform                              | Slandard Method 909A   | 9131/9132                                      | WK/4*C                                   | - 100                     | ti Hours            |
| Bacteria, Fecal Coklorm                               | Slandard Method 909C   |                                                | WK/4+C                                   | 100                       |                     |
| Bacteria, Total Plate                                 | Standard Method 907    |                                                | WK/4*C                                   | 100                       | 6 Hours             |
| BOD, 5 Day                                            | EPA 405.1              |                                                | P. G/4*C                                 | 500                       | 48 Hours            |
| BOD. 5 Day Carbonaceous                               | EPA 405.1              |                                                | P. G/4*C                                 |                           | 48 Hours            |
| Boron                                                 | EPA 212.3              |                                                | HNO1< 2                                  |                           | 48 Hours            |
| Bromide                                               | EPA 320.1              |                                                | P, G                                     | 100                       | 6 Months            |
| CO0                                                   | EPA 410.1/410.2        |                                                |                                          | 200                       | 28 Days             |
| Color /                                               | EPA 110.3              |                                                | P. G/4*C, H <sub>3</sub> SO <sub>4</sub> | 250                       | 28 Days             |
| Chlonde                                               | EPA 325.2/325.3        | 9251/9252                                      | P. G/4*C                                 | 250                       | 48 Hours            |
| Chlorine, Residual                                    | EPA 330.1              |                                                | P, G                                     | 100                       | 28 Days             |
| Cvanide, Total                                        | EPA 335.2              |                                                | P. G                                     | 500                       | Immed.              |
| Fluonde, Total                                        | Standard Method 413A   | 9010                                           | P. G/4°C, NaOH pH > 12                   | 500                       | 14 Days             |
| Fluonda, Electrode                                    | EPA 340.2              |                                                | Ρ                                        | 500                       | 28 Days             |
| Fuonde, (SPADNS)                                      | EPA 340.2              |                                                | P                                        | 200                       | 28 Days             |
| Grease & Oil                                          | EPA 340.1<br>EPA 413.1 |                                                | ρ                                        | 500                       | 28 Days             |
| Hardness, Total (CaCO <sub>3</sub> )                  | EPA 130.2              | 9070/9071                                      | G/4*C, H2SO4                             | 1500                      | 28 Days             |
| Ion Chromatography                                    | EPA 130.2<br>EPA 300   |                                                | P. G/4*C                                 | 250                       | 5 Monins            |
| Including common anions a<br>Br., CI., F., NO,-, NO,- | uch as:                | hers)                                          | P. G/4*C                                 | 100                       | 28 Days             |
| Nitrogen, Ammonia                                     | EPA 350.1/350.2        |                                                | P. G/4*C. H <sub>5</sub> SO.             |                           |                     |
| Nitrogen, Kjeldahl                                    | EPA 351.2/351.3        |                                                | P. G/4*C. H <sub>2</sub> SO <sub>4</sub> |                           | 28 Days             |
| Nitrogen, Nitrale                                     | EPA 353.2              | 9200                                           | P. G/4*C                                 | 1000                      | 28 Davs             |
| Nitrogen, Nitrae                                      | EPA 353.2              |                                                | P. G/4*C                                 | 100                       | 48 Hours            |
| Nitrogen, Nitrate & Nitrite                           | EPA 353.2              |                                                |                                          | 100                       | 48 Hours            |
| Nitrogen, Organic                                     | EPA 351.3              | ······································         | P. G/4*C. H <sub>2</sub> SO4             | 100                       | 28 Days             |
| Odor                                                  | EPA 140.1              |                                                | P, G/4*C, H <sub>2</sub> SO <sub>4</sub> | 100                       | 28 Days             |
| Dxygen, Dissolved                                     | EPA 360.1              |                                                | G/4*C                                    | 1000                      | 24 Hours            |
| ж                                                     | EPA 150.1              | 004040044 50046                                | G + Bottle & Top                         | 500                       | immed.              |
| Phenol                                                | EPA 420.1              | 9040/9041/9045                                 | P. G/4*C                                 | 100                       | Immed.              |
| Phosphorus, Total                                     | EPA 365.1/365.2        | 9005                                           | G/4*C. H <sub>2</sub> SO.                | 1000                      | 28 Days             |
| hosphorus, Ortho                                      | EPA 365.1/365.2        |                                                | P. G/4*C. H <sub>2</sub> SO <sub>4</sub> | 160                       | 28 Days             |
| Silica. Dissolved                                     | EPA 370.1              |                                                | P, G/Filler                              | 100                       | 48 Hours            |
| Solids, Total                                         | EPA 160.3              |                                                | P/4*C                                    | 100                       | 28 Days             |
| Solids, Total Volatile                                | EPA 160.4              |                                                | P. G/4*C                                 | 100                       | 7 Days              |
| iolids, Total Dissolved                               | EPA 160.1              |                                                | P. G/4*C                                 | 100                       | 7 Days              |
| iolids, Total Suspended                               | EPA 160.1              |                                                | P. G/4*C                                 | 100                       | 7 Days              |
| jolids, Suspended Volatile                            | Standard Method 209A   |                                                | P. G/4*C                                 | 100                       | 7 Days              |
| olds. Settleable                                      | EPA 160.5              | <u> </u>                                       | P. G/4*C                                 | 100                       | 7 Days              |
| pecific Conductance                                   |                        |                                                | P. G/4*C                                 | 1 Gal.                    | 48 Hours            |
| ullate                                                | EPA 120.1              | 9050                                           | P. G/4*C                                 | 100                       | 28 Days             |
| ulide, Total                                          | EPA 375.4              | 9036/9038                                      | P. G/4*C                                 | 100                       | 28 Days             |
| ulite                                                 | EPA 376.1              | 9030                                           | P. G/4°C. NaOH pH > 9. Zn acetate        | 500                       | 7 Days              |
| urlactants                                            | EPA 377.1              |                                                | P. G                                     | 500                       | Immed,              |
|                                                       | EPA 425.1              |                                                | P. G/4*C                                 | 250                       | 48 Hours            |
| otal Organic Carbon                                   | EPA 415.1              | 9060                                           | P. G/4*C HCI pH < 2                      | 100                       | 25 Days             |
| otal Organic Halogen                                  | EPA 450.1              | 9020/9021                                      | GAV4*C                                   | 500                       | 14 Days             |
| urbidity                                              | EPA 180.1              |                                                | P. G/4*C                                 | 100                       | 48 Hours            |
| Plastic, polyethylene bottle w                        |                        | Preservatives                                  | Sample container, preferred NOTE:        |                           |                     |

G Glass WK Whit-Pak<sup>e</sup> GA Glass, amore bottle with a Teffort<sup>®</sup> fined cas

H<sub>2</sub>SO, Sulturic Acid HNOs Nitric Acid NaOH Sodium Hydroxide

volume and holding tim are for water matrix, Consult laboratory for solid matrix sa

#### INORGANIC ANALYTICAL GUIDE

#### TABLE 1 (CONT.)

Solid

Sample Container: Plastic or glass

Preferred Volume: 100 grams

EPA Holding Time: 6 Months

4°C

Preservative:

| Common | Metals | Analy        | vsis |
|--------|--------|--------------|------|
| Common | metais | <b>A</b> HAI | 7313 |

1

1.1

÷. .

FURNACE FLAME\*\* SW-846 Method **EPA or Standard Method EPA or Standard Method** SW-846 Method Parameter 7020 202.2 NA 202.1 Aluminum 204.2 7041 7040 204.1 Antimony 7061 7060 206.2 206.3\* Arsenic 208.2 NA Barium 208.1 7080 7091 210.2 Beryllium 210.1 7090 7131 213.1 7130 213.2 Caomium 7140 NA NA 215.1 Calcium 7191 Chromium, Total 218.1 7190 218.2 Standard Method 312B 218.5 NA Chromium, Hexavalent 7195-7198 219.2 7201 Cobalt 219.1 7200 220.2 NA Copper 220.1 7210 231.2 NA Gold 231.1 NA 236.2 NA 7380 Iron, Total 236.1 239.2 7421 239.1 7420 Lead NA NA Standard Method 317B NA Lithium NA 7450 NA 242.1 Magnesium NA 243.1 7460 243.2 Manganese NA 7470/7471 NA Mercury (Cold Vapor) 245.1 246.2 7481 7480 246.1 Molybdenum 249.2 NA 249.1 7520 Nickel NA NA 258.1 7610 Potassium 7740 270.2 7741 270.3\*\* Selenium NA NA NA Standard Method 303C Silicon NA 7760 272.2 272.1 Silver NA 273.1 7770 NA Sodium NA NA Stronnum Standard Method 303A NA Standard Method 304 NA Tellunum Standard Method 303A NA 7841 279.1 7840 279.2 Thallium 7870 282.2 NA Tin 282.1 Tranium 283.1 NA 283.2 NA 7910 286.2 7911 Vanedium 286.1 7950 289.2 NA 289.1 Zinc

Metals by Inductively Coupled Plasme (ICP): AI, Sb, As, Ba, Be, B, Cd, Ca, Cr, Co, Cu, Fe, Po, Mg, Mn, Mo, Ni, K, Se, Si, Ag, Na, Ti, V. Zn: EPA ICP Method 200.7 or SW-846 Method 6010

\*\*Flame A.A. or Hydride

Water Sample Container: Plastic or glass

Preferred Volume: 100 ml

EPA Holding Time: 6 Months

 $HNO_3 \rho H < 2$ 

Preservative:

MN-COMP 0044838

24



# **Organic Analytical** Guide

TABLE 1 (CONT.)

# Water and Wastewater Analysis

| EPA<br>Method | Parameter                             | Technique               | Sample<br>Preparation | Sample Container/<br>Preservative | Preferred<br>Volume (ml) | EPA<br>Holding Time |
|---------------|---------------------------------------|-------------------------|-----------------------|-----------------------------------|--------------------------|---------------------|
| 601           | Purgeable Halocarbons                 | GC-HALL                 | P&T                   | VOA/4°C                           | 40                       | 14 Days             |
| 502           | Purgeable Aromatics                   | GC-PID                  | P&T                   | VOA/4°C                           | - 40                     | 14 Oavs             |
| 603           | Acrolein and Acrylonistie             | GC-FID                  | P&T                   | VOA/4°C, pH Adjusted              | - 40                     | 14 Days             |
| 664           | Phenois                               | GC-FID                  | EXT                   | GA/4*C                            | 1000                     | 7 40 Days           |
| 605           | Benzichnes                            | HPLC-Electrochem        | EXT                   | GA/4°C                            | 1000                     | 7 40 Days           |
| 66            | Phihalate Esters                      | GC-ECD                  | EXT                   | GA/4°C                            | 1000                     | 7 40 Davs           |
| 507           | Nicosamines                           | GC-NPD                  | EXT                   | GA/4°C                            | 1000                     | 7'40 Days           |
| 608           | Organochionne Pesicides and PCB's     | GC-ECD                  | EXT                   | GA/4°C                            | 1000                     | 7'40 Days           |
| 609           | Neroaromatics and Isophorone          | GC-FID + ECD            | EXT                   | GA/4°C                            | 1000                     | 7.40 Dava           |
| 610           | Polynuclear Aromatic Hydrocarbons     | HPLC-UV/Fluor or GC-FID | EXT                   | GA/4°C                            | 1600                     | 7:40 Days           |
| 611           | Habethers                             | GC-HALL                 | EXT                   | GA/4°C                            | 1000                     | 7:40 0275           |
| 612           | Citionnated Hydrocarbons              | GC-ECD                  | EXT                   | GAV4°C                            | 1000                     | 7'40 Days           |
| 613           | 2. 3. 7. 8-Tetrachiorodibenzo-p-diokm | GC/MS                   | EXT                   | GA/4°C                            | 1000                     | 7'40 Days           |
| 614           | Organophosonate Pesticides            | GC-FPD or NPD           | EXT                   | GAV4"C                            | 1000                     | 7'40 Days           |
| 615           | Chlonnateo Herbicides                 | GC-ECD or Hall          | EXT                   | GA/4°C                            | 1000                     | 7'40 Days           |
| 624           | Purgeables                            | GCMS                    | P&T                   | VOA'4"C                           | 40                       | 14 Days             |
| ÷25           | Suserfieurals, Acids and Pesticides   | GC/MS                   | EXT                   | GA/4°C                            | 1000                     | 7 -9 Days           |

# Solid Waste Analysis

| EPA<br>Method | Parameter                         | Technique      | Sample<br>Preparation | Sample Containen<br>Preservative | Preferred<br>Volume | EPA<br>Holding Time                   |
|---------------|-----------------------------------|----------------|-----------------------|----------------------------------|---------------------|---------------------------------------|
|               | Purgeables                        |                |                       |                                  |                     |                                       |
| 8010          | Halogenaled Volatie Organics      | GC-HALL        | 5030                  | VOA/4°C                          | •                   | 14 Days                               |
|               | Purgeables                        |                |                       |                                  |                     | · · · · · · · · · · · · · · · · · · · |
| 8015          | Non-Halogenaled Volable Organics  | GC-FID         | 5000                  | VOA/4°C                          | •                   | 14 Days                               |
| 8020          | Aromatic Volatile Organics        | GC-PID         | 5000                  | VOA/4°C                          | • •                 | 14 Days                               |
| 8030          | Acrolem, Actionatile, Acetonitrie | GC-FIO         | 5030                  | VOA/4°C                          | •                   | 14 Carys                              |
| 8040          | Phenois                           | GC-FIO         | 3550                  | GA/+°C                           | •                   | 14 Days or 7/40 Cays                  |
| 8060          | Phihalate Esters                  | GC-ECD         | 3550                  | GA/4°C                           | •                   | 14 Days or 7:40 Days                  |
| 8080          | Organochionne Pessoides and PCB's | GC-ECD         | 3550                  | GA/4°C                           | •                   | 14 Days or 7.40 Days                  |
| 8000          | Niroaromatics and Cyclic Kelones  | GC-FID or ECD  | 3550                  | GA/4°C                           | •                   | 14 Days or 7/40 Gays                  |
| 6100          | Polynuclear Aromaac Hydrocarbons  | GC-FID         | 3550                  | GA-4°C                           |                     | 14 Days or 7/40 Days"                 |
| 8120          | Chionnaled Hydrocarbona           | GC-ECD         | 3550                  | GA/4°C                           |                     | 14 Davs or 7/40 Davs"                 |
| 8140          | Crganophosonorus Pesticides       | GC-FPO or NPD  | 3550                  | GA/4°C                           |                     | 14 Days or 7/40 Days                  |
| 8150          | Chlomiated Herbicides             | GC-ECD or HALL | 3550                  | GA/4°C                           | •                   | 14 Days or 7:40 Days"                 |
| 8240          | Volable Organics                  | GC/MS          | 5030                  | VOA'4"C                          | •                   | 14 Dava                               |
| 8250          | Semi-Volatile Organica            | GC/MS          | 3550                  | GAV4°C                           | •                   | 14 Days or 7/40 Days                  |

#### Technique

| ansary-mone |                                      |
|-------------|--------------------------------------|
| GC          | Gas Overnelograph                    |
| GC:MS       | Gas Civomatorian Mess Spectrometer   |
| HPLC        | High Performance Louid Chrometograph |
| Detectors:  |                                      |
| ECO         | Electron Capture                     |
| Fhor        | Fluorescence                         |
| FIO         | Flame Ionization                     |
| FPD         | Flame Photometric                    |
| HALL        | Electronysic Conductivey             |
| NPO         | Nerogen Prosphorous                  |
| PIO         | Protocongation                       |
| UV .        | Ukrawces                             |

#### Preparation Method Used:

EXT Extraction Methods that could be used include 3510, 3520, 3540 and 3550.

- PLT Purge and Trap
- 3510 Separatory Funnel Extraction of Liquid Samples
- 3520 Coherucus Liquid-Liquid Extraction 3540 Souhist Extraction of Solid Samples 3550 Soncaron Extraction of Solid Samples

- 5030 Purge and Trip. Direct Injection of Liquid Samples. Solid Samples Mixed then Injected.

#### Sample Container/Preferred Volume:

- GA Glass Amber Botte with Teton Lined Cap
   VOA
   Volasie Organic Analys, 40 ml Amber Glass Vial
   with Teton Septim
   Contact Laboratory for recommendation

#### EPAHolding Time

7/40 7 Days for Extraction and 40 Days for Analyse "Departds upon Sample Mains

NOTE: The methods shown are those commonly employed in performing environmenual analysies, is a not merhods or to indicate indusive of all possible EPA analysies in environs or to indicate the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon Full any laboratory routi wy provides the methods or parameters shown.

MN-COMP 0044839

-----

| Section  | No. | ٧I  |  |
|----------|-----|-----|--|
| Page     |     | 26  |  |
| Doc. No. |     | 671 |  |

#### B. SAMPLING PROCEDURE FOR GROUNDWATER AND SURFACE WATER

Groundwater and surface water sampling techniques employed by PACE are in accordance with the EPA Regional IV Standard Operating Procedures and Quality Assurance Manual, and the PACE Field Services SOP Manual.

Trained field sampling crews are dispatched to the site for sample collection and deliver collected samples to the laboratory.

For groundwater sampling, the water level within the well is determined prior to sampling using an electronic water level meter, then recorded on the field log data sheet with all additional pertinent information (Exhibit 5). The volume of water in the casing is calculated and three to five times that volume is purged from the well. In all cases, the well is purged until the conductivity, temperature, and pH have all stabilized.

Samples from monitoring wells are taken with a precleaned Teflon or stainless steel bailer. Bailers are precleaned by washing first with detergent, then rinsed with tap water, triple rinsed with deionized water, and baked to dryness. Precleaned bailers are used between each sampling point.

All samples collected for metals analysis are preserved with nitric acid. The bailer to be used for sampling is used for purging two inch diameter wells and a gas-driven centrifugal pump is used when larger volumes of water need to be removed (static water levels of less than 25 feet). Wells with static water levels greater than 25 feet and casing diameters greater than 3 inches are purged using a submersible pump.

#### Quality Control Protocols:

- A. All Quality Control (QC) procedures are as specifically required by the method, state, or project requirements.
- B. The USEPA requires as a minimum one matrix spike, one duplicate or MSD, one blank, per set of samples of similar matrix with a maximum of 20 samples per set. This is a recommended minimum frequency for QC, unless stated otherwise by method, state or project requirements. A client may also request more frequent QC in which case it will be necessary to collect additional samples.

MN-COMP 0044840

#### EXHIBIT 5 FIELD LOG DATA SHEET PACE, Inc. HELL SAHPLING

- -

1

1

| Client:                | Project:                  | Proje               | ect #:          |            |
|------------------------|---------------------------|---------------------|-----------------|------------|
| Sample Site:           |                           |                     |                 | ·          |
| Hell Identification an | d Description: (Locked    | Not Locked          | _> Key#:        | · <u></u>  |
| ID inchesPVC:          | Steel:Stainless           | Steel:Other:        | Labeled:        |            |
| Total Hell Depth (from | top of casing)met         | ersfeet Ele         | vation:         | feet       |
| Static Hater Level (fr | om top of casing) Before  | Prepumping:         | meters          | feet       |
| Static Hater Level (fr | om top of casing) At Time | of Sampling:        | secens          | feet       |
| Static Hater Elevation | :feet Hater Colum         | n:feet One (        | Casing Volume_  | ga1        |
| Date Prepumped:        | Time Prepumped:           | Volume Pre          | pumped:         | gal        |
| Prepumping Method Used | •                         | Pum                 | p Rate:         | gpm        |
| Date Sampled:          | Time Sampled:             | Sampling Equipment  | nt Used:        |            |
| Sample Temperature:    | •C Sample pH:S            | ample Specific Cond | uctance:        | _umho/cm2  |
| Field Measurements Tem | perature Corrected: Yes_  | _NoHetals Filter    | ed in Field: Ye | esNo       |
| Weather Conditions:    | <u></u> .                 |                     | ·······         |            |
| Observations:          |                           |                     |                 | <b></b>    |
| Sample Description:    |                           | · .                 |                 |            |
| Name and Affiliation o | f Sampler(s)              |                     |                 | - <u>-</u> |
|                        | f Inspector(s) Present:   | ·                   | _               |            |

#### STABILIZATION TEST

.

| Time | pH | Specific Conductance<br>(umhos/cm2) | Temp.<br>(*C) | Cumulative Volume Removed<br>(gallons) - |
|------|----|-------------------------------------|---------------|------------------------------------------|
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |
|      |    |                                     |               |                                          |

MN-COMP 0044841

27

| Section  | No.VI · |
|----------|---------|
| Page     | 28      |
| Doc. No. | 671     |

MN-COMP 0044842

. .

#### C. SAMPLING PROCEDURES FOR SOILS AND SEDIMENTS

ŝ

1d

Soil and sediments are collected according to procedures in the latest edition of Test Methods for Evaluating Solid Waste, EPA-SW-846.

Soil sampling is designed to determine the depth and range of contamination from spillage or the leaching effects of rain on materials stored above ground. If borings are required, the depth and placement of the borings are planned by the project manager/subcontractor and client, using the suspected range of contamination as a guide.

Section No. VII Page 29 Doc. No. 671

#### VII. SAMPLE CUSTODY

#### A. SAMPLE RECEIPT

Sample shipments are received at the sample receiving area. Sample custodians verify the number of shipping containers received against the numbers listed on the shipping manifest/chain-of-custody. Any damage to the shipping containers or other discrepancy observed is noted on the chain-of-custody before signing it. A copy is kept for future reference.

The external chain-of-custody must be signed by the carrier for relinquishment of samples and signed by sample custodian personnel for sample receipt. The actual chain-of-custody may be supplied by PACE, (Exhibit 6), or may be the client's own form. The chain-of-custody remains in the project file at all times.

#### B. SAMPLE VERIFICATION

Upon arrival of a sample shipment, sample control personnel perform sample inspection. PACE's Sample I.D. and Condition Sheet (Exhibit 7) serves as a check-off list of procedures to follow and as documentation of the following:

- 1. Presence/absence of custody seals or tapes of the shipping containers and the condition of the seals (i.e., intact, broken).
- 2. Presence/absence of chain-of-custody; (if present, is it complete?)
- Presence/absence of sample tags; (if present, are they removable?)
- 4. Agreement/non-agreement between the sample tags, chain-of-custody, and any client documentation.

# 5. Condition of the samples when received, including:

- Cold or ambient
- Intact, broken/leaking
- Headspace in VOA vials
- Sample holding time (has it been exceeded)?
- Sample pH (less than 2 if acid preserved)

If discrepancies are found, the PACE project manager is contacted immediately (verbally and by using the Discrepancy Report Form) (Exhibit 8). If the project manager is not available, the QC manager is contacted for further directions. A copy of a Discrepancy Report Form is attached to the project data package.

MN-COMP 0044843

-----

|          |                                                         | 1               | ŀ                    | ľ                          |                      |                     |                   |                                     |          |                                       |                                                                                                                  |                                                                                                                |                                                                                                                 |        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                         | د              | U                                     |       |
|----------|---------------------------------------------------------|-----------------|----------------------|----------------------------|----------------------|---------------------|-------------------|-------------------------------------|----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|---------------------------------------|-------|
|          | 型1560<br>CHAIN-OF-CUSTEDDY RECORD<br>Analytical Request | Pace Client No. | Pace Project Manager | Pace Project No.           | *Requested Due Date: |                     |                   | BEMRRYS                             |          | · · · · · · · · · · · · · · · · · · · | and and the second second second second second second second second second second second second second second s  | - 11、「「「「「「」」」」」」」」」「「「」」」」」」」」」」」」」」」」」」                                                                      |                                                                                                                 |        |                 | いたで、このないないでしたのでしょうです。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C ACCEPTED BY AFFILIATION       | MN-COMP 001101 | 0.044404                              |       |
| <b>1</b> |                                                         | н То:           |                      | P.O. # / Billing Reference | Project Name / No.   |                     |                   |                                     |          |                                       |                                                                                                                  |                                                                                                                |                                                                                                                 |        |                 | 小学に経済のなった。 名前の目的を言いた。 おおまた、 名前の子がある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A RELINGUISHED BY ( AFFILIATION |                |                                       |       |
| U        |                                                         | Report To:      | Bit To:              | P.O. #                     | Projec               | PRESERVATIVES       |                   | HNO'<br>H'ZO'<br>NOELES<br>NO: OF   |          |                                       |                                                                                                                  | A BOARD ALLAND AND AND AND AND AND AND AND AND AND                                                             | and a state of the second state of the second states and the second states and the second states and the second |        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEM<br>NUNBER                   |                |                                       |       |
|          |                                                         |                 |                      |                            |                      |                     |                   | MAT- P<br>TIME RIX                  |          |                                       |                                                                                                                  |                                                                                                                |                                                                                                                 |        | Service Service | al Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHIPMENT METHOD                 |                |                                       |       |
|          | ies, inc                                                |                 |                      |                            |                      |                     | Date Sampled      | LE DESCRIPTION                      | <u>[</u> |                                       | and the second second second second second second second second second second second second second second second |                                                                                                                |                                                                                                                 |        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE SALERS THE SALE             |                | · · · · · · · · · · · · · · · · · · · |       |
|          | aboratories, inc.                                       | Client          | Address              |                            | Phone                | Sampled By (PRINT): | Sampler Signature | ITEM CONTRACTION SAMPLE DESCRIPTION |          | 2 Sector provements and sector and    | 3                                                                                                                | the second second second second second second second second second second second second second second second s | eeler<br>5                                                                                                      | 9<br>9 | いたいないであるとなっていた。 | Sector and the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the s | CCCLER HOS. COL                 |                | Additional Corner units               | ,<br> |

¥. . . . .

: |

رد لار

. .

EXHIBIT 6

: [ :

37%

:

-

1

#### EXHIBIT 7

#### SAMPLE I.D. AND CONDITION FORM

|            |             | SAMPLE CONDITION UPON RECEIPT CHECKLIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ete<br>ete | che<br>sect | cklist (A) during sample receipt. If any items are to the start of the start of the start of the samples to the samples to the samples are to the samples to the samples are to the samples are to the samples to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the sample are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the sample are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples are to the samples ar | marked<br>•  |
|            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES          |
|            | 1.          | Are there custody seals or tapes on the shipping container?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|            | 2.          | Are custody seals on the shipping container intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|            | 3.          | Is there a completed Chain-Of-Custody (C-O-C)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|            | 4.          | Do the numbers of samples received and the sample matrices agree with C-O-C?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|            | 5.          | Are there tags attached to each sample?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u></u>      |
|            | 6.          | Are sample tags, sample containers and C-O-C all in agreement?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|            | 7.          | Is the C-O-C complete with requested analyses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|            | 8.          | Are the samples preserved correctly?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>_</del> |
|            | 9.          | Is there enough sample to do all analyses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|            | 10.         | Do the samples have the proper temperature?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>     |
|            | 11.         | Are the sample containers intact (e.g., not broken, leaking)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|            | 12.         | Are VOA vials head-space free?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|            | 13.         | Are all samples within the holding times for requested analyses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|            | 14.         | Is pH recorded for non-VOA's?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |

Send a copy of this form to Project Manager with Discrepancy Report Form. Copy of both forms remain in the QC file.

Custodian Signature:

| EXHII | BIT | 8 |
|-------|-----|---|
|-------|-----|---|

32

# PACE, INC. DISCREPANCY REPORT FORM Urgency Level: 1(\_\_\_\_) Requires immediate attention 2(\_\_\_\_\_) Requires attention today 3(\_\_\_\_\_) Requires attention this week Client: \_\_\_\_\_ Initiator: \_\_\_\_\_ Date: \_\_\_\_\_ Project # Sample(s) # \_\_\_\_\_ \_\_\_\_\_ Discrepancy (if more space needed, use the back of this form): To QC Manager: \_\_\_\_\_ Date: \_\_\_\_\_ Client Notified? YES ( ) NO ( ) Date & Time: Project Manager Notified? YES ( ) NO ( ) Date & Time: QC Response: \_\_\_\_\_ Project Manager Response: \_\_\_\_\_ Cause and Resolution (proposed or carried out): Completed by: Manager's Initials: PM Signature: \_\_\_\_\_ Date: \_\_\_\_\_ QC Signature: Date: \_\_\_\_\_ cc: Project File MN-COMP 0044846

:-2

أنخط

: :

.....

4

11

Section No. VII Page 33 Doc. No. 671

MN-COMP 0044847

#### C. SAMPLE LOG-IN

#### 1. General Policies

a. Upon completing sample receipt/custody procedures, all sample and analysis data must be complete and documented on the chain-of-custody or accompanying forms for input into the Lab Data Management System (LDMS).

Sample and analysis data must include:

- 1. Client name and contact
- 2. Client number
- 3. PACE project number
- 4. PACE project manager
- 5. Sample descriptions
- 6. Due date
- 7. List of analyses requested
- b. Sample and requested analyses data are input into the LDMS.
- c. All samples received are logged into the LDMS on the day of receipt.
- d. A Sample and Analysis Data Entry Form (SADEF) is generated immediately by the LDMS.

Distribution of SADEF:

- To the PACE Project Manager with a photocopy of the chain-of-custody. (Include a copy of the Discrepancy Report is applicable).
- To the QC project file with the original chain-of-custody.
- Photocopy to the Organic or Inorganic Department Manager as it applies for RUSH samples.
- To the client.
- e. SADEF is to be reviewed against the chain-of-custody.
- f. Sample containers are labeled with the corresponding sample number and the stamped date of receipt.
- g. Samples are ready for storage.

| Section N | lo. VII |
|-----------|---------|
| Page      | 34      |
| Doc. No.  | 671     |

#### 2. When Samples Are Received With No Paperwork

- - -

100

- a. If delivered by a client: Client is asked if previous arrangements were made for analysis (and with whom). The client completes a chain-of-custody and/or request for analysis, relinquishes samples to sample custodian personnel, and is given a copy of the C-O-C.
- b. If received by courier or shipping:
  - 1st: Routine Client File is checked
  - 2nd: Anticipate Sample Alert File is checked
  - 3rd: Sampling Kit Request File is checked
  - 4th: PACE key client contact is consulted
  - 5th: QC department manager is consulted to determine the designated PACE project manager
  - 6th: Information is requested from the PACE project manager.
- c. If analysis information can not be determined on the day of sample receipt, sample data entry personnel proceed to assign sample numbers and put samples on hold. Follow-up with project manager occurs until the analyses are determined and samples can be properly logged in.

#### 3. Responsibilities for Sample Log In

- a. Quality Control Manager/Sample Management Officer
  - Has the overall responsibility for ensuring that this procedure is implemented for all samples received into the laboratory.
  - Has overall responsibility for ensuring that samples are logged in correctly (given that appropriate information has been supplied).
- b. Sample Custodian
  - Has the primary responsibility of ensuring that sample information is input into the LDMS as described in the SOP.
  - Has the responsibility to make recommendations to the QC manager for revising the SOP.

| Section  | No. | VII |  |
|----------|-----|-----|--|
| Page     |     | 35  |  |
| Doc. No. |     | 671 |  |

#### D. SAMPLE STORAGE

#### 1. General Procedures

Samples for analysis are properly stored in the lab according to container type, preservative, and type of security required by the project.

Samples are stored immediately upon receipt to prevent sample degradation.

#### 2. Refrigerated Storage Area Maintenance

All refrigerated storage areas are maintained at  $4^{\circ}C + 2^{\circ}C$ . The temperature is monitored and recorded daily. If the temperature fails outside the limit of  $2^{\circ}$  to  $6^{\circ}C$ , corrective action is to be taken as follows and appropriately documented.

- a. Temperature is monitored at 30 minute intervals with the refrigerator door closed.
- b. QC Manager is notified if the problem persists longer than one hour.
- c. Samples are relocated to a proper storage environment if temperature cannot be maintained after corrective actions are implemented.

#### 3. Routine Sample Storage

#### a. General Samples

Samples within each project are stored in sample number order. Waters and soils are generally stored on labeled separate shelves.

#### 4. Specific Procedures

#### a. Volatiles

Samples within a project are stored in numerical order in vial containers. The holders are then stored where space permits in one of the designated volatile organic refrigerated storage areas.

#### b. Semi-Volatiles

Samples within a project are stored in numerical order in a designated, refrigerated storage area.

MN-COMP 0044849

- - -

| Section  | No. | VII |
|----------|-----|-----|
| Page     |     | 36  |
| Doc. No. | •   | 671 |

#### c. Hazardous Materials

i- i

-

ing t

: 1

Pure product or potentially heavily contaminated samples are tagged as "hazardous" and stored within a secured area, separate from other samples. This area is used only for hazardous samples and is labeled per OHSA requirements.

#### d. Special Projects

• Volatiles

Samples within a project are stored in sample number order in vial containers. The holders are then stored as space permits in the Special Project VOA refrigerated storage area.

#### e. Asbestos

No refrigeration required. Samples are taken to asbestos lab for storage.

#### 5. <u>Responsibilities for Sample Storage</u>

- a. QC Department Manager/Sample Management Officer has direct responsibility for ensuring that the SOP is followed, samples are stored properly upon receipt, and refrigerated storage area temperatures are maintained.
- b. Sample custodians are responsible for storing all samples upon receipt into the appropriate storage area, maintaining high level security for those samples under custody, and for keeping a current custody sample inventory.
- c. Analytical personnel have the responsibility of daily sample storage area maintenance, disposal of old samples, and providing space for incoming samples in routine storage areas.
- d. Assigned individuals are responsible for maintaining and documenting: (a) refrigerated storage area temperatures, and (b) corrective actions.

See temperature log (Exhibit 9).

#### Exhibit 9

#### TEMPERATURE LOG FORM

- -

· ·

| Date                                  | Temperature                           | Initials | Corrective Action/Comments            |
|---------------------------------------|---------------------------------------|----------|---------------------------------------|
| ··· ····                              |                                       |          |                                       |
|                                       |                                       |          |                                       |
| <u> </u>                              |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          |                                       |
| ·                                     |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          | ·····                                 |
|                                       |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          | •<br>•                                |
|                                       |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       |                                       |          | · · · · · · · · · · · · · · · · · · · |
| ·                                     |                                       |          |                                       |
|                                       |                                       |          |                                       |
|                                       | · · · · · · · · · · · · · · · · · · · | i        |                                       |
| · · · · · · · · · · · · · · · · · · · | -                                     |          |                                       |
|                                       |                                       |          |                                       |

Note: Temperature must be  $4^{\circ}C \pm 2^{\circ}C$ . If temperature is outside the limit of  $2^{\circ}$  to  $6^{\circ}$  continue to monitor at 30 minute intervals (door must remain closed). If no correction within one hour, notify the QC Manager.

MN-COMP 0044851 -----

.

| Section  | No. | VII |
|----------|-----|-----|
| Page     |     | 38  |
| Doc. No. |     | 671 |

MN-COMP 0044852

#### F. SAMPLE/DATA ACCESS AND INTERNAL CHAIN-OF-CUSTODY

#### 1. General Policies and Procedures

. .

÷i

PACE has implemented standard operating procedures to assure the integrity of samples and data so that they are not degraded or disclosed to unauthorized personnel. In order to ensure that this policy is maintained, the laboratory facilities are under controlled access. Only employees are allowed into the laboratory facilities; visitors must register at the front desk.

Samples are removed from their proper location by the analyst and returned to the storage area immediately after the required sample quantity has been taken. This minimizes unnecessary time spent searching for samples and helps prevent matrix degradation from prolonged exposure to room temperature. Most samples are retained in storage in their original locations for approximately two months. Preserved metals samples and hazardous waste samples are stored up to six months. After the final report is sent and clients are allowed adequate time to review the results, the samples are properly discarded or returned to the client.

PACE normally completes the sample analysis within 15 working days after receipt. Holding times may require faster turnaround times.

Upon client request, additional and more rigorous chain-of-custody protocols for samples and data can be implemented. For samples involving a high degree of confidentiality or potential litigation, PACE, Inc. has developed extensive sample and data handling protocols to assure the scientific and legal defensibility of the report submitted. These protocols include those specified by the USEPA Contract Laboratory Program.

Analysts and technicians follow strict internal chain-of-custody procedures to further ensure the validity of all data. All samples are signed out in a sample custody log book when they are removed for analysis. The sample ID, date, time, analyst, and lab of analysis is recorded in the sample custody log (Exhibit 10). Samples are signed back in noting date, time, and storage location, upon return. \_\_\_

.

·

.

#### CHAIN-OF-CUSTODY LAB CONTROL FORM

| Contract/Project No.: | Samples No(s). |
|-----------------------|----------------|
| Date Received:        |                |
| Received by:          |                |
| Time:                 |                |
| Witness:              |                |
| Stored in:            |                |

| Date & Time<br>Removed | Sample Nos.<br>Removed | Name | Witness | Time<br>Returned | Name | Witnes      |
|------------------------|------------------------|------|---------|------------------|------|-------------|
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      | <u> </u>    |
|                        |                        |      | ·····   |                  |      |             |
|                        |                        |      | ·····   |                  |      | <del></del> |
|                        |                        |      | ·       |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      | -           |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      | ·           |
| ·                      |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |
|                        |                        |      |         |                  |      |             |

REMINDER: Samples must be returned at the end of the shift.

MN-COMP 0044853

. ~

< \_\_\_\_\_\_.

\_\_\_

| Section  | No. | VΙΙ |  |
|----------|-----|-----|--|
| Page     |     | 40  |  |
| Doc. No. | •   | 671 |  |

#### 2. <u>Responsibilities for SOP Compliance</u>

- a. The QC manager has the overall responsibility for ensuring that the SOP is implemented and followed.
- b. The sample custodian personnel have the responsibility for ensuring that the SOP is properly followed, and to notify the QC manager of problems.
- c. All employees checking out samples are required to follow procedures.

#### G. EXCESS SAMPLE DISPOSITION

00

1

Samples not totally consumed during the analyses are returned to the client. It is the project manager's responsibility to ensure that proper disposal has taken place. If the sample is water or wastewater and is considered non-hazardous by the project manager, it may then (by request) be properly disposed of at PACE facilities and not returned to the client.

#### 1. Notification of Sample Return

The project manager and client receive written notification at the time of project initiation in the following manner:

a. The project proposal states the following paragraph in its . Conditions and Terms Statement:

PACE, Inc. Standard Operating Procedures is to return all samples of hazardous materials or wastes to the client at project completion, and PACE, Inc. reserves the right to return or dispose of all samples at our discretion.

This is a standard form used by PACE's Marketing Department.

- b. The Sample and Analysis Data Entry Form states the following sentence:
  - PACE, Inc. reserves the right to return all samples at our discretion.
  - This form is printed out by the LDMS at sample check-in.
- c. The Sample and Analysis Data Entry Form cover letter will state the following paragraph:

MN-COMP 0044854

.....

| Section N | No. VII |
|-----------|---------|
| Page      | 41      |
| Doc. No.  | 671     |

- 1. PACE, Inc. Standard Operating Procedure is to return all samples of hazardous materials or wastes to the client at project completion. PACE, Inc. reserves the right to return or dispose of all samples at our discretion. (Exhibit 11)
- 2. This is a pre-printed cover letter that accompanies the Sample and Analysis Data Entry Form.
- d. The Sample and Analysis Data Entry Form and cover letter is sent to the project manager and to the client by the sample custodian personnel.

#### 2. Sample Return and Disposal

Upon completion of laboratory analysis and/or the project, the LDMS automatically prints a report, invoice and sample disposition form. This form is part of the report package and is routed to the project manager.

- a. The Sample Disposition Form (Exhibit 12) contains the following information:
  - 1. Client name, address, and contact
  - 2. PACE project number
  - 3. Client project identification number
  - 4. PACE sample identification number
  - 5. PACE project manager name

| MN-COMP 0044855 | ~,<br>, ر |
|-----------------|-----------|
| Ч               | <b>)</b>  |
|                 |           |
|                 |           |
| . ·             |           |
|                 |           |



Offices: 42 Minneapolis, Minnesota Tampa, Florida Coralville, Iowa Novato, California Leawood, Kansas Irvine, California Asheboro, North Carolina

1710 Douglas Drive North D Minneapolis, MN 55422 D Phone (612) 544-5543 D FAX (612) 544-3974

Exhibit 11

November 1, 1989

Dear Valued Client:

A new policy has been implemented in the Sample Receiving Department of PACE Laboratories, Inc. We hope that this policy will be helpful to you.

Upon receipt of samples into the laboratory, the Sample Custodian completes a Sample and Analysis Data Entry Form. This form is designed to accommodate a short description of the samples received (sample name and/or sample reference), the type of container, and a list of the analyses requested to be performed on each sample. A copy of this form will be sent to the client (submitter).

Enclosed is a copy of the Sample and Analysis Data Entry Form relevant to the samples we recently received from you. Please compare the information on the form to assure that it is consistent with your request. If there is any inconsistency or if you have any questions on your project, please call the PACE Contact indicated on Sample and Analysis Data Entry Form. The PACE Contact has primary responsibility for monitoring the progress of your project through the laboratory.

It is also part of PACE Laboratories, Inc. Standard Operating Procedure to return all samples pertaining to the information attached that are hazardous materials or hazardous wastes to the client at project completion. PACE Laboratories, Inc. reserves the right to return or dispose of all samples at our discretion.

We have implemented this procedure to better serve our clients; and would appreciate any comments you may have.

Sincerely.

MN-COMP 0044856

Vice President, Corporate Quality

| Éxhibit 12                                                                                                                                       |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
| SAMPLE DISPOSITION FO                                                                                                                            | PM                                                              |
|                                                                                                                                                  | κ <b>n</b>                                                      |
|                                                                                                                                                  | Date removed:                                                   |
| <u></u>                                                                                                                                          |                                                                 |
|                                                                                                                                                  | Date shipped:<br>Initials:                                      |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
| RE: Client Project ID:                                                                                                                           |                                                                 |
| PACE Project No.:                                                                                                                                |                                                                 |
| Sample ID                                                                                                                                        | <u> </u>                                                        |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
| •                                                                                                                                                |                                                                 |
| Dear:                                                                                                                                            |                                                                 |
| All requested analyses of the samples for the abo<br>completed. Enclosed are the remaining portions o<br>'returned to you for final disposition. | ove referenced project have been of the samples which are being |
| If you have any questions, please call me.                                                                                                       | MN-COMP 0044857                                                 |
| Sincerely.                                                                                                                                       |                                                                 |
| ·                                                                                                                                                |                                                                 |
| Project Manager                                                                                                                                  |                                                                 |
|                                                                                                                                                  |                                                                 |
| -                                                                                                                                                |                                                                 |

-

. -

.

.

·

| Section  | No. | VII |
|----------|-----|-----|
| Page     |     | 44  |
| Doc. No. |     | 671 |

#### 3. Procedure for Use of the Sample Disposition Form

• • •

173

- a. The project manager separates the sample disposition form from the report package, signs the form, and routes it to the sample custodian. If the sample is water or wastewater and non-hazardous, the project manager may wish to properly dispose of the waste.
  - If the project requires, the project manager may hold the form for an acceptable amount of time before return or disposal.
  - It is important that this form be used and not discarded. It is part of the internal chain-of-custody and is filed with the project report.
  - The project manager will use action codes such as:

1 = Return to client 2 = In house disposal C = Clean D = Dirty

As a general rule, soil samples will be returned and water samples will be disposed of in-house. Water samples which are highly contaminated will be returned. Preserved samples, VOA's, and extracted/tainted samples will not be returned to the client. Therefore, it is necessary to note clean or dirty to facilitate handling. If a sample has an extremely high level of contamination, note the contaminant.

For In-House Sample Disposal

All preserved - Clean - Neutralize/sink Dirty - Toxic waste

Un-preserved water - Clean - Sink Dirty - Toxic waste

Soil/Sludge - Clean - Trash Dirty - Toxic waste

All VOA's - Clean - Neutralize/sink Dirty - Toxic waste

| Section  | No. | VII |   |
|----------|-----|-----|---|
| Page     |     | 45  |   |
| Doc. No. | •   | 671 | _ |

All Extracted/Tainted Samples

CAM Extracts - Clean - Neutralize/sink Dirty - Acid metals waste

Other Extracts - Toxic waste

Liquid/Unknown Misc. - Project manager specify

- Project manager will complete the sample disposition form and route it back to invoicing.
- The invoicing department will put completed sample disposition form in sample control mailbox.
- b. Upon receipt of the Sample Disposition Form by the sample custodian personnel, the custodian personnel will remove the samples from storage using the information provided on the form.
  - If the Sample Disposition Form indicates "Dump," the sample custodian personnel will remove them from storage and place them at a sample disposal station for proper disposal. The process of disposal is performed by the sample custodian personnel or appropriate laboratory staff. The Sample Disposition Form is signed and dated by the sample custodian personnel, then routed to the file clerk for filing with other project information.
  - If the samples are to be returned, the sample custodian removes the sample or samples from storage, initials and dates the Sample Disposition Form. The samples, the Sample Disposition Form, and a copy of the client's chain-of-custody are then delivered to the shipping clerk by the sample custodian for return to the client.
- c. Upon receipt of the samples and Sample Disposition Form, the shipping clerk signs and dates the form.

The Sample Disposition Form is copied and the original form with the samples is returned to the client, along with a copy of the client's chain-of-custody. A copy of the Sample Disposition Form and the original chain-of-custody is routed to the file clerk for filing with other project information (QC file).

| Section N | o. VII |
|-----------|--------|
| Page      | 46     |
| Doc. No.  | 671    |

- The shipping clerk labels the box with an appropriate hazard label and ships the samples back to the client using UPS or any other requested manner for shipment. (Note: It is important for proper packaging to prevent breakage during shipment.)
- All shipping costs will be charged against the appropriate project number.
- d. Upon receipt of Sample Disposition Form, the file clerk files it with other project related information.

#### 4. Hazardous Material/Waste Sample Disposition Option

- 2

The preferred method for disposition of excess hazardous material/waste samples is to return the excess sample to the client. It may not be feasible to return samples in all cases or the client may require PACE to dispose of excess samples. PACE will dispose of excess hazardous samples when required and will charge a disposal fee to recover costs for management and disposal.

Procedure for Disposal Option for Excess Hazardous Material/Waste Samples:

- a. The project manager informs the client that excess sample disposal will require an additional charge.
- b. When analyses are complete, the project manager indicates disposal as the option on the Sample Disposition Form and completes and attaches Hazardous Material/Waste Disposal Option Form (Exhibit 13). An entry is to be made in all fields of this form as it will determine the basis for lab packing and disposal.
- c. The project manager routes the Disposal Option Form to sample check-in.
- d. The project manager is responsible for billing the client for disposal.
- e. The sample custodian is responsible for maintaining a file of Disposal Option Forms for all samples awaiting disposal. Hazardous material/waste samples are stored in safe manner, segregated by compatibility groups as indicated by the hazardous waste disposal SOP.

#### EXHIBIT 13

ļ

Î

.

#### HAZARDOUS MATERIAL/WASTE SAMPLE DISPOSAL OPTION FORM

| lient                                 | -,                             |                             | Client Pro       | ject ID      | <u> </u>                               |
|---------------------------------------|--------------------------------|-----------------------------|------------------|--------------|----------------------------------------|
| ontact                                |                                | · ·                         | PACE Pr          | oject =      |                                        |
| ddress                                |                                |                             | - Project        | Manager      |                                        |
| <del>.</del>                          |                                |                             |                  | Sent Date    |                                        |
| hone #                                |                                |                             |                  | mple Date    |                                        |
| Sample =                              | Matrix                         | Location                    | <br>Disposal Met |              | Charge                                 |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             | ·····            |              | <u> </u>                               |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
| · · · · · · · · · · · · · · · · · · · |                                |                             |                  |              |                                        |
|                                       | •                              |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  |              | ······································ |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  | ·····        |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       | · ·                            |                             |                  |              |                                        |
|                                       | -<br>                          |                             |                  |              |                                        |
|                                       |                                |                             |                  |              |                                        |
|                                       |                                |                             |                  | ·            |                                        |
| Remarks: l=Re<br>2=In                 | eturn to Clie<br>1.House Dispe | ent C=Cle<br>osal D=Dir     |                  |              |                                        |
| Removed from<br>Returned to           | Refrigerato                    | or (initial/d<br>tial/date) | ate)             |              |                                        |
| raposed OI                            | Sampres (1n)                   | itial/date)                 |                  |              |                                        |
|                                       |                                |                             |                  | MN-COMP 0044 | 1861                                   |
|                                       |                                |                             |                  | ×            | ·                                      |

| Section  | No. | VII |
|----------|-----|-----|
| Page     |     | 48  |
| Doc. No. | •   | 671 |

MN-COMP 0044862

\_

- - ----

f. The Quality Control Manager is responsible for reviewing accumulated samples awaiting disposal and initiating the disposal process when warranted. The Field Services, Inorganic, Organic, and Environmental Services Departments cooperate and participate in the disposal process. (For compatibility and compositing, see the Hazardous Waste Disposal SOP.)

.-:

التحنة

:...

.....

Section No. VIII Page 49 Doc. No. 671

MN-COMP 0044863

-----

#### VIII. CALIBRATION PROCEDURES AND FREQUENCY

Most measurements taken in the laboratory are based upon comparison to reference standards as analyzed by the standard method. The standard results are utilized to generate calibration curves or calibration factors. The results of the sample analysis are then quantified.

All instruments are calibrated using standard solutions of known concentrations. The standards are prepared from certified reference materials and are generally traceable back to NIST. Refer to Section XI for additional information.

Continuous calibration is verified by analysis of calibration standards or laboratory control samples from different sources at regular intervals. Recalibration is performed at specified time intervals or when indicated by the continuous verification procedure or as required by the method. Typical acceptance criteria for some common organic analyses are summarized in Table 2.

Forms to document initial and continuing calibration have been developed (Exhibits 14 and 15).

Refer to Section IX for additional calibration information and frequency as specified in the specific analytical methods.

÷:\*

| TABLE 2 | CALIBRATION AND | 0C | ACCEPTANCE | CRITERIA <sup>a</sup> F | OR | HALOGENATED | VOLATTLE | ORGANICS |
|---------|-----------------|----|------------|-------------------------|----|-------------|----------|----------|
|---------|-----------------|----|------------|-------------------------|----|-------------|----------|----------|

| Parameter                | Range<br>for Q<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>P, Ps<br>(I) |
|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|
|                          |                          |                          |                          |                       |
| Bromodichloromethane     | 15.2-24.8                | 4.3                      | 10.7-32.0                | 42-172                |
| Bromoform                | 14.7-25.3                | 4.7                      | 5.0-29.3                 | 13-159                |
| Bromomethane             | 11.7-28.3                | 7.6                      | 3.4-24.5                 | D-144                 |
| arbon tetrachloride      | 13.7-26.3                | 5.6                      | 11.8-25.3                | 43-143                |
| hlorobenzene             | 14.4-25.6                | 5.0                      | 10.2-27.4                | 38-150                |
| hloroethane              | 15.4-24.6                | 4.4                      | 11.3-25.2                | 46-137                |
| -Chloroethylvinyl ether  | 12.0-28.0                | 8.3                      | 4.5-35.5                 | 14-180                |
| chloroform               | 15.0-25.0                | 4.5                      | 12.4-24.0                | 49-13                 |
| chloromethane            | 11.9-28.1                | 7.4                      | D-34.9                   | D-193                 |
| ibromochioromethane      | 13.1-26.9                | 6.3                      | 7.9-35.1                 | 24-19                 |
| "2-Dichlorobenzene       | 14.0-26.0                | 5.5                      | 1.7-38.9                 | D-20                  |
| "3-Dichlorobenzene       | 9.9-30.1                 | 9.1                      | 6.2-32.6                 | 7-18                  |
| "4-Dichlorobenzene       | 13.9-26.1                | 5.5                      | 11.5-25.5                | 42-14                 |
| ,1-Dichloroethane        | 16.8-23.2                | 3.2                      | 11.2-24.6                | 47-132                |
| ,2-Dichloroethane        | 14.3-25.7                | 5.2                      | 13.0-26.5                | 51-14                 |
| ,1-Dichloroethene        | 12.6-27.4                | 6.6                      | 10.2-27.3                | 28-162                |
| rans-1,2-Dichloroethene  | 12.8-27.2                | 6.4                      | 11.4-27.1                | 38-15                 |
| ,2-Dichloropropane       | 14.8-25.2                | 5.2                      | 10.1-29.9                | 44-150                |
| is-1,3-Dichloropropene   | 12.8-27.2                | 7.3                      | 6.2-33.8                 | 22-178                |
| rans-1,3-Dichloropropene | 12.8-27.2                | 7.3                      | 6.2-33.8                 | 22-178                |
| ethylene chloride        | 15.5-24.5                | 4.0                      | 7.0-27.6                 | 25-162                |
| ,1,2,2-Tetrachloroethane | 9.8-30.2                 | 9.2                      | 6.6-31.8                 | 8-184                 |
| etrachloroethene         | 14.0-26.0                | 5.4                      | 8.1-29.6                 | 26-162                |
| ,1,1-Trichloroethane     | 14.2-25.8                | 4.9                      | 10.8-24.8                | 41-138                |
| 1,2-Trichloroethane      | 15.7-24.3                | 3.9                      | 9.6-25.4                 | 39-136                |
| richloroethene           | 15.4-24.6                | 4.2                      | 9.2-26.6                 | 35-146                |
| richlorofluoromethane    | 13.3-26.7                | 6.0                      | 7.4-28.1                 | 21-156                |
| inyl chloride            | 13.7-26.3                | 5.7                      | 8.2-29.9                 | 21-150                |

Q = Concentration measured in QC check sample, in ug/L.

s = Standard deviation of four recovery measurements, in ug/L.

 $\mathbf{x}$  = Average recovery for four recovery measurements, in ug/L.

P,  $P_s = Percent recovery measured.$ 

. .-

1

D = Detected; result must be greater than zero.

<sup>a</sup>Criteria from 40 CFR Part 136 for Method 601 and were calculated assuming a QC check sample concentration of 20 ug/L.

MN-COMP 0044864

50

| Parameter                | Range<br>for Q<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>P, Ps<br>(%) |
|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|
|                          | 15.4-24.6                | 4.1                      | 10.0-27.9                | 39-150                |
| Benzene<br>Chlorobenzene | 16.1-23.9                | 3.5                      | 12.7-25.4                | 55-135                |
| 1,2-Dichlorobenzene      | 13.6-26.4                | 5.8                      | 10.6-27.6                | 37-154                |
| 1,3-Dichlorobenzene      | 14.5-25.5                | 5.0                      | 12.8-25.5                | 50-141                |
| 1,4-Dichlorobenzene      | 13.9-26.1                | 5.5                      | 11.6-25.5                | 42-143                |
| Ethylbenzene             | 12.6-27.4                | 6.7                      | 10.0-28.2                | 32-160                |
| Toluene                  | 15.5-24.5                | 4.0                      | 11.2-27.7                | 46-148                |

TABLE 2. CALIBRATION AND QC ACCEPTANCE CRITERIA<sup>a</sup> FOR AROMATIC VOLATILE ORGANICS

Q = Concentration measured in QC check sample, in ug/L.

s = Standard deviation of four recovery measurements, in ug/L.

 $\mathbf{X}$  = Average recovery for four recovery measurements, in ug/L.

 $P, P_s =$  Percent recovery measured.

<sup>a</sup>Criteria are from 40 CFR Part 136 for Method 602 and were calculated assuming a QC check sample concentration of 20 ug/L. These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 1.

| Parameter          | Test<br>conc.<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>P, Ps<br>(%) |
|--------------------|-------------------------|--------------------------|--------------------------|-----------------------|
| aldain             | 2.0                     | 0.42                     | 1.08-2.24                | 42-122                |
| Aldrin             | 2.0                     | 0.48                     | .98-2.44                 | 37-13                 |
| a-BHC              | 2.0                     | 0.64                     | 0.78-2.60                | 17-14                 |
| Ø-ВНС<br>&-внс     | 2.0                     | 0.72                     | 1.01-2.37                | 19-14                 |
|                    | 2.0                     | 0.46                     | 0.86-2.32                | 32-12                 |
| η-BHC<br>Chlordane | 50                      | 10.0                     | 27.6-54.3                | 45-11                 |
| 4,4'-DDD           | 10                      | 2.8                      | 4.8-12.6                 | 31-14                 |
| 4,4'-DDE           | 2.0                     | 0.55                     | 1.08-2.60                | 30-14                 |
| 4,4'-DDT           | 10                      | 3.6                      | 4.6-13.7                 | 25-16                 |
| Dieldrin           | 2.0                     | 0.76                     | 1.15-2.49                | 36-14                 |
| Endosulfan I       | 2.0                     | 0.49                     | 1.14-2.82                | 45-15                 |
| Endosulfan II      | 10                      | 6.1                      | 2.2-17.1                 | D-20                  |
| Endosulfan Sulfate | 10                      | 2.7                      | 3.8-13.2                 | 26-14                 |
| Endrin             | 10                      | 3.7                      | 5.1-12.6                 | 30-14                 |
| Heptachlor         | 2.0                     | 0.40                     | 0.86-2.00                | 34-11                 |
| Heptachlor epoxide | 2.0                     | 0.41                     | 1.13-2.63                | 37-14                 |
| Toxaphene          | 50                      | 12.7                     | 27.8-55.6                | 41-12                 |
| PCB-1016           | 50                      | 10.0                     | 30.5-51.5                | 50-11                 |
| PCB-1221           | 50                      | 24.4                     | 22.1-75.2                | 15-17                 |
| PCB-1232           | 50                      | 17.9                     | 14.0-98.5                | 10-21                 |
| PCB-1242           | 50                      | 12.2                     | 24.8-69.6                | 39-15                 |
| PCB-1248           | 50                      | 15.9                     | 29.0-70.2                | 38-19                 |
| PCB-1254           | 50                      | 13.8                     | 22.2-57.9                | 29-13                 |
| PCB-1260           | 50                      | 10.4                     | 18.7-54.9                | 8-12                  |

TABLE 2. OC ACCEPTANCE CRITERIA<sup>a</sup> FOR ORGANOCHLORINE PESTICIDES & PCB's

. .

تت

.

s = Standard deviation of four recovery measurements, in ug/L.

X = Average recovery for four recovery measurements, in ug/L.

 $P_s = Percent recovery measured.$ 

D = Detected; result must be greater than zero.

<sup>a</sup>Criteria from 40 CFR Part 136 for Method 608. These criteria are based directly upon the method performance data in Table 4. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 4.

| Parameter                 | Range<br>for Q<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>P, Ps<br>(X) |
|---------------------------|--------------------------|--------------------------|--------------------------|-----------------------|
|                           |                          |                          |                          |                       |
| Benzene                   | 12.8-27.2                | 6.9                      | 15.2-26.0                | 37-151                |
| Bromodichloromethane      | 13.1-26.9                | 6.4                      | 10.1-28.0                | 35-155                |
| Bromoform                 | 14.2-25.8                | 5.4                      | 11.4-31.1                | 45-169                |
| Bromomethane              | 2.8-37.2                 | 17.9                     | D-41.2                   | D-242                 |
| Carbon tetrachloride      | 14.6-25.4                | 5.2                      | 17.2-23.5                | 70-140                |
| Chlorobenzene             | 13.2-26.8                | 6.3                      | 16.4-27.4                | 37-160                |
| 2-Chloroethylvinyl ether  | D-44.8                   | 25.9                     | D-50.4                   | D-305                 |
| Chloroform                | 13.5-26.5                | 6.1                      | 13.7-24.2                | 51-138                |
| Chloromethane             | D-40.8                   | 19.8                     | D-45.9                   | D-273                 |
| Dibromochloromethane      | 13.5-26.5                | 6.1                      | 13.8-26.6                | 53-149                |
| 1,2-Dichlorobenzene       | 12.6-27.4                | 7.1                      | 11.8-34.7                | 18-190                |
| 1,3-Dichlorobenzene       | 14.6-25.4                | 5.5                      | 17.0-28.8                | 59-156                |
| 1,4-Dichlorobenzene       | 12.6-27.4                | 7.1                      | 11.8-34.7                | 18-190                |
| 1,1-Dichloroethane        | 14.5-25.5                | 5.1                      | 14.2-28.4                | 59-155                |
| 1,2-Dichloroethane        | 13.6-26.4                | 6.0                      | 14.3-27.4                | 49-155                |
| 1,1-Dichloroethene        | 10.1-29.9                | 9.1                      | 3.7-42.3                 | D-234                 |
| trans-1,2-Dichloroethene  | 13.9-26.1                | 5.7                      | 13.6-28.4                | 54-156                |
| 1,2-Dichloropropane       | 6.8-33.2                 | 13.8                     | 3.8-36.2                 | D-210                 |
| c1s-1,3-D1chloropropene   | 4.8-35.2                 | 15.8                     | 1.0-39.0                 | D-227                 |
| trans-1,3-Dichloropropene | 10.0-30.0                | 10.4                     | 7.6-32.4                 | 17-183                |
| Ethyl benzene             | 11.8-28.2                | 7.5                      | 17.4-26.7                | 37-162                |
| Methylene chloride        | 12.1-27.9                | 7.4                      | D-41.0                   | D-221                 |
| 1,1,2,2-Tetrachloroethane | 12.1-27.9                | 7.4                      | 13.5-27.2                | 46-157                |
| Tetrachloroethene         | 14.7-25.3                | 5.0                      | 17.0-26.6                | 64-148                |
| Toluene                   | 14.9-25.1                | 4.8                      | 16.6-26.7                | 47-150                |
| 1,1,1-Trichloroethane     | 15.0-25.0                | 4.6                      | I3.7-30.1                | 52-162                |
| 1,1,2-Trichloroethane     | 14.2-25.8                | 5.5                      | 14.3-27.1                | 52-150                |
| Trichloroethene           | 13.3-26.7                | 6.6                      | 18.5-27.6                | 71-157                |
| Trichlorofluoromethane    | 9.6-30.4                 | 10.0                     | 8.9-31.5                 | 17-181                |
| Vinyl chloride            | 0.8-39.2                 | 20.0                     | D-43.5                   | D-251                 |

TABLE 2. CALIBRATION AND QC ACCEPTANCE CRITERIA<sup>a</sup> FOR GC/MS VOLATILE ORGANICS

Q = Concentration measured in QC check sample, in ug/L.

s = Standard deviation of four recovery measurements, in ug/L. X = Average recovery for four recovery measurements, in ug/L.

 $p_r p_s = Percent recovery measured.$ 

D = Detected; result must be greater than zero.

<sup>a</sup>Criteria from 40 CFR Part 136 for Method 624 and were calculated assuming a QC check sample concentration of 20 ug/L. These criteria are based directly upon the method performance data in Table 7. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 7.

| Parameter                   | Test<br>conc.<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>P, Ps<br>(%) |
|-----------------------------|-------------------------|--------------------------|--------------------------|-----------------------|
| Acenaphthene                | 100                     |                          |                          |                       |
| Acenaphthylene              | 100                     | 27.6                     | 60.1-132.3               | 47-145                |
| Aldrin                      | 100                     | 40.2                     | 53.5-126.0               | 33-145                |
| Anthracene                  | 100                     | 39.0                     | 7.2-152.2                | D-166                 |
| Benzo(a)anthracene          | 100                     | 32.0                     | 43.4-118.0               | 27.133                |
| Benzo(b) fluoranthene       | 100                     | 27.6                     | 41.8-133.0               | 33-143                |
| Benzo(k)fluoranthene        | 100                     | 38.8                     | 42.0-140.4               | 24-159                |
| Benzo(a)pyrene              | 100                     | 32.3                     | 25.2-145.7               | 11-162                |
| Benzo(gh1)perylene          | 100                     | 39.0                     | 31.7-148.0               | 17-163                |
| Benzyl butyl phthalate      | 100                     | 58.9                     | D-195.0                  | D-219                 |
| Ø-BHC                       | 100                     | 23.4                     | D-139.9                  | D-152                 |
| δ-BHC                       | 100                     | 31.5                     | 41.5-130.6               | 24-149                |
| Bis(2-chloroethyl)ether     | 100                     | 21.6                     | D-100.0                  | D-110                 |
| Bis(2-chloroethoxy)methane  | 100                     | 55.0                     | 42.9-126.0               | 12-158                |
| Bis(2-chloroisopropyl)ether | 100                     | 34.5                     | 49.2-164.7               | 33-184                |
| Bis(2-ethylhexyl)phthalate  | 100                     | 46.3                     | 62.8-138.6               | 36-165                |
| 4-Bromophenyl phenyl ether  | 100                     | 41.1                     | 28.9-136.8               | 8-158                 |
| 2-Chloronaphthalene         | 100                     | 23.0                     | 64.9-114.4               | 53-127                |
| 4-Chlorophenyl phenyl ether | 100                     | 13.0                     | 64.5-113.5               | 60-118                |
| Chrysene                    | 100                     | 33.4                     | 38.4-144.7               | 25-158                |
| 4,4'-DDD                    | 100                     | 48.3                     | 44.1-139.9               | 17-168                |
| 4,4'-DDE                    | 100                     | 31.0                     | D-134.5                  | D-145                 |
| 4,4'-DDT                    | 100                     | 32.0                     | 19.2-119.7               | 4-136                 |
| Dibenzo(a,h)anthracene      | 100                     | 61.6                     | D-170.6                  | D-203                 |
| Di-n-butyl phthalate        | 100                     | 70.0                     | D-199.7                  | D-227                 |
| 1,2-Dichlorobenzene         | 100                     | 16.7                     | 8.4-111.0                | 1-118                 |
| 1,3-Dichlorobenzene         | 100                     | 30.9<br>41.7             | 48.6-112.0               | 32-129                |
| 1,4-Dichlorobenzene         | 100                     |                          | 16.7-153.9               | D-172                 |
| 3,3'-Dichlorobenzidine      | 100                     | 32.1<br>71.4             | 37.3-105.7               | 20-124                |
| Dieldrin                    | 100                     |                          | 8.2-212.5                | D-262                 |
| Diethyl phthalate           | 100                     | 30.7                     | 44.3-119.3               | 29-136                |
| Dimethyl phthalate          | 100                     | 26.5                     | D-100.0                  | D-114                 |
| 2,4-Dinitrotoluene          | 100                     | 23.2                     | D-100.0                  | D-112                 |
| 2,6-Dinitrotoluene          | 100                     | 21.8                     | 47.5-126.9               | 39-139                |
| Di-n-octylphthalate         | 100                     | 29.6                     | 68.1-136.7               | 50-158                |
| ndosulfan sulfate           | 100                     | 31.4                     | 18.6-131.8               | 4-146                 |
| Indrin aldehyde             | 100                     | 16.7                     | D-103.5                  | D-107                 |
| luoranthene                 | 100                     | 32.5                     | D-188.8                  | D-209                 |
| luorene                     | 100                     | 32.8                     | 42.9-121.3               | 26-137                |
| leptachlor                  | 100                     | 20.7                     | 71.6-108.4               | 59-121                |
| leptachlor epoxide          |                         | 37.2                     | D-172.2                  | D-192                 |
| lexachlorobenzene           | 100                     | 54.7                     | 70.9-109.4               | 26.155                |
| lexachlorobutadiene         | 100                     | 24.9                     | 7.8-141.5                | D-152                 |
| lexachloroethane            | 100                     | 26.3                     | 37.8-102.2               | 24-116                |
|                             | 100                     | 24.5                     | 55.2-100.0               | 40-113                |

# TABLE 2. QC ACCEPTANCE CRITERIAª FOR GC/MS SEMIVOLATILE ORGANICS

÷

22

. .

**1** 

: !

MN-COMP 0044868

× \_ \_ \_ \_

| Parameter                  | Test<br>conc.<br>(ug/L) | Limit<br>for s<br>(ug/L) | Range<br>for X<br>(ug/L) | Range<br>p, ps<br>(%) |
|----------------------------|-------------------------|--------------------------|--------------------------|-----------------------|
| Indeno(1,2,3-cd)pyrene     | 100                     | 44.6                     | D-150.9                  | D-171                 |
| Isophorone                 | 100                     | 63.3                     | 46.6-180.2               | 21-196                |
| Naphthalene                | 100                     | 30.1                     | 35.6-119.6               | 21-133                |
| Nitrobenzene               | 100                     | 39.3                     | 54.3-157.6               | 35-180                |
| N-Nitrosodi-n-propylamine  | 100                     | 55.4                     | 13.6-197.9               | D-230                 |
| PCB-1260                   | 100                     | 54.2                     | 19.3-121.0               | D-164                 |
| Phenanthrene               | 100                     | 20.6                     | 65.2-108.7               | 54-120                |
| Pyrene .                   | 100                     | 25.2                     | 69.6-100.0               | 52-115                |
| 1,2,4-Trichlorobenzene     | 100                     | 28.1                     | 57.3-129.2               | 44-142                |
| 4-Chloro-3-methylphenol    | 100                     | 37.2                     | 40.8-127.9               | 22-147                |
| 2-Chlorophenol             | 100                     | 28.7                     | 36.2-120.4               | 23-134                |
| 2,4-Chlorophenol           | 100                     | 26.4                     | 52.5-121.7               | 39-135                |
| 2,4-Dimethylphenol         | 100                     | 26.1                     | 41.8-109.0               | 32-119                |
| 2,4-Dinitrophenol          | 100                     | 49.8                     | D-172.9                  | D-191                 |
| 2-Methyl-4,6-dinitrophenol | 100                     | 93.2                     | 53.0-100.0               | D-181                 |
| 2-Nitrophenol              | 100                     | 35.2                     | 45.0-166.7               | 29-182                |
| 4-Nitrophenol              | 100                     | 47.2                     | 13.0-106.5               | D-132                 |
| Pentachlorophenol          | 100                     | 48.9                     | 38.1-151.8               | 14-176                |
| Phenol                     | 100                     | 22.6                     | 16.6-100.0 -             | 5-112                 |
| 2,4,6-Trichlorophenol      | 100                     | 31.7                     | 52.4-129.2               | 37-144                |

TABLE 2. QC ACCEPTANCE CRITERIA<sup>a</sup> FOR GC/MS SEMIVOLATILE ORGANICS (CONT.)

s = Standard deviation of four recovery measurements, in ug/L.

X = Average recovery for four recovery measurements, in ug/L.

 $p_{s} p_{s} =$  Percent recovery measured.

D = Detected; result must be greater than zero.

<sup>a</sup>Criteria from 40 CFR Part 136 for Method 625. These criteria are based directly on the method performance data in Table 7. Where necessary, the limits for recovery have been broadened to assure applicability of the limits to concentrations below those used to develop Table 7.

MN-COMP 0044869

# INITIAL CALIBRATION DATA EXTRACTABLE 8080/608 COMPOUNDS

#### EXHIBIT 14

CALIBRATION DATE:

COLUMN ID:

DETECTOR ID:

INSTRUMENT ID:

· • •

: 1

1

÷ •

. .

ι.

**[**]

1.a

MAXIMUM & RSD IS 20%

1 1 1 Standard ID CF C۲ CF 20 40 60 Compound CF **NRSD** Alpha-BHC\_ Beta- BHC Lindane Delta- BHC Heptachlor Aldrin\_\_\_\_ Heptachlor Epoxide Endosulfan I DDE/Dieldrin Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde 4,4'-DDT Endosulfan Sylfate

CF=CALIBRATION FACTOR=

Total ng of Standard

λrea

MN-COMP 0044870

CF = AVERAGE CALIBRATION FACTOR = CF/n

%RSD = RELATIVE STANDARD DEVIATION = (Standard Dev.) (100)

56

CONTINUING CALIBRATION CHECK

Semi-Volatile Compounds

|   |             |                                       |             | EXHIBIT                                | 15         |                                       |                                        |          |
|---|-------------|---------------------------------------|-------------|----------------------------------------|------------|---------------------------------------|----------------------------------------|----------|
|   | CASE NO:    |                                       |             |                                        | CALIBRATIC | ON DATE:                              |                                        |          |
|   | LABORATORY  | NAME:                                 | PACE        | LABORATORIE                            |            |                                       |                                        |          |
|   | CONTRACT/PR | OJECT NO                              |             | ······································ | ANALYS     | ST:                                   | _                                      |          |
|   |             |                                       |             | ··· ``                                 |            | CALIBRAT                              |                                        |          |
|   |             |                                       |             |                                        |            | M &D FOI                              |                                        |          |
|   | COMPOUND    |                                       |             | CF                                     | <u> </u>   |                                       |                                        |          |
|   | Alpha-BHC   |                                       |             |                                        |            |                                       | ======                                 | =====    |
| Ł | Beta-BHC    |                                       |             |                                        | ·····      | ·                                     |                                        | e        |
|   | Lindane     |                                       |             |                                        |            |                                       |                                        |          |
|   | Delta-BHC   |                                       |             |                                        |            | ·····                                 |                                        |          |
|   | Heptachlor  |                                       |             |                                        |            |                                       |                                        |          |
| ж | Aldrin      |                                       |             |                                        |            |                                       |                                        |          |
|   | Heptachlor  | Epoxide                               | 2           |                                        | <u> </u>   |                                       | · · · · · · · · · · · · · · · · · · ·  |          |
| * | Endosulfan  | I                                     |             |                                        |            | · · · · · · · · · · · · · · · · · · · |                                        |          |
|   | DDF/Dieldri | in                                    | · · · · · · |                                        |            |                                       | ······································ |          |
| ĸ | Endrinion   |                                       |             | ·                                      |            |                                       |                                        | ·        |
|   | Endosulfan  | II                                    |             |                                        |            |                                       |                                        | <u> </u> |
|   | 4,4'-DDD    |                                       |             |                                        |            |                                       |                                        |          |
|   | Endrin Alde | ehyde                                 |             |                                        | <u></u>    |                                       |                                        | <u>-</u> |
|   | 4,4'-DDT    |                                       |             |                                        |            |                                       |                                        |          |
|   | Endcsulfan  | Sulfate                               | ≥           |                                        |            |                                       |                                        |          |
|   | Aroclor 101 | 16                                    |             |                                        |            |                                       | <u></u>                                |          |
|   | Aroclor 122 | 21                                    |             |                                        |            |                                       |                                        |          |
|   | Aroclor 123 | 32                                    |             |                                        |            | · · · · · · · · · · · · · · · · · · · | ····                                   |          |
|   | Aroclor 124 | 12                                    |             | - <u></u>                              |            |                                       |                                        |          |
|   | Arocior 124 | 8                                     |             |                                        |            |                                       |                                        |          |
|   | Aroclor 125 | 04<br>                                |             |                                        |            | · · ·                                 |                                        |          |
|   | Chlordona   | ove                                   |             |                                        |            |                                       |                                        |          |
|   | Toxabhene   | <u> </u>                              |             |                                        |            |                                       |                                        |          |
|   | Methoxychor |                                       |             |                                        |            |                                       |                                        |          |
|   | DBC         | · · · · · · · · · · · · · · · · · · · |             |                                        |            | <u> </u>                              |                                        |          |

CF -Calibration Factor from daily standard at ug/L CF-Average Calibration Factor from initial calibration Form VI %D-Percent Difference CCC-Calibration Check Compounds

MN-COMP 0044871

-----

| Section N | o. IX |
|-----------|-------|
| Page      | 58    |
| Doc. No.  | 671   |

## IX. ANALYTICAL PROCEDURES

Analytical methods employed at PACE can be EPA methodologies from the Federal Register and SW 846 (References 2 and 3) or approved equivalent methods. When there is no approved EPA method, industrial methods are used. A list of analytical methods utilized at PACE is as follows:

# A. LIST OR ANALYTICAL METHODS

نت.

ż

# 1. Organic Analyses

| Parameter                                                                             | Method  | DW                        | WW<br>Method       | SW<br>846 Spec.              |
|---------------------------------------------------------------------------------------|---------|---------------------------|--------------------|------------------------------|
| Purgeable Halocarbons,                                                                | GC      | 502.1/502.2               | 601                | 8010                         |
| Non-Halogenated Volatile<br>Organics                                                  | GC      |                           |                    | 8015                         |
| Purgeable Aromatics and<br>Unsaturated Organics                                       | GC      | 503.1/502.2               | 602                | 8020                         |
| Acrolein & Acrylonitrile                                                              | GC      |                           | 603                | 8030                         |
| Phenol s                                                                              | GC      | 515.1                     | 604                | 8040                         |
| Benzidines                                                                            | HPLC    |                           | 605                |                              |
| Phthalate Esters                                                                      | GC      |                           | 606                | 8060                         |
| Nitrosamines                                                                          | GC      |                           | 607                |                              |
| Organochlorine Pesti-<br>cides and PCBs                                               | GC      | 508/505/508A<br>507/515.1 | 608/608.1<br>608.2 | 8080 CA Mod 8080<br>MN. 570A |
| Nitroaromatics and<br>Isophorone                                                      | GC      |                           | 609                | 8090                         |
| Polynuclear Aromatic<br>Hydrocarbons                                                  | HPLC/GC | 502.2/503.1               | 610                | 8310/<br>8100                |
| Haloethers                                                                            | GC      |                           | 611                | •<br>•                       |
| Alachlor, Atrazine,<br>Chlordane, Hepatchlor,                                         | GC      | 505/507                   | 645                | MN 570A                      |
| Heptachlor Epoxide,<br>Lindane, Methoxychlor,<br>Toxaphene, and PCBs<br>(as Aroclors) |         |                           |                    | MN-COMP 0044872              |

| Section No. | IX  |
|-------------|-----|
| <br>Page    | 59  |
| Doc. No.    | 671 |
|             |     |

--

. •

,

| Parameter                                                               | Method | DW          | WW<br>Method        | SW<br>846     | Spec.                  |
|-------------------------------------------------------------------------|--------|-------------|---------------------|---------------|------------------------|
| Chlorinated Hydrocarbons                                                | GC     |             | 612                 | 8120          |                        |
| 2, 3, 7, 8 - TCDD                                                       | GC/MS  |             | 613                 |               |                        |
| Volatile Organics                                                       |        |             |                     |               | (MN)465C               |
| Base/Neutrals & Acids                                                   | GC/MS  | 525 (NCA)   | 625                 | 8250/8270     |                        |
| Organophosphorus Pesti-<br>cides                                        | GC     | 507         | 614/622             | 8140/<br>8220 | (MN)570A<br>(CA)AB1803 |
| Chlorinated Herbicides                                                  | GC     | 515.1       | 615/608.1/<br>608.2 | 8150          | (MN)574A<br>(CA)5098   |
| EDB and DBCP                                                            | GC     | 504         |                     |               | (CA) DOHS              |
| Volatile Organic Com-<br>pounds                                         | GC/MS  | 524.2/524.1 | 624                 | 8240          |                        |
| Carbamates & Urea &<br>Pesticides                                       | HPLC   | 531.1       | 632                 |               | (CA)AB1803<br>(MN)572A |
| Fuel Hydrocarbons & BTEX                                                | GC     |             | 602                 | 8020          | (CA)<br>Mod. 8015      |
| Alachlor, Atrazine                                                      | GC     | 507/505     | 619/645             |               | (CA)AB1803<br>(MN)570A |
| Chlordane, Heptachlor,<br>Heptachlor Expoxide,<br>Lindane; Methoxychlor | GC     | 508/505     | 608/617             | 8080          |                        |
| Aldicarb; Aldicarb<br>sulfone; Aldicarb sul-<br>foxide; Carbofuran      | GC     | 531.1       |                     |               | (CA) AB1803            |
|                                                                         |        |             |                     | MN-COM        | 1P 0044873             |

 $\gamma_{\rm c}$ 

· . ·

------

-

| Section No. | IX  |
|-------------|-----|
| Page        | 60  |
| Doc. No.    | 671 |

# 2. INORGANIC ANALYSES

. '

| Parameter                                                                           | Method                                                               | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983 | ASTM     | SW<br>846    |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|------------------------|----------|--------------|
| A. Non Metals                                                                       |                                                                      |                                 |                        |          |              |
| Acidity                                                                             | Potentiometric<br>Titration                                          | 402                             | 305.1                  | D1067-82 |              |
| Alkalinity                                                                          | Potentiometric<br>Titration                                          | 403                             | 310.1                  | D1067-82 |              |
| Bacteria,<br>Total Coliform<br>Fecal Coliform<br>Fecal Strept.<br>Total Plate Count | Membrane Filter<br>Membrane Filter<br>Membrane Filter<br>Agar Medium | 909A<br>908C<br>910A<br>907     |                        |          | 9132         |
| Biochemical<br>Oxygen Demand,<br>5-Day                                              | Winkler Electrode                                                    | 507<br>507                      | 405.1                  |          |              |
| Boron                                                                               | Curcumin 405-A<br>ICP                                                | 404A                            | 212.3<br>200.7         |          | 6010         |
| Chemical Oxygen<br>Demand                                                           | Dichromate Reflux<br>(High)                                          | 508A                            | 410.1                  | D1252-83 |              |
|                                                                                     | Dichromate Reflux<br>(Low)                                           | 508A                            | 410.2                  | D1252-83 |              |
| Chloride                                                                            | Mercuric Nitrate<br>Auto. Ferricyanide<br>Titration                  | 407B<br>407D<br>407A            | 325.3<br>325.2         | D512-81  | 9252<br>9251 |
| Chlorine, Residual                                                                  | Amperometric<br>Titration                                            | 408C                            | 330.1<br>330.5         | D1253-76 | -            |
|                                                                                     | Colorimetric                                                         | 408E                            |                        |          |              |
| Color                                                                               | Visual Comparison                                                    | 204A                            | 110.2                  |          |              |
| Cyanide, Total                                                                      | Pyridine-Barbitutic<br>Acid, Colorimetric                            | 412D                            | 335.2                  | D2036-82 | 9010         |
| Amenable                                                                            | Chlorination-<br>Colorimetric                                        | 412F                            | 335.1                  | D2036-82 | 9010         |
|                                                                                     |                                                                      |                                 |                        |          |              |

MN-COMP 0044874

-

----

. . .

أحتا

:.:

• •

:

. .

| Section  | No. | IX  |  |
|----------|-----|-----|--|
| Page     | -   | 61  |  |
| Doc. No. |     | 671 |  |

| Parameter                                                            | Method                                                         | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983  | ASTM                            | SW<br>846     |
|----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|-------------------------|---------------------------------|---------------|
| Flouride, Total                                                      | Distillation-Electrode                                         | 413A/B                          | 340.2                   | D1179-80                        |               |
| Flouride, Diss.                                                      | Electrode                                                      | 413B                            | 340.2                   | D1179-80                        |               |
| Hardness, Total                                                      | EDTA Titration<br>Calculation                                  | 314B                            | 130.2                   | D1126-80                        |               |
| Hardness, Calcium                                                    | EDTA Titration                                                 | 303A                            | 242.1                   | D511-84                         |               |
| Nitrogen,<br>Ammonia                                                 | Distillation Titration<br>Potentiometric                       | 417D                            | 350.2<br>350.3          |                                 |               |
| Kjeldahl<br>Nitrate                                                  | Digestion Distillation<br>Automated Cadmium<br>Brucine Sulfate | 420B<br>418F                    | 351.3<br>353.2<br>352.1 | D3590-84<br>D3867-85<br>D091-71 | 9200          |
| Nitrite                                                              | Automated Cadmium<br>Colorimetric                              | 418F<br>419                     | 353.2                   | D3867-85                        |               |
| Organic                                                              | Kjeldahl-NH3<br>Kjeldahl-Potentiometric                        | 420A<br>:                       | 351.3<br>351.4          | D3590-84                        |               |
| 0il & Grease                                                         | Soxhlet<br>Partition-Gravimetric                               | 503C<br>503A                    | 413.1                   |                                 | 9070/<br>9071 |
| Oxygen<br>Dissolved ·                                                | Winkler<br>Electrode                                           | 421B<br>421F                    | 360.2<br>360.1          | D888-81                         |               |
| pH (Hydrogen Ion)                                                    | Electrode                                                      | 423                             | 150.1                   | D1293-84                        | 9040          |
| Phenol                                                               | Distillation-Extrac-<br>tion Colorimetric                      |                                 | 420.1                   | D1783-80                        | 9066 -        |
| Phosphorus,<br>Total                                                 | Persulfate Digestion-<br>Ascorbic Acid Reduc.                  | 424C/F                          | 365.2                   | D515-82                         |               |
| Ortho                                                                | Ascorbic Acid Reduc.                                           | 424F                            | 365.2                   | D515.82                         |               |
| Silica,<br>Dissolved                                                 | Molybdosilicate<br>ICP                                         | 425C                            | 370.1<br>200.7          | D859-80                         |               |
| Solids<br>Total<br>Total Volatile<br>Suspended<br>Suspended Volatile | Gravimetric<br>Gravimetric<br>Gravimetric                      | 209A<br>209D<br>209C            | 160.3<br>160.4<br>160.2 | MN-COMP                         | 0044875       |
| Suspended Volatile<br>Total Dissolved<br>Settleable                  | Gravimetric<br>Gravimetric<br>Gravimetric                      | 209D<br>209B<br>209E            | 160.4<br>160.1<br>160.5 |                                 |               |

--

d

. .

| Section | No. | IX  |  |
|---------|-----|-----|--|
| Page    |     | 62  |  |
| Doc. No | •   | 671 |  |

| Parameter                     | Method                                        | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983  | ASTM     | SW<br>846       |
|-------------------------------|-----------------------------------------------|---------------------------------|-------------------------|----------|-----------------|
| Specific Conduc-<br>tance     | Meter                                         | 205                             | 120.1                   | D1125.82 | 9040            |
| Sulfate                       | Ion Chromatography<br>Automated Methyl        | 426C                            | 375.4                   | D516-82  |                 |
|                               | Thymol Blue                                   |                                 | 375.2                   |          | 9036            |
| Sulfide                       | Colorimetric<br>Titration                     | 427C<br>427D                    | 376.2<br>376.1          |          | 9030            |
| Sulfite                       | Titration                                     | 428A                            | 377.1                   | D1339-84 |                 |
| Surfactants<br>(MBAS)         | Methylene Blue                                | 512B                            | 425.1                   | D2330-82 |                 |
| Turbidity                     | Meter                                         | 214A                            | 180.1                   | D1889-18 |                 |
| <u>Parameter</u><br>B. Metals | Method                                        | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1979  | -        | W<br>46         |
|                               |                                               |                                 |                         |          |                 |
| Aluminum                      | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES | 303C<br>304                     | 202.1<br>202.2<br>200.7 | 70<br>60 | 20<br>10        |
| Antimony                      | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES | 303A<br>304                     | 204.1<br>204.2<br>200.7 | 70       | 40<br>41<br>10  |
| Arsenic                       | AA-Gaseous Hydride<br>AA-Furnace<br>ICP-AES   | 303E<br>304                     | 206.3<br>206.2<br>200.7 | 70       | 61<br>60<br>110 |

MN-COMP 0044876

------

2.1

-\_\_

--::

:8

h. . . .

÷. .

: 7

|                                  | -                                                                                |                                 | Section No. IX<br>Page 63<br>Doc. No. 671 |                                      |
|----------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|
| Parameter                        | Method                                                                           | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983                    | SW<br>846                            |
| Barium                           | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303C<br>304                     | 208.1<br>208.2<br>200.7                   | 7080<br>7081<br>6010                 |
| Beryllium                        | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303C<br>304                     | 210.1<br>210.2<br>200.7                   | 7090<br>7091<br>6010                 |
| Cadmium                          | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303A<br>304                     | 213.1<br>213.2<br>200.7                   | 7130<br>7131<br>6010                 |
| Calcium                          | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303A<br>311C-                   | 215.1<br>215.2<br>200.7                   | 7140<br>6010                         |
| Chromium,<br>Total<br>Hexavalent | AA-Direct Aspiration<br>AA-Furance<br>ICP AES<br>Colorimetric<br>MIBK Extraction | 303A<br>304<br>312B             | 218.1<br>218.2<br>200.7                   | 7190<br>7191<br>6010<br>7196<br>7197 |
| Cobalt                           | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303A<br>304                     | 219.1<br>219.2<br>200.7                   | 7200<br>7201<br>6010                 |
| Copper                           | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303A<br>304                     | 220.1<br>220.2<br>200.7                   | 7210<br>7211<br>6010                 |
| Iron                             | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303B<br>304                     | 236.1<br>236.2-<br>200.7                  | 7380<br>7381<br>6010                 |
| Lead                             | AA-Direct Aspiration<br>AA-Furnace<br>ICP-AES                                    | 303A<br>304                     | 239.1<br>239.2<br>200.7                   | 7240<br>7241<br>6010                 |

. . MN-COMP 0044877

. ~

ł

|            | -                                             |                                 | Section No. IX<br>Page 64 |                      |  |  |
|------------|-----------------------------------------------|---------------------------------|---------------------------|----------------------|--|--|
|            |                                               |                                 | Doc. No. 671              |                      |  |  |
| Parameter  | Method                                        | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983    | SW<br>846            |  |  |
| Lithium    | AA-Direct Aspiration                          | 317B                            |                           |                      |  |  |
| Magnesium  | AA-Direct Aspiration<br>ICP AES               | 303A                            | 242.1<br>200.7            | 7450<br>6010         |  |  |
| Manganese  | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303A<br>304                     | 243.1<br>243.2<br>200.7   | 7460<br>7461<br>6010 |  |  |
| Mercury    | AA-Cold Vapor                                 | 303F                            | 245.1                     | 7470 or<br>7471      |  |  |
| Molybdenum | AA-Direct Aspiration<br>AA-Furnace            | 303C<br>304                     | 246.1<br>246.2            | 7480<br>7481         |  |  |
| Nickel     | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303A<br>304                     | 249.1<br>249.2<br>200.7   | 7520<br>6010         |  |  |
| Potassium  | AA-Direct Aspiration                          | 303A                            | 258.1                     | 7610                 |  |  |
| Selenium   | AA-Gaseous Hydride<br>AA-Furnace<br>ICP AES   | 303E<br>304                     | 270.3<br>270.2<br>200.7   | 7740<br>7741<br>6010 |  |  |
| Silver     | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303A<br>304                     | 272.1<br>272.2<br>200.7   | 7760<br>7761<br>6010 |  |  |
| Sodium     | AA-Direct Aspiration                          | 303A                            | 273.1<br>200.7            | 7770<br>6010         |  |  |
| Strontium  | AA-Direct Aspiration                          | 303A                            |                           | 7780                 |  |  |
| Thallium   | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303A<br>304                     | 279.1<br>279.2<br>200.7   | 7840<br>7841<br>6010 |  |  |
| Tin        | AA-Direct Aspiration<br>AA-Furnace            | 303A<br>304                     | 282.1<br>282.2            | 7870                 |  |  |

:

-

3

interi

•

. .

......

• •

\_

- • •• MN-COMP 0044878

-

1

- ----- -- . -

|                            |                                               |                                 | Section No. IX<br>Page 65<br>Doc. No. 671 |                      |
|----------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------|----------------------|
| Parameter                  | Method                                        | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1983                    | SW<br>846            |
| Titanium                   | AA-Direct Aspiration<br>AA-Furnace            | 303C<br>304                     | 283.1<br>283.2                            |                      |
| Vanadium                   | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303C<br>304                     | 286.1<br>286.2<br>200.7                   | 7910<br>7911<br>6010 |
| Zinc                       | AA-Direct Aspiration<br>AA-Furnace<br>ICP AES | 303A<br>304                     | 289.1<br>289.2<br>200.7                   | 7950<br>7951<br>6010 |
| 3. WASTE                   | S & OIL ANALYSIS                              |                                 |                                           |                      |
|                            |                                               | Standard<br>Methods             |                                           | SW                   |
| Parameter                  | Method                                        | 15th Ed.                        | ASTM                                      | 846                  |
| % Ash                      | Gravimetric                                   | 209F                            |                                           |                      |
| % Chlorine                 | Bomb Calorimeter                              |                                 | D808-81                                   |                      |
| Density                    | Gravimetric                                   | 213E                            | ÷                                         |                      |
| Flash Point<br>Closed Cup  | Tag                                           |                                 | D93-80                                    | 1010                 |
| Free Liquids               | Paint Filter                                  |                                 |                                           | 9095                 |
| Heat of Combustion         | Bomb Calorimeter                              |                                 | D240-76                                   |                      |
| Leach Test. EP<br>Toxicity | Extraction                                    |                                 |                                           | 1310                 |
| ASTM Water                 | Extraction                                    |                                 | D3987-85                                  | . •                  |
| % Sulfur                   | Bomb Calorimeter                              |                                 | D129-64                                   |                      |
|                            |                                               |                                 |                                           |                      |

- -

\_

MN-COMP 0044879

\_ - - - - ----

`~-

\_\_\_\_

•

|  | Section No. | IX  |
|--|-------------|-----|
|  | Page        | 66  |
|  | Doc. No.    | 671 |
|  |             |     |

| Parameter | Method       | Standard<br>Methods<br>15th Ed. | ASTM   |
|-----------|--------------|---------------------------------|--------|
| Viscosity | Saybolt      |                                 | D88-81 |
| % Water   | Distillation |                                 | D95-83 |

| Parameter                 | Method                                     | Standard<br>Methods<br>15th Ed. | EPA<br>Methods<br>1982 | SW<br>846          |
|---------------------------|--------------------------------------------|---------------------------------|------------------------|--------------------|
| Sulfide,Total             | Titration                                  |                                 |                        | 9030               |
| Reactive                  | Titration                                  |                                 | 261.23                 | Chap. 7<br>7.3.4.2 |
| рН                        | Electrode                                  |                                 |                        | 9040               |
| Specific Conduc-<br>tance | Meter                                      |                                 |                        | 9050               |
| Specific Gravity          | Mass Displacement                          | 213E                            |                        |                    |
| Cyanide,<br>Total         | Pyridine-Barbituit<br>Acid<br>Colorimetic  | tic                             |                        | 9010               |
| Amenable                  | Chlorination-Colon<br>metric               | ri-                             |                        | 9010               |
| Cyanide,<br>Reactive      | Pyridine∸Barbituti<br>Acid<br>Colorimetric | ic                              | 261.23                 | Chap. 7<br>7.3.3.2 |
| TCLP                      |                                            |                                 | 40CFR268               |                    |
|                           |                                            |                                 |                        |                    |

MN-COMP 0044880

)

1.61 · •

ંઝ

1

.

| Section N | o. IX |
|-----------|-------|
| Page      | 67    |
| Doc. No.  | 671   |

#### 4. List of Sample Preparation Methods

3510 Separatory Funnel Liquid - Extraction

- 3520 Continuous Liquid - Extraction 3540
- Soxhlet Extraction
- 3550 Sonication Extraction 3580
- Waste Dilution 5080
- Purge and Trap
- 3005 Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame AA or ICP
- 3010 Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame AA or ICP
- 3020 Acid Digestion of Aqueous Samples and Extracts for Total Metals by Furnace AA
- 3050 Acid Digestion of Sediments, Soils, and Sludges

Method numbers refer to EPA Methods except:

- 1. S.M. = Standard Methods for the Examination of Water and Wastewater
- USATHAMA = U.S. Army Toxic and Hazardous Materials Agency 2.
- 3. NIOSH = Manual of Analytical Methods
- 4. Hach, Chevron, Calgon = Industrial Methods

#### Β. GAS CHROMATOGRAPHY PROCEDURES

#### Calibration and Calibration Verification 1.

All GC methods are calibrated by external calibration procedures using three to five standard concentrations, depending upon the method. A new calibration is performed at least once per month or as needed on routine analyses. Methods not utilized on a daily basis are calibrated before each run.

#### 2. Laboratory Control Sample (LCS)

An EPA check sample is analyzed at least once per week, and when a new initial calibration is performed.

#### 3. Matrix Spike

Performed at a minimum of every 20 samples or as required by either state or project-specific requirements.

#### 4. Surrogate Spike

Surrogates are added to and analyzed for in every sample for methods 601, 602, 8010, 8020, 608, 8080, 8015, 615, 8150.

| Secti | on  | No. | IX  |   |
|-------|-----|-----|-----|---|
| Page  |     |     | 68  | • |
| Doc.  | No. |     | 671 |   |

MN-COMP 0044882

# 5. Duplicate Sample Analysis

Performed at a minimum of every 20 samples or as specified by state/project requirements. Many samples contain non-detectable amounts of the parameters to be measured, therefore, the matrix spike is duplicated. (Matrix Spike Duplicate)

# 6. Blank Analysis

The reagent/method blank must have no contaminants greater than the detection limit of the method. In the case of volatile organic analysis, common laboratory solvents may be present at a concentration of less than 5 times the MDL. Blank subtraction is normally not allowed by contract/project protocols, unless specified by terms of the contract/project.

#### 7. Other

.....

Method 608/8080 are also subject to the following QC criteria:

- a. Combined breakdown of endrin and DDT may not exceed 20%. This is monitored through the daily analysis of an LCS containing these compounds.
- b. Two LCS (each containing 1/2 the compounds of the method) are alternately analyzed after every tenth sample.

# C. GAS CHROMATOGRAPHY/MASS SPECTROMETRY PROCEDURES

## 1. Calibration and Continuing Calibration

An internal three point calibration is performed when indicated by the continuing calibration. One check standard is analyzed at the beginning of each 12-hour shift to verify calibration. The acceptance limit for the check standard is 25% RSD. Recalibration is necessary from once per week to once per month. Fresh calibration standards must be prepared weekly.

# 2. Validation of Mass Spectrometer

The mass spectrometers are tuned at the start of each run period and at 12-hour intervals. The tuning procedure utilizes the EPA recommended compounds 4-bromofluorobenzene (BFB) for 624/8240 and decafluorotriphenyl phosphine (DFTPP) for 625/8270.

| Section No. | ·IX |
|-------------|-----|
| Page        | 69  |
| Doc. No.    | 671 |

### 3. Internal Standards

All sample results are quantified using the internal standard technique described in EPA methods 624, 8240, 625, 8270. Three (VOA) or six (BNA) internal standard compounds are added to each sample immediately before analysis. The internal standard nearest the retention time of the analyte of interest is used in the quantitation of the analyte.

# 4. Laboratory Control Sample

An EPA check sample is analyzed at a minimum once every month. A standard is run every 12 hour shift.

# 5. <u>Matrix Spike and Matrix Spike Duplicate</u>

Performed at a minimum of every 20 samples or as specified by state/project requirements. This is the same procedure as the GC section.

# 6. Surrogate Spikes

Surrogate spiking compounds are added to and analyzed for, with every sample. A surrogate is a volatile sample prior to purging and prior to extracting a semi-volatile sample.

# 7. Reagent/Method Blank

VOA - one per 12-hour per shift BNA - one per batch of samples extracted

Common laboratory solvents present in the blank at a concentration less than 5 times the MDL will be footnoted on the analysis report. Common solvents at greater concentrations or the presence of any contaminant 'not considered a common laboratory solvent at a concentration greater than the MDL indicates the need to re-extract/re-analyze the blank and associated samples.

### D. METALS PROCEDURES

# 1. <u>Calibration and Calibration Verification</u>

All instruments are calibrated at the start of each run. The graphite furnace requires 4 point calibration. The Flame AA and ICP methods utilize a minimum of 3 points. Cold vapor analysis of mercury requires a 5 point calibration. Recalibration is performed after 50 samples, or more often if indicated by the laboratory control sample.

MN-COMP 0044883

| Section  | No. | IX  |
|----------|-----|-----|
| Page     |     | 70  |
| Doc. No. | •   | 671 |

### 2. Laboratory Control Sample

Performed at a minimum of every 20 samples, or as specified by state/project requirements.

### 3. Matrix Spike

 $\mathbf{c}^{\mathbf{i}}$ 

Performed at a minimum of every 20 samples, or as specified by state/project requirements.

#### 4. Duplicate Samples

Performed at a minimum of every 20 samples, or as specified by state/project requirements.

## 5. Blank Analysis

### a. Method Blank

If the concentration of the blank exceeds the MDL, all samples associated with the blank are redigested and reanalyzed concurrent with a new blank. Samples with a concentration greater than 10 times the blank are reported, without blank value correction.

#### b. Reagent Blank

Any reagent blank result greater than the MDL terminates the analysis until corrective action resolves the problem. For ICP metals, a negative blank value greater than two times the MDL also requires corrective action. In rare cases, if all corrective action fails to resolve the problem and the blank value still hovers at 1-3 times the MDL, the analyst may run the samples, report all values greater than 10 times the blank value, and correct the sample values less than that amount for the blank value.

# E. GENERAL CHEMISTRY PROCEDURES

#### 1. Calibration and Verification

All instruments are calibrated daily with 3-6 point curves, depending upon instrument requirements. The calibration is continuously verified throughout the run, with either a calibration standard or laboratory control standard inserted after every loth sample.

## 2. Laboratory Control Sample

A laboratory control sample is analyzed at least once during each batch of samples.

| Section | No. | IX  |
|---------|-----|-----|
| Page    |     |     |
| Doc. No | •   | 671 |

MN-COMP 0044885

# 3. <u>Matrix Spike and Duplicate Samples</u>

Performed at a minimum of every 20 samples, or as specified by state/project requirements.

# F. RECORD KEEPING AND REVIEW

All records and data are stored in safe places such as metal cabinets or hard cover bound books.

The extractions section utilizes method-specific bound books to record all data pertaining to sample extraction and preparation. A copy of the extraction benchsheet is transferred to GC or GC/MS with each extracted sample (Exhibit 16 and 17).

The organic and inorganic departments utilize benchsheets, maintained by analysts; specific for injection data and instrument maintenance. Spectras and chromatograms are filed by acquisition date.

The individual analysts and technicians are responsible for maintaining accurate, legible records and logs in accordance with standard operating procedures. The supervisors are responsible for ensuring adherence to procedures.

Secondary review of all records and logs is performed periodically by someone other than the person generating the document, preferably the department supervisor. Evidence of secondary review is provided on the document as initials and review date by the secondary person.

See Section X for magnetic media storage.

Exhibit 16

.....

÷

ыá

3

PROJECT #

--স

GC-MS EXTRACTABLES

BATCH #

| Extract<br>Location            |   |         |          |  |      |                   | Initial                     |                    |            |                 | <u> </u> |                |
|--------------------------------|---|---------|----------|--|------|-------------------|-----------------------------|--------------------|------------|-----------------|----------|----------------|
| Comments                       |   |         |          |  |      | ROUTING           | Person Mho:<br>Extracted    |                    | Supervisor | GC/MS           |          |                |
| u c                            |   |         |          |  | <br> |                   |                             |                    |            | 4886            |          |                |
| Z Emulsion                     |   |         |          |  |      | Spike #           | RMATION                     |                    |            | MN-COMP 0044886 |          |                |
| Date of<br>Conc.               |   |         |          |  |      | . dng             | QUALITY CONTROL INFORMATION |                    |            | MN-O            |          |                |
| Final<br>Volume                |   |         |          |  |      |                   | ITY CONT                    |                    | ,          |                 |          |                |
| Spike                          |   |         |          |  |      |                   | QUAL                        |                    |            |                 |          |                |
| Surrogate                      |   |         |          |  |      | Spike #           |                             | Surrogate          | :          | Sp1ke:          |          |                |
| Initial<br>Volume              | - |         |          |  |      |                   |                             |                    |            |                 | Π        | ]              |
| Date/Time<br>of Extrac<br>tion |   | <b></b> | <b>-</b> |  |      | METHOD            |                             | L<br>P             | <u> </u>   |                 |          |                |
| Sample<br>Number               |   |         |          |  |      | EXTRACTION METHOD | y Funne                     | s Liq/Li           |            | c               |          |                |
| Sample<br>Location             |   |         |          |  |      | EXT               | Separatory Funnel           | Continuous Lig/Lig | Soxhlet    | Sonication      | Other:   | <b>МРРМGJ5</b> |

72

PROJECT #

GC EXTRACTION

Exhibit 17

BATCH #

| r       | 60                                           | 1 | T | T | T | 1 | T | 1 | 1 | <u>ر ا</u> | · · · · · ·       |         |                             |                    |         |            |         |
|---------|----------------------------------------------|---|---|---|---|---|---|---|---|------------|-------------------|---------|-----------------------------|--------------------|---------|------------|---------|
|         |                                              |   |   |   |   |   |   |   |   |            |                   | Initial |                             |                    |         | 6          | · -     |
|         | z Date<br>Recovery Time                      |   |   |   |   |   |   |   |   |            | ROUTING           |         |                             | 1                  | ł       |            | 0044887 |
|         | NCLSON<br>F11e                               |   |   |   |   |   |   |   |   |            | Rou               | n Who:  | Extracted                   | Cinaruteor         |         |            |         |
|         | Column                                       |   |   |   |   |   |   |   |   |            |                   | Perso   | <u>කිරි</u>                 |                    |         | SH / J     |         |
|         | Extraction<br>Location                       |   |   |   |   |   |   |   |   |            |                   |         |                             |                    |         |            |         |
|         | Comments                                     |   |   |   |   |   |   |   |   |            | Dup. Spike #      |         | QUALITY CONTROL INFORMATION |                    |         |            |         |
|         | Z<br>Emulsion                                |   |   |   |   |   |   |   |   |            |                   |         | UALITY CON                  | - '                |         |            |         |
|         | Date of<br>Conc.                             |   |   |   |   |   |   |   |   |            | **                |         | 0                           | gate:              |         |            |         |
|         | Final<br>Volume                              |   |   |   |   |   |   |   |   |            | Spike             |         |                             | Surrogate:         |         | spike:     |         |
|         | Date &<br>Time of Final<br>Extraction Volume |   |   |   |   |   |   |   |   |            |                   | [       |                             |                    |         |            |         |
| · · · · | Weight<br>of<br>Sample                       |   |   |   |   |   |   |   |   |            | EXTRACTION METHOD |         |                             | ţd                 |         |            |         |
|         | Sample<br>Number                             |   |   |   |   |   |   |   |   |            | RACTION           |         | y Funne                     | s Liq/L            |         | c          |         |
|         | Location Number Sample                       |   |   |   |   |   |   |   |   |            | EXT               |         | Separatory Funnel           | Continuous Lig/Lig | Soxhlet | Sonication | Other:  |

·

\_

| Section  | No. | IX  |
|----------|-----|-----|
| Page     |     | 74  |
| Doc. No. |     | 671 |

\_ .

×.... - - -

MN-COMP 0044888

- ----

#### ACCEPTANCE LIMITS AND CONTROL CHARTS G.

\_\_\_\_

----

33

2

Acceptance criteria for quality control samples and calibration/verification are summarized in Table 3. instrument

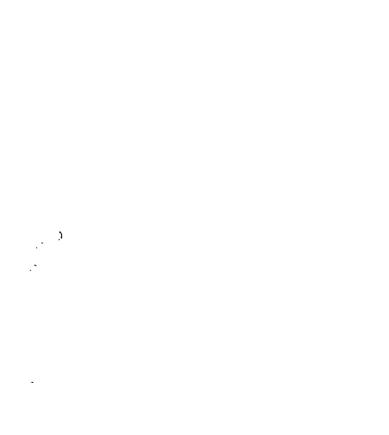



TABLE #3

ACCEPTANCE CRITERIA EDB QUALITY CONTROL SAMPLES & JUSTBUMENT CALIBRATION

|                               | <u>-</u>                                                     |                                              |                                                                                                    |                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCS/EPA<br>DC SAURLE          | ±15% of<br>true volue<br>or EPA lim-<br>lt                   | ± 15% of<br>true volue<br>or EPA   1m-<br>11 | ± 15% of<br>true value<br>or EPA 1m-<br>1t                                                         | <pre>15x of<br/>true volue<br/>of EPA lim-<br/>it</pre>                                                                                                                |
| CAL IBRATION<br>YEBIELCALION  | <pre>* 15% of true<br/>volue or ini-<br/>tial response</pre> | ± 30% of Ini-<br>tial average<br>RF          | ± 10% of true<br>value                                                                             | ± 10% of true<br>value                                                                                                                                                 |
| CALIBRATION<br>-LIBEARIJY     | RSD <u>&lt;</u> 20 <b>I</b>                                  | RSD ≤ 30I                                    | Correla-<br>tion co-<br>efficient<br>2,995                                                         | Correla-<br>tlon co-<br>efficient<br>of:<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.995<br>2.001 |
| DUPLICATE SAMPLESLIVEARIJY    | s maximum RPD ac-<br>ceptance limit                          | ≤ moxlmum RPD ac-<br>ceptance llmlt          | 0-67 on samples<br>< 10x MNL<br>0-20 on samples<br>> 10x MDL<br>MDL = Method<br>Detection<br>Limit | 0-67 on samples<br>< 10x MDL<br>0-20 on samples<br>> 10x MDL<br>MDL - Hetlind<br>petection                                                                             |
| SURROGATE SPIKE<br>T.BECOYERY | Within colcu-<br>loted control<br>limits                     | Within colcu-<br>lated control<br>limits     | h/A                                                                                                | :<br>N/A                                                                                                                                                               |
| MATRIX SPIKE<br>X RECUYERY    |                                                              | Within calcu-<br>lated control<br>limits     | Within calcu-<br>lated control<br>limits                                                           | WI thin colcu-<br>lated control<br>limits                                                                                                                              |
|                               | 20                                                           | SH                                           | GENERAL<br>CIIEMI STRY                                                                             | METALS                                                                                                                                                                 |

Section No. <u>IX</u> Page <u>75</u> Revision Date <u>7/11/9</u>C

(MN-COMP 0044889

Establishment and Utilization of Acceptance Limits

,

..

Section No. X Page 76 Doc. No. 671

# X. DATA REDUCTION, VALIDATION AND REPORTING

Final results are entered into the LDMS system by the analyst, independently validated, and reviewed by the department supervisor for verification (Exhibit 18).

Result verification sheets are attached to the QC files and reviewed by the QC manager. After QC file review by the QC manager, the department manager verifies the completeness and the validity of the report. When all required analyses on all of the samples in a project are complete, entered and verified, a report is generated. The report goes to the project manager for review. Each project is assigned to a project manager after samples are received at PACE. The project manager is responsible for tracking sample progress while in-house and ensuring timely analysis.

When the data re complete, the project manager reviews the final report according to these criteria:

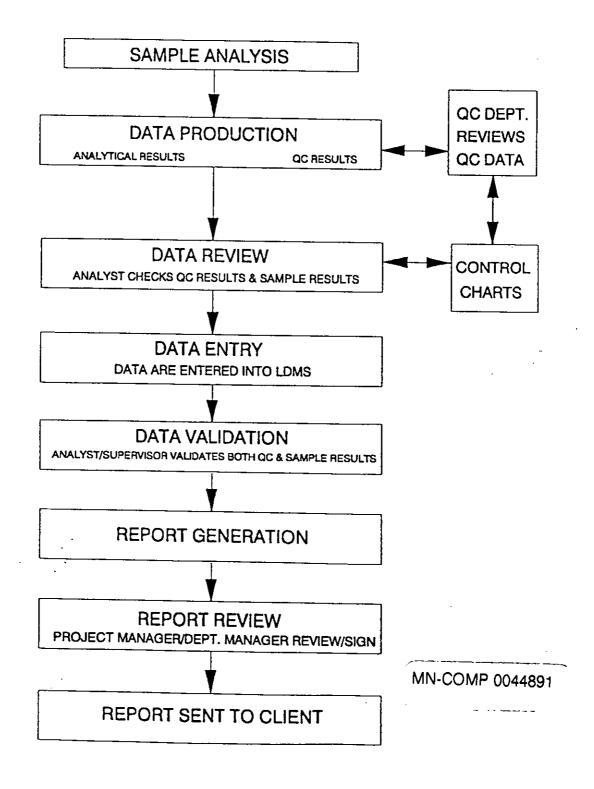
Reasonableness of data, i.e., whether the various sample analyses results make sense when compared to each other. Analyses such as BOD, COD, amount of organic contamination, general mineral balances, volatile organics measured by different methods, pH and electrical conductivity, and other analytical interrelationships are compared. Data on samples within the same project number are compared and if descriptive information about the samples is available, then it may be concluded that the results are reasonable in comparison to each other.

The report requires the signature of the project manager and the department manager. Client questions about the final report may be directed to these individuals or the Client Services manager when appropriate.

### Data Ştorage

-----

-3


4.3

Data and reports are archived onto computer tape and written in documents for either off-site storage within a secured building, or within a locked storage cabinet.

MN-COMP 0044890



# LABORATORY DATA FLOW CHART



| Sectior | No. | XI  |
|---------|-----|-----|
| Page    |     | 78  |
| Doc. No | )   | 671 |

#### XI. INTERNAL QUALITY CONTROL

The Quality Assurance Plan is a document that reflects the actual operating and quality control programs in use at PACE. The reliability and credibility of analytical results is established by inclusion of a program of randomly scheduled replicate analyses, analysis of standard of spiked samples, and the cooperative analysis of split samples by several laboratories. These quality control checks are an integral part of the sampling and analytical plan.

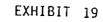
Quality assurance, as practiced at PACE, consists of general quality control and assessment procedures that are adapted to the specific operating conditions within each section. The general elements of quality control are outlined below.

#### A. BLANK ANALYSIS

- 5

Reagent/Method Blanks: A reagent blank consists of laboratory pure water and any reagents added to a sample during analysis only, or straight solvent. A method blank is a water or soil blank which undergoes all of the preparation procedures applied to a sample (i.e., extraction, digestion).

It is standard policy throughout the laboratory to prepare and analyze a reagent or method blank (whichever is appropriate) with each sample batch. Separate water and soil method blanks are prepared for mixed matrix batches.


Reagent blanks may also be inserted at regular intervals on large (20 samples) batches, or after highly concentrated samples to check for carryover/contamination. For methods utilizing surrogate compounds, the surrogates are added to all blanks and are subject to meeting acceptance criteria.

A trip blank is submitted for analysis with most samples analyzed for volatile organic compounds. A field blank or procedure blank may also be submitted at the discretion of the client. Field, procedure, and trip blanks are analyzed upon request of the client. Reagent blanks are run daily on each instrument to check the contaminant level (Exhibit 19).

MN-COMP 0044892

# METHOD:

Ì



| Y         | м   | D   | CONTAMINANT/ PPB                       | CORDECT    |      |          |
|-----------|-----|-----|----------------------------------------|------------|------|----------|
|           |     | 1   |                                        | CORRECTION | S.R. | COMMENT  |
|           |     | 2   |                                        |            |      |          |
|           |     | 3   |                                        |            |      |          |
|           |     | 4   |                                        |            |      |          |
| RECOVERY  |     | 5   |                                        |            |      |          |
| - No      |     | 6   |                                        |            |      |          |
|           |     | 7   |                                        |            |      |          |
| SURROGATE |     | 8   |                                        |            |      |          |
| 2ROC      | Ì   | 9   |                                        |            |      |          |
| SUF       |     | 1.0 |                                        |            |      |          |
| CNT       | ſ   | 11  |                                        |            |      |          |
| RERCENT   | Ī   | 12  |                                        |            |      |          |
|           |     | 13  |                                        |            |      |          |
| S.R.      | Ī   | 14  |                                        |            |      |          |
| s<br>-    | ľ   | 19  |                                        |            |      | <u> </u> |
|           | ſ   | 16  |                                        |            |      |          |
|           | ľ   | 17  |                                        | +          |      |          |
|           | . [ | 18  |                                        |            |      |          |
|           | ſ   | 19  | ······                                 |            |      | <u> </u> |
|           | Ī   | 20  |                                        |            |      |          |
|           | Ī   | 21  | <u>.</u>                               |            |      |          |
|           | Γ   | 22  |                                        |            | -    | <u> </u> |
| о.<br>С.  | ſ   | 23  |                                        |            |      |          |
| ð         |     | 24  |                                        |            |      |          |
| PASS      | Γ   | 29  |                                        |            |      |          |
|           | ſ   | 26  |                                        |            |      | ·        |
| P.Q.C.=   | Γ   | 27  |                                        | +          |      |          |
| Р.(       |     | 28  | MN-COMP 0044893                        |            |      |          |
|           |     | 29  | ······································ | ╂─────┤    |      |          |
|           |     | 30  |                                        |            |      |          |
|           |     | 31  |                                        |            |      |          |

79

.

| Section No | D. XI |
|------------|-------|
| Page       | 80    |
| Doc. No.   | 671   |

#### B. MATRIX SPIKE AND SURROGATE ADDITIONS

Accuracy and matrix biases are monitored using spiked samples and where possible, surrogate additions. It is standard policy throughout the laboratory to prepare and analyze at least one matrix spike for each batch of 20 samples, for each matrix type within the batch, or as specified by state/project requirements.

Surrogate spiking compounds (if available), are added to and analyzed for, with every sample. A measured amount of spike/surrogate concentration is added to the sample before extraction of preparation. Surrogate spiking is utilized for GC and GC/MS analyses only.

#### C. DUPLICATE SAMPLE ANALYSIS

Precision is assessed by result comparison of a sample prepared and analyzed in duplicate. It is standard policy throughout the laboratory to prepare and analyze at least one duplicate sample for each batch of 20 samples and matrix type within the batch, or as specified by state/project requirements.

#### D. STANDARDS

 $\sim 6$ 

The term standard shall apply to any analyte solution of known concentration which is traceable to a certified reference material. This includes calibration standards, spiking solutions, and laboratory control samples. traceability Claims of establishes the accuracy of measurements. Therefore, maintaining standard traceability is critical to the achievement of known and defensible data quality.

To establish traceability, all purchased reference materials (neat and stock solutions) are recorded into section-specific standard log books when received.

All entries and PACE standard labels contain a unique PACE ID number, date received, date opened, and expiration date. Log book entries also include the manufacturer's lot number, certified purity, and storage location. Subsequent preparations of stock, intermediate, and working solutions are also recorded in the standard log books. These entries must include all discrete measurements made during a preparation, parent materials, solvent used, and a PACE ID number.

MN-COMP 0044894

| Section | No. | XI  |
|---------|-----|-----|
| Page    |     | 81  |
| Doc. No | •   | 671 |

Exhibit 20 illustrates a standard log book entry. Standard Operating Procedure for standards preparation contains further instructions for assigning unique ID numbers, proper syringe technique, shelf life of standards, and good laboratory practices.

Labeling: The standard vial should have a reference label (covered with cellophane tape) with the following information:

- 1 Standard
- 2 Name of Standard
- 3 Prep. Date
- 4 Prep. Personnel Initials
- 5 Solvent

Certified reference standards from the EPA Repository are used for calibration or laboratory control standards in many organic analyses. Reference standards may also be purchased from approved commercial vendors. Currently approved vendors for organic reference standards are Ultra-Scientific, Supelco, Chem-Service, Inc., and Aldrich Chemical Company, Inc. Inorganic standards are purchased from major scientific supply companies (Fisher, American Scientific, and VWR). Certificates of analyses are requested with each purchase.

# E. METHOD DETECTION LIMIT

The method detection limit (MDL) is defined as the minimum substance concentration that can be identified, measured and reported with 99% confidence that the analyte concentration is greater than zero. In general, the protocol described in Appendix B to 40CFR 136 (Federal Register, Vol. 49, No. 209, 10/26/84) is used to establish MDL's.

For GC/MS analyses and organochlorine pesticides by GC/EDC, the MDL has been determined according to EPA Contract Required Detection Limits (CRDL) as established for the Contract Laboratory Program. The MDL's for other organic analyses are set according to industry standards, client requirements, and instrument/method limitations. The MDL is validated using prepared standard solutions analyzed at detection limit concentrations.

The metals analyses MDL's correspond to instrument detection limits, and are established in the following manner: A standard solution of analyte in laboratory pure water with a concentration of 3-5 times the estimated instrument detection limit is analyzed seven consecutive times. The MDL is set at 3 times the standard deviation of the seven consecutive measurements.

MN-COMP 0044895

4

EXHIBIT 20

# i-i

: i : i

1

• •

. :

: :

.

# NEAT STANDARDS:

| NAME:        | Acephate                                                                                         | more Acephate - 1        |
|--------------|--------------------------------------------------------------------------------------------------|--------------------------|
| OTHER NAME   | = Methamidophos                                                                                  |                          |
| BRAND:       | Chem Service                                                                                     | WANNOR POISON            |
| CJUT, HO:    | <u>P5-738</u>                                                                                    |                          |
| LOT NO:      | <u> </u>                                                                                         |                          |
| ECP. DATE:   | 9-90                                                                                             | RacK#_1<br>pozition #_23 |
| RECEIN, DATI |                                                                                                  |                          |
| CH.          | 0<br>0                                                                                           | Solvent used: Acctone    |
|              | ->P-NH                                                                                           | Source:                  |
| -CH          | <u> <u> </u> <u></u></u> | purity:                  |
|              | <u> </u>                                                                                         | Lot:                     |
|              |                                                                                                  | GC Extractio             |

# DILUTIONS:

| LOCADON         | PREP. DATE | TIOTUOE | CONC. PTH     | 870 e   |
|-----------------|------------|---------|---------------|---------|
| Fr. +1 Rade + 5 | 3-1-15     | Acebove | 2,000         | 1 802   |
| Fr. #1 Rade#    | 3-2-11     | Herme   | 0.54. 10 prim | e 503   |
| .•              | •          | •       | 40            | • 503 A |
| •               | •          | •       | +0 m          | ¥ 505 g |
|                 | •          | •       | -11 001       | • 543 c |
| ļ               |            |         |               |         |

MN-COMP 0044896

| Section  | No. | XI  |
|----------|-----|-----|
| Page     |     | 83  |
| Doc. No. |     | 671 |

MN-COMP 0044897

For general (wet) chemistry methods, the MDL is established using a calibration standard analyzed at doubled dilutions until it becomes impossible to distinguish an instrument response for the analyte. The MDL is set at the lowest observable standard concentration.

### F. CONTROL CHARTS

)

Control charts monitor daily variations in precision and accuracy of routine analysis and detect variation trends. QC charts are constructed from performance data of the complete analytical method. Control chart construction requires initial data to establish the mean and range of measurements. Currently, spikes, spike duplicates, RPD's and external check sample values are charted.

# G. LABORATORY CONTROL SAMPLES

EPA quality control check samples are analyzed at least once per week, and when new calibrations are performed. They provide a means of assessing the accuracy and precision of a measurement system's performance. Parameters of interest that initially fall outside of QC acceptance criteria are compared against a prepared EPA QC check sample. If laboratory performance for the parameter is found to be out of control, then necessary corrective actions are implemented.

 Section No.
 XII

 Page
 84

 Doc.
 No.
 671

# XII. PERFORMANCE AND SYSTEM AUDITS

# A. PACE'S INTERNAL SYSTEM AUDITS

6.2

104

- 1. All records, logs, and data files are routinely audited for completeness, accuracy, and adherence to standard operating procedures by an on-site auditing team. Audit team members generally include Corporate Vice-Presidents and Regional Directors. Several random project files are evaluated quarterly for compliance to procedure throughout the analytical process (i.e., from sample receipt through the final report). Supervisors, QC managers, and lab analysts routinely check all records for the same criteria.
- 2. System Audits:

PACE is audited as required by regulatory agencies to maintain laboratory certifications, and by various commercial clients with laboratory auditing programs. These audits include audits by USEPA, USATHAMA, AIHA, and other appropriate federal, state and private agencies.

## 3. Performance Audits:

- a. USEPA Performance Evaluation Studies PACE participates in the EPA semi-annual drinking water (WS Series) and semi-annual wastewater (WP Series) performance evaluation studies (four studies per year).
- b. PACE participates in various client sponsored performance evaluations by analyzing QC samples prepared and submitted by commercial clients in conjunction with their own QA program.
- c. Several government proficiency samples are analyzed annually to maintain various laboratory certifications (Exhibit 21).
- d. PACE regional offices are provided blind QC check samples quarterly.

# 4. Total Quality System Audit:

The Corporate Quality Office performs a yearly on-site audit at each regional facility. Examples of the forms used as shown in Exhibit 22.

MN-COMP 0044898

N . . . .





# CONTRACTS AND CERTIFICATIONS

- U.S. Environmental Protection Agency Contract Laboratory (CLP) - 3 Facilities MN, KS, NY
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) Certification MN
- Department of Energy Hazardous Waste Remedial Action Program (HAZWRAP) Certification NY
- American Industrial Hyglene Association (AIHA) Laboratory Accreditation - 2.Facilities MN, NC
- Contracted as an Analytical Support Laboratory for Minnesota Superfund Projects MN
- Accreditation in the National Voluntary Laboratory Accreditation Program (NVLAP) for Bulk Asbestos Analysis MN, NCA, FL
- Successfully Audited by the Missouri River Division of the U.S. Army Corps of Engineers NCA, FL
- Successful Participation in the National Institute for Occupational Safety and Health (NIOSH) Proficiency in Analytical Testing (PAT) Program MN
- Alabama Drinking Water Certification FL
- California Alr Resources Board Certification for Emissions Monitoring NCA, MN
- California Drinking Water Certification NCA

- California Hazardous and Toxic Waste Certification -3 Facilities NCA, SCA, MN
- California Pesticide Analysis Certification NCA
- Connectlcut Laboratory Certification NY
- Florida Drinking Water Certification - 3 Facilities FLA, MN, NY (pending)
- Florida Environmental Laboratory Certification with Approved Generic Quality Assurance Plan FL, MN, NY (pending)
- Iowa Drinking Water Certification IA, FL
- Kansas Drinking Water Certification KS, MN
- Kansas Solid & Hazardous' Waste Certification KS, MN
- Minnesota Drinking Water Certification for Microbiological Analysis MN
- New Jersey Dept. of Environmental Protection Contract Laboratory for Environmental Analysis NY
- New Jersey Laboratory Certification NY
- New York Drinking Water Analysis Certification - 2 Facilities MN, NY
- New York Environmental Laboratory Certification - 2 Facilities MN, NY

MN-COMP 0044899

March, 1990

 North Carolina Drinking Water Certification NC, FL

÷

i

5.6

: 1

\_\_\_\_

- North Carolina Wastewater Certification NC, FL
- North Carolina Biological Toxicity Certification NC
- South Carolina Laboratory Certification - 2 Facilities NC, FL
- Tennessee Drinking Water Certification NC

- Virginia Drinking Water Certification NC
- Virginia Wastewater Certification NC
- Wisconsin Drinking Water Certification MN
- Wisconsin Environmental Laboratory Certification MN

- ----

\_\_\_\_\_ MN-COMP 0044900

| REA (Doc. 349 - 27-31)             | SUPERIOR<br>Results above job<br>standards. Achieved<br>more than expected<br>results.<br>S) DISTINGUISHED<br>Results far in<br>excess of standards<br>extraordinary and<br>exceptional results. |                                  |         |                                                                                                           |                                                                                 |                                                                                                |                                                                                                       |                                                                       | MN-COMP 0044901                 | 87 |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|----|
| 22<br>USED FOR ANY APPLICABLE AREA |                                                                                                                                                                                                  |                                  |         |                                                                                                           |                                                                                 |                                                                                                |                                                                                                       |                                                                       |                                 |    |
| I T<br>BE                          | FULLY ADEQUATE<br>All requirements<br>met. Satisfied a<br>standards and<br>achieved expected<br>results.                                                                                         | RATING Y<br>1 2 3 4 5 5 0        | _       |                                                                                                           | ٥<br>٥                                                                          |                                                                                                |                                                                                                       |                                                                       |                                 |    |
| EXHIB<br>THE FOLLOHING SCALE MAY   | <ul> <li>2) PROVISIONAL</li> <li>3) F<br/>Some requirements</li> <li>3) F<br/>Satisfled but needs</li> <li>1 mprovement in<br/>several areas.</li> </ul>                                         | RESULTS/STANDARDS OF PERFORMANCE |         | Quality Control Manager aware of and<br>familiar with Standard Operating Proce-<br>dures for the company. | Documented Standard Operating Procedures<br>for the Quality Control department. | Standard Operating Procedures for pro-<br>gram areas on file in the Quality<br>Control office. | Documented procedures for all Quality<br>Control activities are displayed in the<br>appropriate area. | Standard Operating Procedures updated regularly for analytical areas. | l procedures updated regularly. |    |
| ü                                  | UNSATISFACTORY<br>Performance below<br>acceptable level.<br>Expected results<br>have not been<br>achleved.                                                                                       | RESULT                           | 5.102   | <ol> <li>Quality Co<br/>familiar w<br/>dures for</li> </ol>                                               | 2. Documents<br>for the (                                                       | 3. Standard<br>gram area<br>Control c                                                          | <ol> <li>4. Documented p<br/>Control acti<br/>appropriate</li> </ol>                                  | 5. Standard<br>regularly                                              | 6. Analytical                   |    |
| RATING SCALE:                      | <ol> <li>UNSATISFACTO<br/>Performance<br/>acceptable  <br/>Expected res<br/>have not bee<br/>achleved.</li> </ol>                                                                                | SECTION                          | Quality |                                                                                                           |                                                                                 |                                                                                                |                                                                                                       |                                                                       |                                 |    |

|          | COMMENTS/RECOMMENDATIONS         |                                                                                                                   |                                                                                  |        |                                                                                                      |                                                                  |                                                                                      |                 |                                                                                                                          |   | ,      | MN-COMP 0044902 |
|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|---|--------|-----------------|
| RATING Y | 1 2 3 4 5 5 0                    |                                                                                                                   |                                                                                  |        |                                                                                                      |                                                                  |                                                                                      |                 |                                                                                                                          |   | -<br>- |                 |
|          | RESULTS/STANDARDS OF PERFORMANCE | 7. Analytical procedures are dated and<br>initialed by QC Manager and Department<br>Supervisor at time of update. | 8. Procedure sections are updated rather<br>than replacement of entire document. | Staff: | <ol> <li>Defined roles for the Quality Control<br/>Manager, adherence to job description.</li> </ol> | 2. Defined roles for staff in the Quality<br>Control department. | <ol> <li>Staffing is adequate and staff assign-<br/>ments are documented.</li> </ol> | Administrative: | <ol> <li>Regularly scheduled meetings with<br/>Quality Control staff. Agenda for<br/>meetings are documented.</li> </ol> |   |        |                 |
|          | SECTION                          | Quality<br>Control<br>(Cont.)                                                                                     |                                                                                  |        |                                                                                                      |                                                                  |                                                                                      |                 |                                                                                                                          | - |        |                 |

-2-

÷

.-:

-

:

. •

.

| <ul> <li>Regularly scheduled meetings with<br/>Analytical Department staffmanagers.</li> <li>Regularly scheduled meetings with<br/>Analytical Department staffmanagers.</li> <li>Regularly scheduled meetings with<br/>Sampling and Analytical Services Divi-<br/>sion Director. Meeting agenda documented</li> <li>In Director. Meeting agenda documented</li> <li>Dutrol Charts/Corrective Actions:</li> <li>Quality Control charts available in<br/>Quality Control area for all analytical<br/>procedures.</li> <li>Control chart acceptance limits are<br/>based upon current data.</li> <li>Specify "current" date range of<br/>control charts/last update</li> <li>Specify frequency of acceptance limits<br/>updating</li> <li>Preventative maintenance records for all<br/>instruments present in Quality Control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | RESULTS /STANDADDS OF DESTON                                                                                                                                                      | TING Y |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|
| Regularly scheduled meetings with<br>Agenda for meetings are documented.<br>Agenda for meetings are documented.<br>Regularly scheduled meetings with<br>Sampling and Analytical Services Divi-<br>sion Director: Meeting agenda documented<br>Dirtol Charts/Corrective Actions:<br>Quality Control area for all analytical<br>procedures.<br>Control charts available in<br>procedures.<br>Control chart acceptance limits are<br>ased upon current data.<br>- Specify "current" date range of<br>- Specify "curent" date range of<br>- Specify | 1          |                                                                                                                                                                                   | 5 S 0  | S/RECOMMENDATIONS |
| Regularly scheduled meetings with<br>Sampling and Analytical Services Divi-<br>sion Director. Meeting agenda documented       Image Services Divi-<br>sion Director. Meeting agenda documented         Dhrol Charts/Corrective Actions:       Duality Control sea for all analytical<br>Quality Control area for all analytical<br>procedures.       Image Services Divi-<br>ston Director documented         Doublity Control area for all analytical<br>procedures.       Image Services Divi-<br>ston documented       Image Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Servic                                                                                                                                                                                                                                                                                                | CM         | Regularly scheduled meetings with<br>Analytical Department staff/manage<br>Agenda for meetings are documented                                                                     |        |                   |
| Datrol Charts/Corrective Actions:<br>Quality Control area for all analytical<br>Quality Control area for all analytical<br>procedures.<br>Control chart acceptance limits are<br>based upon current data.<br>- Specify "current" date range of<br>control charts/last update<br>- Specify frequency of acceptance limits<br>updating<br>Preventative maintenance records for all<br>instruments present in Quality Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | നി         | Regularly scheduled mee<br>Sampling and Analytical<br>sion Director. Meeting                                                                                                      |        | -                 |
| Quality Control charts available in<br>Quality Control area for all analytical<br>procedures.       Imalytical         Control chart acceptance limits are<br>based upon current! data.       Imits are<br>based upon current! data.         - Specify "current" data.       Specify "current" data.         - Specify frequency of acceptance limits<br>updating       Imits outly Control.         Preventative maintenance records for all<br>instruments present in Quality Control.       Imits outly Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>(</u> ) | control Charts/Corrective Actions:                                                                                                                                                |        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _          | · Quality Control charts available in<br>Quality Control area for all analytical<br>procedures.                                                                                   |        |                   |
| Preventative maintenance records for all Instruments present in Quality Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l          | Control chart acceptance limits a<br>based upon current data.<br>- Specify "current" date range of<br>control charts/last update<br>- Specify frequency of acceptance<br>updating |        |                   |
| MN-COMP 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Preventative maintenance records for<br>instruments present in Quality Contro                                                                                                     |        |                   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | · · ·                                                                                                                                                                             |        | MN-COMP 00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                   |        |                   |

÷-

į.

1

| <u> </u> |                                                                                                                                                                         | RATING Y      |                          |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|---|
|          | RESULTS/STANDARDS OF PERFORMANCE                                                                                                                                        | 1 2 3 4 5 5 0 | COMMENTS/RECOMMENDATIONS | - |
|          | <ol> <li>Provision of quality control charts are<br/>in on a timely manner to analytical<br/>threats.</li> </ol>                                                        |               |                          |   |
|          | 5. Record of corrective action taken when<br>out-of-control situations are noted.                                                                                       |               |                          |   |
| <u>u</u> | OC Samples:                                                                                                                                                             |               |                          |   |
| <b>-</b> | <ol> <li>Records of performance evaluations on<br/>blind PE samples in-house kept in Quali-<br/>ty Control area.</li> </ol>                                             |               |                          |   |
| 2        | <ol> <li>Records of performance on quality<br/>control samples (MS, MSD, LCS,<br/>surrogates, &amp; blanks) are available in<br/>Quality Control department.</li> </ol> |               |                          |   |
| <b>м</b> | 3. Record of standard traceability to NIST present in the Quality Control area.                                                                                         |               |                          |   |
| 4        | <ol> <li>Standards are labeled with purchase<br/>date, date opened, expiration date,<br/>analyst initials.</li> </ol>                                                   |               |                          |   |
| _        |                                                                                                                                                                         |               |                          | , |

90

ł

Į

•

4-

أنذا

1

.....

: .

ы

| F N COMMENTS/RECOMMENDATIONS     |             |                                                                                        |      | MN-COMP 0044905 |
|----------------------------------|-------------|----------------------------------------------------------------------------------------|------|-----------------|
| RATING<br>1 2 3 4 5              |             |                                                                                        | <br> |                 |
| RESULTS/STANDARDS OF PERFORMANCE | <pre></pre> | <ol> <li>Sample check-in documentation present<br/>in sample check-in area.</li> </ol> |      |                 |

垥

ż

91

| Section  | No. | XII |
|----------|-----|-----|
| Page     |     | 92  |
| Doc. No. | •   | 671 |

#### B. TRAINING AND TECHNICAL REVIEW

PACE considers competent, well-trained personnel to be a key to successful production of valid and reliable data. An extensive training and technical review program is in place at PACE, Inc. It includes:

#### 1. Training Plans

-

The type and schedule of training required for each new or transferred employee is determined individually. A training plan is established to reflect individual and general training needs.

#### 2. Training Classes

All sections conduct regularly scheduled training sessions specific to their needs.

Audio/visual training programs and open learning texts are available for use by all personnel.

Other laboratory QA and general training classes are offered periodically.

#### 3. Technical Review Program

All employees are subject to technical reviews with their supervisor. The technical review assesses an individual's training progress and technical development and provides an opportunity to redirect the training plan accordingly to comprehensively cover further developmental needs. The schedule for technical reviews is:

- a. New hire or transfer to new position/responsibilities: 6 months, 1 year.
- b. After 1 year in same position/responsibilities: annually.

#### 4. Support Programs

Attendance at outside seminars, classes, etc., is highly encouraged. PACE participates in many of these throughout the year. In-house seminars are presented by employees for employee bi-monthly meetings. Various topics are covered, including regulatory items and information from attendance at outside seminars. The PACE in-house library contains current periodicals and journals pertinent to the environmental industry and analytical chemistry, in addition to reference books, text books, and regulatory publications.

MN-COMP 0044906

| Section  | No. | XIII |
|----------|-----|------|
| Page     |     | 93   |
| Doc. No. |     | 671  |

MN-COMP 0044907

- ,

# XIII. PREVENTIVE MAINTENANCE

PACE maintains service contracts for most major analytical equipment including all chromatography instruments, balances, atomic absorption, and inductively coupled plasma instruments. All instruments and equipment receive routine preventive maintenance, which is recorded in instrument specific maintenance logs. Routine maintenance insures that all equipment is operating under optimum conditions, reducing the possibility of instrument malfunction (consequently affecting sample results). An example of an instrument maintenance log is included (Exhibit 23).

# EXHIBIT 23

# INSTRUMENT MAINTENANCE LOGBOOK FORM

-

्न

38

· 1

Ţ \*\*\*

: į

ż

.

| DATE      | MAINTENANCE ACTIVITY |          | NAME        |
|-----------|----------------------|----------|-------------|
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           | ·····                |          | · · · · ·   |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          | ····        |
|           |                      |          |             |
|           |                      |          |             |
| <u> </u>  |                      |          | · · · · · · |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          | <u>-</u>    |
|           |                      |          |             |
|           |                      |          |             |
| ·         |                      |          |             |
|           |                      |          |             |
|           |                      |          |             |
|           |                      |          | }           |
|           |                      |          |             |
| · · · · · |                      |          | <b> </b>    |
|           |                      | •        |             |
|           |                      |          |             |
|           |                      |          | <b> </b>    |
|           |                      |          |             |
|           |                      |          | <u> </u>    |
| <u> </u>  |                      |          | · .         |
|           |                      | - · ·    |             |
|           |                      | <u> </u> |             |
|           |                      |          |             |

MN-COMP 0044908

-

- -

94

| Section No. | XIV |
|-------------|-----|
| Page        | 95  |
| Doc. No.    | 671 |

# XIV ASSESSMENT OF PRECISION, ACCURACY, COMPLETENESS REPRESENTATIVENESS, AND COMPARABILITY

The Quality Control Program at PACE uses precision and accuracy data to determine the acceptability of analytical results. Precision refers to result reproductibility and accuracy measures the degree of difference between observed and true values. One of every 20 analyses performed at PACE is run in duplicate (precision). Also, one of every 20 samples is spiked with a synthetic standard to assist in evaluating the accuracy of the method. Once 20 sets of precision or accuracy data have been obtained, a quality control chart is prepared. The Shewhart technique is the statistical method used to construct the charts. These quality control charts provide a quick visual means for monitoring the daily performance of the laboratory. Exhibits 24 and 25 contain examples of accuracy and precision charts along with their corresponding data sheets (Exhibits 26 and 27).

#### Α. ACCURACY

The actual test result is compared to the theoretical result of 100% recovery and the percent recovery is calculated.

## % Recovery = Spiked Sample Result - Sample Result x 100 Spike Quantity

The percent recovery must fall within specific control limits for the results to be accepted and subsequent data validated. (See Table 2)

#### **B. PRECISION**

The results of the duplicate analyses are computed and the absolute relative percent difference (RPD) is calculated.

RPD = |Sample Result - Duplicate Result| x 100 Average Result

The RPD must fall within set control limits for the results to be accepted and subsequent data validated. A one-sided distribution with zero as a target value is typical, given absolute value requirements (CLP).

#### WARNING LIMITS С.

Warning limits represent the 95% confidence interval and are equal to the mean value for the control sample, plus or minus two standard deviations (+ 2S). Exceeding these limits is a warning that the analytical system may be approaching an out-of-control situation, and should be inspected for possible sources of error before continuing the analysis. Analysts for possible sources of error before continuing will inform the QC manager or the supervisor of such problems. MN-COMP 0044909

|                  | WL = 73-81<br>CL = 121-113 | SURROGAT | E % RECOVER    | Y CHART                       |           | Ma                                      | atrix: Soil                                                     |
|------------------|----------------------------|----------|----------------|-------------------------------|-----------|-----------------------------------------|-----------------------------------------------------------------|
|                  | 20                         | 2 3      | 00<br>00<br>00 | 501                           | <u>بَ</u> | 130                                     | Sample I.D #                                                    |
| - N              |                            |          |                |                               |           |                                         | <u></u> පූ 71669                                                |
| INSTRUMENT       |                            |          |                |                               | E III     |                                         | · 전 71673                                                       |
| JME              |                            |          |                |                               | 11        |                                         | ဇ္ဌ 71670                                                       |
| NT:              |                            |          |                |                               |           |                                         | <b>≌</b> 71671                                                  |
|                  |                            |          |                |                               |           |                                         | <del>රී</del> 71619                                             |
|                  |                            |          |                |                               |           |                                         | 8 71710                                                         |
|                  |                            |          |                |                               |           |                                         | <u>5</u> 71711                                                  |
| X                |                            |          |                |                               |           |                                         | R 71712                                                         |
| THO              |                            |          |                |                               |           |                                         | 5 71713                                                         |
| METHOD:5030/8015 |                            |          |                |                               |           |                                         | जू 71715                                                        |
| / 010            |                            |          |                |                               |           |                                         | <u>∞</u> 71714                                                  |
| 8015             |                            |          |                |                               |           |                                         | <u> </u>                                                        |
| AN               |                            |          |                |                               |           |                                         | <sup>ω</sup> 71815                                              |
| ANALYT           |                            |          |                |                               |           |                                         | ኇ 71816                                                         |
| TE:              |                            |          |                |                               |           |                                         | <u> </u>                                                        |
| Fluo             |                            |          |                |                               |           |                                         | 8 71670                                                         |
| robe             |                            |          | - <b></b>      |                               |           |                                         | <sup>99</sup> 71856                                             |
| fluorobenzene    |                            |          |                |                               |           |                                         | 0 /1008                                                         |
| Ģ                |                            |          |                |                               |           |                                         | 11 71829<br>55 9                                                |
| nate:            |                            |          |                |                               |           | +++++++++++++++++++++++++++++++++++++++ | 労. 71824                                                        |
|                  |                            |          |                |                               |           |                                         | □ 71822                                                         |
| ۵/۶-۵/۶          |                            |          |                |                               |           |                                         | $\frac{100}{50}$ 71669<br>$\frac{50}{20}$<br>$\frac{71669}{20}$ |
| - *              |                            |          |                | ┥╻╷╽╷╷<br>┍╴╴<br>╺┲╼╼╵┰┥┯╺╽┍╸ |           |                                         | SP SP                                                           |
|                  |                            |          |                |                               |           |                                         | 9 71856<br>SP                                                   |
|                  | LCL                        | LWL      | 51             |                               | U M L     | ຣີ໌MN-C                                 | OMP 0044910                                                     |

EXHIBIT 24

30

Ì

**`**--

- - <del>-</del>

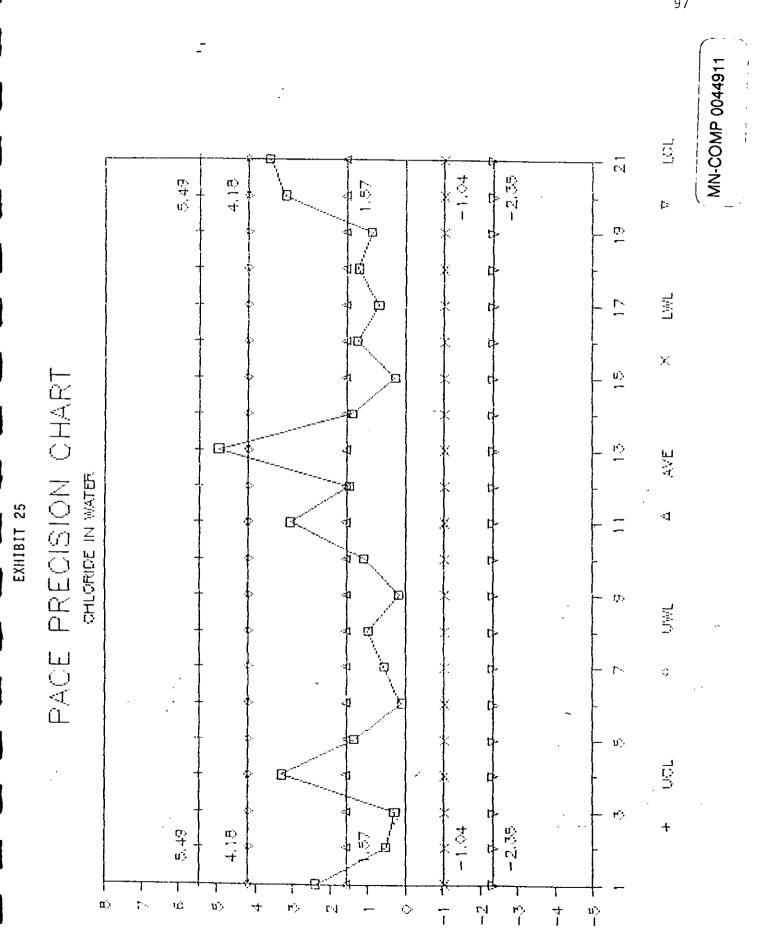
.

14

Average Recovery= 97%

) Standard- 24

Date: 4/3-4/5


.

,

. .

1

فحند



กษณ

ŗ i

EXHIBIT 26

# ANALYSIS:

RAW DATA SHEET

| CLIENT NAME:    | <br>DATE ANALYZED |   |
|-----------------|-------------------|---|
| PROJECT NAME:   | <br>ANALYZED BY:  |   |
| FILE #:         | <br>TIME:         | q |
| DATE COLLECTED: | DATA REVIEWED BY: |   |
| DATE RECEIVED:  | <br>ENTERED BY:   |   |

| SAMDLE #    | RESULTS   | E HAITE  | ANALYSIS                              |                                       | SAMPLE<br>VOL (mls) | RESULT OF        |
|-------------|-----------|----------|---------------------------------------|---------------------------------------|---------------------|------------------|
| SAMPLE #    | I KESULIS | UNITS    | COMMENTS                              |                                       | VOL (m]s)<br>A      | DIL SAMP:<br>  B |
|             |           |          |                                       |                                       |                     | D                |
| <u> </u>    |           |          | •                                     |                                       |                     | İ                |
| ·           |           |          |                                       | l.<br>1                               |                     | 1                |
|             | 1         |          |                                       |                                       | - <u></u>           | 1                |
|             | <u> </u>  |          |                                       |                                       |                     |                  |
| <del></del> | ļ         | ļ        |                                       |                                       |                     |                  |
| ÷           |           | ł        |                                       | l                                     |                     |                  |
| <b>-</b>    |           | 1        |                                       |                                       | · · · · · · · · ·   | +                |
| <u> </u>    |           |          | · · · · · · · · · · · · · · · · · · · |                                       | ···                 | <u> </u>         |
| <u> </u>    |           | <u> </u> |                                       |                                       |                     | 1                |
|             |           |          |                                       |                                       |                     | 1                |
|             |           |          | · · · · · · · · · · · · · · · · · · · |                                       |                     |                  |
| <u> </u>    | <u> </u>  | <u> </u> | · · · · · · · · · · · · · · · · · · · |                                       | -                   |                  |
|             | 1<br>[    | 1        | · · ·                                 |                                       |                     |                  |
|             |           |          |                                       |                                       |                     |                  |
| <u> </u>    |           |          |                                       |                                       |                     | <u> </u>         |
| <u> </u>    |           | ·        |                                       |                                       |                     |                  |
|             | 1         | 1        |                                       |                                       |                     |                  |
|             |           | 1        |                                       | · · · · · · · · · · · · · · · · · · · |                     |                  |
|             |           |          |                                       |                                       |                     | <u> </u>         |
|             | <u> </u>  |          |                                       |                                       |                     |                  |

A = SAMPLE VOLUME USED (mls) **B** = RESULT OF DILUTED SAMPLE MN-COMP 0044912

. . .

EXHIBIT 27 SPIKE SUMMARY FORM

|   | 0    | te |                   |           |      | zen | •  |   |         | <u> </u>  | luer | <b>1</b>   |                  |     | 0- X             | y l er | <b>H</b> |   |     | TPH | -L |            |
|---|------|----|-------------------|-----------|------|-----|----|---|---------|-----------|------|------------|------------------|-----|------------------|--------|----------|---|-----|-----|----|------------|
| - | ۲    | M  | 0                 | S         | SD . | 7   | R  | x | 3       | Ø         | ;    | R          | R                | 5   | ß                | Ē      | R        | ĩ | 5   | 8   | F  | R          |
|   | 98   | 4  |                   |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    | 1          |
|   |      |    | II.               |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 3                 |           |      |     |    | ] | Γ       |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 4                 | 87        | 89   |     | 2  | 1 | 91      | 91        |      | 0          |                  | 93  | 95               |        | 2        |   | 114 | 89  |    | 25         |
|   |      | j  | 5                 | 101       | 101  |     | 0  | 1 | 100     | 111       |      | 10         |                  | 102 | 104              |        | 2        |   |     | 100 |    | 18         |
|   |      |    | 6                 | 94        | 85   |     | 10 | l | <b></b> | <u>81</u> |      | 2          |                  | 85  | <u>104</u><br>96 |        |          |   |     |     |    | 2          |
|   |      |    | 7                 |           |      |     | 10 | ļ |         | 01        |      | <u>C</u> - |                  | 00  | _90              |        | 12       |   | 90  | 98  |    | ۴          |
|   |      |    | ΤŲ,               |           |      |     |    |   | -       |           |      |            |                  |     |                  |        |          |   |     |     |    | ┝─         |
|   |      |    | W.                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    | -          |
|   |      |    | 7 <u>//</u><br>10 |           | 101  |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    | <u> </u> _ |
|   |      | 1  | 11                | <u>92</u> | 101  |     | 9  |   | 120     | 100       |      | 18         |                  | 94  | 92               |        | 2        |   | 75  | 77  | 1  | 3          |
|   |      |    | 12                | —         |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    |                   |           |      |     |    |   |         |           |      |            | ļ                |     |                  |        |          |   |     |     |    | ┝          |
|   |      |    | 13                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 14                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | M                 |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     | -  |            |
|   |      |    | <u> </u>          |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   | ·   |     |    |            |
|   |      |    | 17                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 18                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 19-               |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 20                |           |      |     |    |   |         |           |      |            |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    | 21                |           |      |     |    |   |         |           |      |            | Ì                |     |                  | ·      |          |   |     |     |    | ┢─         |
|   |      |    | TĘ,               |           |      |     |    |   |         |           |      |            | ł                |     |                  |        |          |   |     |     |    |            |
|   | -    |    |                   |           |      |     |    |   | ·       |           |      |            |                  |     |                  |        |          |   |     |     |    | <u>ا</u>   |
|   |      |    | 24                | ·         |      |     |    |   |         | $\neg$    |      |            | $\left  \right $ | -+  |                  |        |          |   |     |     |    | ŀ          |
|   |      |    | 25                |           |      |     |    |   |         |           |      | -          |                  |     |                  |        |          |   |     |     |    | <b> </b>   |
|   |      |    | 26                |           |      |     |    |   |         | -         |      | -          | ł                |     |                  |        |          |   |     |     |    | ┝──        |
|   |      |    |                   |           |      |     |    |   |         |           |      |            | }                |     |                  |        |          |   |     |     |    | ┣          |
|   |      | ł  | 27                |           |      |     |    |   |         |           |      |            |                  |     |                  | •      |          |   |     |     |    |            |
|   |      | Į  | 28<br>7/22        |           |      |     |    |   |         |           |      | $\square$  |                  |     |                  |        |          |   |     |     |    |            |
|   |      |    |                   |           |      |     |    |   |         |           |      |            | ļ                |     |                  |        |          |   |     |     |    |            |
|   |      | ļ  | 22                |           |      |     |    |   |         | _         |      |            |                  |     |                  |        |          |   |     |     |    |            |
| - | 0044 | [  | 31                |           |      |     |    |   |         |           |      |            |                  |     |                  | _      |          |   |     |     |    |            |

| Sect | lon | No. | XIV |  |
|------|-----|-----|-----|--|
| Page |     |     | 100 |  |
| Doc. | No. |     | 671 |  |
|      |     |     | (   |  |

#### D. <u>CONTROL LIMITS</u>

Ξ

Control limits represent the 99% confidence interval and are equal to the mean value of the control sample, plus or minus three standard deviations  $(\pm 3S)$ . Exceeding these limits indicates that the analytical system is out-of-control. The QC manager or the supervisor shall be informed and corrective action shall be taken.

#### 1. <u>Method of Setting Limits</u>

Control limits are established via statistical analysis, using QC sample results. Limits are determined for a parameter of each method as analyzed on a specific instrument.

The mean value (P) and the standard deviation (S) for each data set is calculated and the limits are set as:

Warning (WL) = P + 2S = 95% Confidence limit Control (CL) = P + 3S = 99% Confidence limit

Where 
$$P = X1 + X2 + X3...Xn$$
  $x = Sample resultand  $S = \sqrt{\frac{\Sigma(X - P)}{n-1}^2}$   $n = Total # of results in set $P = mean value$$$ 

The minimum number of results to be used for statistical calculation (n) is 15-20. Limits will generally be calculated from a data point set every thirty days, depending on the method. Updated limits are issued at the beginning of every month.

## 2. <u>Utilization of Acceptance Limits</u>

QC sample results must fall within the established warning limits ( $P^2 \pm 2S$ ) for each parameter.

Results that fall outside of warning limits, but remain within the control limits ( $P \pm 3S$ ), are considered suspect. These results must be carefully examined for possible sources of error in the analysis, or justified as a matrix bias effect. All such results are recorded in a Discrepancy Report form/Corrective Action form (See Section XV).

Any three consecutive results outside of warning limits but within control limits is an out-of-control event which shall be documented and corrected.

Results that fall outside of control limits (P  $\pm$  3S) must be documented and corrective action taken.

MN-COMP 0044914

1.1

| Secti | on No.   | XIV |
|-------|----------|-----|
| Page  | <u>.</u> | 101 |
| Doc.  | No.      | 671 |

#### E. COMPLETENESS

Data completeness can be quantified during data assessment. It is expected that laboratories should provide data, meeting QC acceptance criteria, for 90% or more of the requested determinations. It is incumbent for planners to identify any sample types, such as control or background locations, which require 100% completeness.

#### F. <u>REPRESENTATIVENESS</u>

Representativeness is a qualitative element that is related to the ability to collect a sample that reflects the characteristics of that part of the environment that is to be assessed. Sample representativeness is dependent on the sampling techniques used and is considered individually for each project. It is specifically addressed in each work plan.

#### G. COMPARABILITY

Comparability is also considered during preparation of the work plan. The objective of comparability is to ensure that results of similar activities conducted by different parties are comparable. For example, the use of EPA-approved, etc., methods and procedures ensure comparability with other data from previous or following studies.

MN-COMP 0044915

Section No. XV Page 102 Doc. No. 671

#### XV. CORRECTIVE ACTION

If, as a result of audits or QC sample analyses, methods systems prove to be unsatisfactory, corrective action shall be implemented. The project manager, department manager, Quality Control manager, supervisor, and analyst may be involved in the corrective action. If previously reported data are affected by a situation requiring correction or if the corrective action impacts a project budget or schedule, the action will directly involve the project manager (and Quality Control manager).

For immediate or long-term corrective actions, steps comprising a closed-loop corrective action system are as follows:

1. Define the problem.

----

1

्रञ्च

- 2. Assign responsibilities for problem investigation.
- 3. Investigate and determine the cause of the problem.
  - a. Check all calculations
  - b. Re-analyze the sample
  - c. Verify the integrity of the spiking solution, laboratory control sample, or calibration standard.
  - d. Check instrument and operating conditions to preclude the possibility of malfunctions or operator error.
- 4. Determine the corrective action(s) necessary to eliminate the problem.
- 5. Assign and accept responsibilities for implementing the corrective action.
- 6. Establish the effectiveness of the corrective action and implement the correction.
- 7. Verify and document that the corrective action has eliminated the problem (Exhibit #28).

Depending upon the nature of a problem, the corrective action implemented may be formal or informal. In either case, occurrence of the problem, the corrective action employed, and verification that the problem has been eliminated must be documented.

In addition, if the corrective action mandates the preparation of a new standard or calibration solution(s), a comparison study between the new solution versus the old solution will be performed. The results are supplied with the weekly QC submittal as verification of problem elimination. MN-COMP 0044916

EXHIBIT 28

--

~

# CORRECTIVE ACTION

••

INSTRUMENT \_\_\_\_\_\_

| DATE                                                                                                                                                                                                                                            | PROBLEM                               | ACTION        | INITIA                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|---------------------------------------|
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       | ·             |                                       |
|                                                                                                                                                                                                                                                 |                                       |               | - <u>,</u>                            |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
| <u> </u>                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |               | <u> </u>                              |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 | .*                                    |               |                                       |
|                                                                                                                                                                                                                                                 |                                       | ·             |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       | · ·           |                                       |
|                                                                                                                                                                                                                                                 |                                       |               |                                       |
|                                                                                                                                                                                                                                                 |                                       | MN-COMP 00449 |                                       |

| Section No. | XVI |
|-------------|-----|
| Page        | 104 |
| Doc. No.    | 671 |

MN-COMP 0044918

New and an and a second second second second second second second second second second second second second se

#### XVI. QUALITY ASSURANCE REPORTS TO MANAGEMENT

#### A. OBJECTIVE

с.d

11

This section describes the methods used by PACE to store and retrieve quality assurance records and issue of appropriate reports.

#### B. REQUIREMENTS

Comprehensive records shall be maintained to provide evidence of the quality assurance activities. All charted QC values which indicate an out-of-control situation must be evaluated and explained. Any corrective actions and re-analysis of samples must be fully explained and documented.

#### C. IMPLEMENTATION

Procedures for recording all aspects of the Quality Assurance Program are written and filed.

#### D. REPORTS TO MANAGEMENT

Quarterly reports are provided by the Quality Control officer to the President, Vice President of Quality and Regional Director. This report addresses the quarterly quality assurance activities including details of corrective actions implemented, audit results, and QC summary information.

| Page |     | 105 |
|------|-----|-----|
| Doc. | No. | 671 |

#### REFERENCES

- 1. Handbook for Analytical Quality Control in Water and Wastewater Laboratories, U.S. EPA 600/4-79-019, March, 1979.
- 2. Federal Register, 40 CFR Part 136, October 26, 1984.

--

- 3. Test Methods for Evaluating Solid Waste, U.S. EPA SW-846, September, 1987.
- 4. Quality Assurance of Chemical Measurements, Taylor, John K.; Lewis Publishers, Inc. 1987.
- 5. Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF: 16th Edition, 1985.
- 6. NIOSH Manual of Analytical Methods, U.S. Department of Health, Education, and Welfare; Second Edition, 1977.
- 7. Methods for Non-conventional Pesticides Chemicals Analysis of Industrial and Municipal Wastewater, Test Methods, EPA-440/1-83/079-C.
- 8. Methods for Chemical Analysis of Water, Wastes, EPA-600/4-79--020, 1983.
- 9. California Administration Code, Title 2, Chapter 30, Article II, "Criteria for Identification of Hazardous and Extremely Hazardous Wastes."
- The Determination of Inorganic Anions in Water by Ion Chromotography -Method 300.0 Test Method, EPA-600/4-84-017. March, 1984.
- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 2nd Edition, U.S. EPA, revised April, 1984.

MN-COMP 0044919

and a subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the subscription of the

. . . .

APPENDIX J

HEALTH AND SAFETY PLAN FORD RI/FS

-

,

MN-COMP 0044920

# CONESTOGA-ROVERS AND ASSOCIATES SITE HEALTH & SAFETY PLAN

Fill in the blanks and attach supporting documents as necessary.

| Ref#: 2853                                                                                                                                                                                            | <u> </u>                                                                                             |                                                                                                                                                  | Writte                                                                                                                                                                                                                   | en by:                                                                                           | Jon Christofferson                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Office: St. Paul                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                  | Date:                                                                                                                                                                                                                    |                                                                                                  | 8/01/90                                                                                                |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  | Revie                                                                                                                                                                                                                    | wed by:                                                                                          |                                                                                                        |
| Anticipated start date:                                                                                                                                                                               | <u> </u>                                                                                             | Fail 199                                                                                                                                         | D Date:                                                                                                                                                                                                                  |                                                                                                  |                                                                                                        |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  | Indus                                                                                                                                                                                                                    | trial Hygiene:                                                                                   | Mitchell Bergner CIH                                                                                   |
| Duration:                                                                                                                                                                                             | Two Years                                                                                            | S                                                                                                                                                | Date:                                                                                                                                                                                                                    |                                                                                                  |                                                                                                        |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  | Site E                                                                                                                                                                                                                   | Engineer:                                                                                        | J. Christofferson                                                                                      |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  | Site S                                                                                                                                                                                                                   | Safety Officer:                                                                                  | Chuck Ahrens                                                                                           |
| A. Work Location Des                                                                                                                                                                                  | cription                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                  |                                                                                                        |
| 1. Site Name:                                                                                                                                                                                         | Ford Moto                                                                                            | or Compan                                                                                                                                        | y Twin Cities Assembly                                                                                                                                                                                                   | Plant                                                                                            |                                                                                                        |
| 2. Location:                                                                                                                                                                                          | 966 South                                                                                            | 1 Mississip                                                                                                                                      | pi River Blvd., St. Paul,                                                                                                                                                                                                | Minnesota                                                                                        |                                                                                                        |
|                                                                                                                                                                                                       |                                                                                                      | <b></b>                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                  |                                                                                                        |
| 3. Site Type:                                                                                                                                                                                         | HW Site<br>Spill<br>Other                                                                            | ( )<br>( )<br>( )                                                                                                                                |                                                                                                                                                                                                                          | X)                                                                                               | Active ( )<br>Inactive ( )                                                                             |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                          |                                                                                                  |                                                                                                        |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                          | •<br>•                                                                                           |                                                                                                        |
|                                                                                                                                                                                                       |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                          | ·                                                                                                |                                                                                                        |
| 4. Status: *                                                                                                                                                                                          | RI/FS in p                                                                                           | rogress. T                                                                                                                                       | his plan is for completic                                                                                                                                                                                                | on of RI activitie                                                                               | es and                                                                                                 |
| ·····                                                                                                                                                                                                 | for matters                                                                                          | s related to                                                                                                                                     | o the FS.                                                                                                                                                                                                                |                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                  |
|                                                                                                                                                                                                       | for matters                                                                                          | s related to                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                  |
| 5. Anticipated Activitie                                                                                                                                                                              | for matters                                                                                          | s related to                                                                                                                                     | o the FS.                                                                                                                                                                                                                |                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                  |
| 5. Anticipated Activitie<br>(See page 9)                                                                                                                                                              | for matters                                                                                          | s related to<br>Soil bori                                                                                                                        | o the FS.                                                                                                                                                                                                                | sting & sampling                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                  |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:                                                                                                                                                  | for matters                                                                                          | s related to<br>Soil borin<br>Site is ap                                                                                                         | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres                                                                                                                                                        | sting & sampling                                                                                 | g, soil gas monitoring                                                                                 |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula                                                                                                                         | for matters                                                                                          | s related to<br>Soil borin<br>Site is ap<br>Mississip                                                                                            | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.                                                                                                                           | sting & sampling                                                                                 | g, soil gas monitoring                                                                                 |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:                                                                                                                                                  | for matters                                                                                          | s related to<br>Soil borin<br>Site is ap<br>Mississip                                                                                            | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres                                                                                                                                                        | sting & sampling                                                                                 | g, soil gas monitoring                                                                                 |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry                                                                                             | for matters                                                                                          | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr                                                                              | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential                                                                                                    | sting & sampling<br>North, east and                                                              | s, soil gas monitoring                                                                                 |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry                                                                                             | for matters                                                                                          | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr                                                                              | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.                                                                                                                           | sting & sampling<br>North, east and                                                              | s, soil gas monitoring                                                                                 |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry<br>8. Protection of Neighl                                                                  | for matters<br>es:<br>ation:<br>boring Prop                                                          | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr<br>perties: *                                                                | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential<br>Action will not affect                                                                          | sting & sampling<br>North, east and<br>t neighboring pr                                          | g, soil gas monitoring<br>I south of the site is<br>operties                                           |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry<br>8. Protection of Neighl                                                                  | for matters<br>es:<br>ation:<br>boring Prop<br>Site is prin                                          | s related to<br>Soil borin<br>Site is an<br>Mississip<br>light corr<br>perties: *                                                                | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential                                                                                                    | sting & sampling<br>North, east and<br>t neighboring pr                                          | g, soil gas monitoring<br>I south of the site is<br>operties                                           |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry<br>8. Protection of Neight<br>9. Topography:                                                | for matters<br>es:<br>ation:<br>boring Prop<br>Site is prin<br>is a terrace                          | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr<br>perties: *<br>marily roof                                                 | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>imercial/residential<br>Action will not affect<br>tops and sloped parkin                                               | sting & sampling<br>North, east and<br>t neighboring pr                                          | g, soil gas monitoring<br>I south of the site is<br>operties                                           |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry<br>8. Protection of Neight<br>9. Topography:                                                | for matters<br>es:<br>ation:<br>boring Prop<br>Site is prin<br>is a terrace                          | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr<br>perties: *<br>marily roof                                                 | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential<br>Action will not affect<br>tops and sloped parkin<br>river bluff to the west.                    | sting & sampling<br>North, east and<br>t neighboring pr                                          | g, soil gas monitoring<br>I south of the site is<br>operties                                           |
| <ol> <li>7. Surrounding Popula<br/>Buildings/Homes/Industry</li> <li>8. Protection of Neight</li> <li>9. Topography:</li> <li>10. Anticipated Weath</li> </ol>                                        | for matters<br>es:<br>ation:<br>boring Prop<br>Site is prin<br>is a terrace<br>her:                  | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr<br>perties: *<br>marily roof                                                 | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential<br>Action will not affect<br>tops and sloped parkin<br>river bluff to the west.<br>er in Minnesota | sting & sampling<br>North, east and<br>t neighboring pro-<br>g lots. Surround                    | g, soil gas monitoring<br>I south of the site is<br>operties<br>ling topography                        |
| 5. Anticipated Activitie<br>(See page 9)<br>6. Size:<br>7. Surrounding Popula<br>Buildings/Homes/Industry<br>8. Protection of Neight<br>9. Topography:<br>10. Anticipated Weath<br>(temperature etc.) | for matters<br>es:<br>ation:<br>boring Prop<br>Site is prin<br>is a terrace<br>ter:<br>(by which the | s related to<br>Soil borin<br>Site is ap<br>Mississip<br>light corr<br>perties: *<br>marily roof<br>e with the<br>Fall/winto<br>piob will be sto | o the FS.<br>ngs, well installation tes<br>oproximately 126 acres<br>opi River is to the west.<br>mercial/residential<br>Action will not affect<br>tops and sloped parkin<br>river bluff to the west.<br>er in Minnesota | sting & sampling<br>North, east and<br>t neighboring pr<br>g lots. Surround<br>y rains or snow i | g, soil gas monitoring<br>I south of the site is<br>operties<br>ding topography<br>may affect drilling |

MN-COMP 0044921

الدار المستحار سوالح

| 1. Initial §                        | Site Safety Assessme                                         | ent Review C   | Complete (X) Parti                                                                                                                                                                   | ial (                                                                                                                                 |                                                                                                                                                      |
|-------------------------------------|--------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | al, why?                                                     |                | Review to Addendum                                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                      |
|                                     |                                                              |                | · · · · ·                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                      |
| 2. Hazaro                           |                                                              | A( )           | B( ) C(                                                                                                                                                                              | ) D(X)                                                                                                                                | Unknown( )                                                                                                                                           |
| Who de                              | termined the hazard                                          |                |                                                                                                                                                                                      | in previous stu                                                                                                                       | dies.                                                                                                                                                |
|                                     | Upgrade to level C                                           | will be determ | ined by field monitor                                                                                                                                                                | ing.                                                                                                                                  |                                                                                                                                                      |
| lf hazar                            | d level exceeds le                                           | vel D attach   | an additional she                                                                                                                                                                    | et with explan                                                                                                                        | nation/justification.                                                                                                                                |
| 3. Types                            | of hazards:                                                  |                |                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                      |
|                                     | Chemical (X)                                                 |                | Inhalation                                                                                                                                                                           | (X)                                                                                                                                   | Cold Stress ()                                                                                                                                       |
|                                     | Biological ()                                                |                | Ingestion                                                                                                                                                                            | (X)                                                                                                                                   | Heat Stress ()                                                                                                                                       |
|                                     | Physical ()                                                  |                | Skin Contact                                                                                                                                                                         | (X)                                                                                                                                   | Noise ()                                                                                                                                             |
|                                     | Radiation ()                                                 |                |                                                                                                                                                                                      |                                                                                                                                       | Confined Space                                                                                                                                       |
|                                     | Owner Dof                                                    |                |                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                      |
|                                     | Oxygen De f.( )                                              |                |                                                                                                                                                                                      |                                                                                                                                       | Entry ()                                                                                                                                             |
| Describe                            | Oxygen De f.( )<br>Explosive ( )                             |                |                                                                                                                                                                                      |                                                                                                                                       | Entry ()                                                                                                                                             |
|                                     |                                                              |                |                                                                                                                                                                                      |                                                                                                                                       | Entry ( )                                                                                                                                            |
|                                     | Explosive ()                                                 | Describe:      | During drilling, Mor                                                                                                                                                                 | nitoring will be c                                                                                                                    |                                                                                                                                                      |
| 4. Sourc                            | Explosive ()                                                 | Describe:      | <u> </u>                                                                                                                                                                             |                                                                                                                                       | onducted. A higher                                                                                                                                   |
| 4. Sourc                            | Explosive ()                                                 | Describe:      |                                                                                                                                                                                      | n is not expecte                                                                                                                      |                                                                                                                                                      |
| 4. Sourc                            | Explosive ()                                                 | Describe:      | degree of protectio<br>that indicated abov                                                                                                                                           | n is not expecte<br>e.                                                                                                                | onducted. A higher                                                                                                                                   |
| 4. Source<br>(X)                    | Explosive ()                                                 |                | degree of protectio<br>that indicated abov<br>During drilling oper                                                                                                                   | n is not expecte<br>e.<br>ations. Protectio                                                                                           | onducted. A higher                                                                                                                                   |
| 4. Source<br>(X)                    | Explosive ()                                                 |                | degree of protectio<br>that indicated abov                                                                                                                                           | n is not expecte<br>e.<br>ations. Protectio                                                                                           | onducted. A higher                                                                                                                                   |
| 4. Source<br>(X)                    | Explosive ()                                                 |                | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selected                                                                                           | n is not expecte<br>e.<br>ations. Protectio<br>ed above.                                                                              | onducted. A higher<br>ad to be required beyond<br>on is not expected to be                                                                           |
| 4. Source<br>( X )<br>( X )         | Explosive ()<br>e of Hazard:<br>Air<br>Soil                  | Describe:      | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selecte<br>The Mississippi Riv                                                                     | n is not expecte<br>e.<br>ations. Protectio<br>ed above.<br>er has been sar                                                           | onducted. A higher<br>ed to be required beyond<br>on is not expected to be<br>npled near the Site                                                    |
| 4. Source<br>( X )<br>( X )         | Explosive ()<br>e of Hazard:<br>Air<br>Soil                  | Describe:      | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selecte<br>The Mississippi Riv<br>during prior investig                                            | n is not expecte<br>e.<br>ations. Protectio<br>ed above.<br>er has been sar                                                           | onducted. A higher<br>ad to be required beyond<br>on is not expected to be                                                                           |
| 4. Sourc<br>( X )<br>( X )<br>( X ) | Explosive ()<br>e of Hazard:<br>Air<br>Soil                  | Describe:      | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selecte<br>The Mississippi Riv<br>during prior investig<br>level of concern.                       | n is not expecte<br>e.<br>ations. Protectio<br>ed above.<br>er has been sar<br>gations and is no                                      | onducted. A higher<br>ed to be required beyond<br>on is not expected to be<br>npled near the Site<br>ot expected to be any                           |
| 4. Source<br>( X )<br>( X )         | Explosive ()<br>e of Hazard:<br>Air<br>Soil<br>Surface Water | Describe:      | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selecte<br>The Mississippi Riv<br>during prior investig<br>level of concern.<br>During monitoring, | n is not expecte<br>e.<br>ations. Protection<br>ed above.<br>er has been sar<br>gations and is not<br>levels of VOCs                  | onducted. A higher<br>ed to be required beyond<br>on is not expected to be<br>npled near the Site<br>ot expected to be any<br>& metals were present. |
| 4. Sourc<br>( X )<br>( X )<br>( X ) | Explosive ()<br>e of Hazard:<br>Air<br>Soil<br>Surface Water | Describe:      | degree of protectio<br>that indicated abov<br>During drilling oper<br>beyond that selecte<br>The Mississippi Riv<br>during prior investig<br>level of concern.<br>During monitoring, | n is not expecte<br>e.<br>ations. Protectioned above.<br>er has been sar<br>gations and is not<br>levels of VOCs<br>of expected to be | onducted. A higher<br>ed to be required beyond<br>on is not expected to be<br>npled near the Site<br>ot expected to be any                           |

× . MN-COMP 0044922

-----

- -----

` ----- - · · ·

-2-

4/90

l

I

ŀ

# 5. Chemical and Physical Hazards of Concern

List the primary, identifyable, chemical and physical hazards.

|                                               | Concentrations                          | Primary                               | MSDS       |
|-----------------------------------------------|-----------------------------------------|---------------------------------------|------------|
| Name                                          | (if known)                              | Hazards                               | attached ? |
| Colle                                         |                                         |                                       |            |
| Soil:<br>cadmium                              | 7.5 mg/kg                               | inhilation/digestion                  | NO         |
| lead                                          | 3800 mg/kg                              | inhilation/digestion                  | NO         |
| zinc                                          | 3500 mg/kg                              | inhilation/digestion                  | NO         |
| ethylbenzene                                  | 100000 ug/kg                            | inhilation/skin contact               | NO         |
| total xylenes                                 | 980 ug/kg                               | inhilation/skin contact               | NO         |
| Groundwater:                                  |                                         |                                       |            |
| methylene chloride                            | 230 ug/L                                | inhilation/skin contact               | NO         |
| 1,1-dichloroethylene                          | 43 ug/L                                 | inhilation/skin contact               | NO         |
| benzene                                       | 510 ug/L                                | inhilation/skin contact               | NO         |
| ethylbenzene                                  | 3000 ug/L                               | inhilation/skin contact               | NO         |
|                                               |                                         |                                       | · · · ·    |
| C. Personnel Protective Equ                   | lipment                                 |                                       |            |
| 1. Level of Protection                        |                                         |                                       | evel       |
| Location                                      | Job – Task                              |                                       | Protection |
|                                               | Well installation & s                   | oil borings                           | D          |
|                                               | Groundwater sampl                       |                                       | D          |
|                                               | Soil gas sampling                       | · · · · · · · · · · · · · · · · · · · | D          |
| <u> </u>                                      | Sampling of UST dr                      | aintile sump                          | D          |
|                                               |                                         |                                       | ABCD       |
| · · ·· <b>·······························</b> |                                         |                                       | ABCD       |
|                                               | , · · · · · · · · · · · · · · · · · · · |                                       | ABCD       |
| <u></u>                                       | · · · · · · · · · · · · · · · · · · ·   |                                       | ABCD       |
| <u></u>                                       | <u></u>                                 |                                       | ABCD       |
|                                               |                                         |                                       | ABCD       |
|                                               |                                         |                                       | ABCD       |
|                                               | -3-                                     | MN-COMP 0044923                       | 4/90       |
|                                               |                                         |                                       |            |

#### 2. Protective Equipment

| <ul> <li>( ) SCBA or Airline with escape bottle</li> <li>( ) Other</li> <li>( ) Other</li> </ul> |
|--------------------------------------------------------------------------------------------------|
| · ·                                                                                              |
| ( ) Other                                                                                        |
|                                                                                                  |
|                                                                                                  |

A

#### Head, Eye, Ear Protection ( ) N/A

- () Hard Hat
- ( ) Ear Muffs or Plugs
- ( ) Other

#### Foot Protection ( ) N/A

- ( ) Safety shoes
- ( ) Disposable Overboots
- () Other

# Respiratory ( ) SCBA or Airline with escape bottle ( ) Full Face Resp. L Cartridge E V E ( ) Other L ( ) Other B

#### Head, Eye, Ear Protection ( ) N/A

- ( ) Hard Hat
- ( ) Ear Muffs or Plugs
- () Other

#### Foot Protection ( ) N/A

- ( ) Safety shoes
- ( ) Disposable Overboots
- ( ) Other

#### Clothing ( ) Fully Encapsulated Suit ( ) Chemically Resistant Splash Suit (NA) Tyvek Coverall, Standard

(NA) Tyvek Coverall, Polyethylene

(NA) Tyvek Coverall, Saranex

( ) Coverall, other

# Specify:

() Other

() Other

#### Hand Protection ( ) N/A

( ) Undergloves Type:

() Gloves

Type:

( ) Overgloves

Type: () Other

# .

Clothing ( ) Fully Encapsulated suit ( ) Chemically Resistant Splash Suit ( NA ) Tyvek Coverall, Standard ( ) Tyvek Coverall, Polyethylene ( ) Tyvek Coverall, Saranex ( ) Coverall, other Specify: ( ) Other

( ) Other

#### Hand Protection ( ) N/A

( ) Undergloves

Туре:

() Gloves

Type:

( ) Overgloves

Туре:

-4--

() Other

# MN-COMP 0044924

#### 2. Protective Equipment continued

#### Respiratory

| ) Fuli Fac  | e Resp.                    |
|-------------|----------------------------|
| artridge    |                            |
| ( ) Halfmas | k                          |
| Cartridge   | Organic Vapor, particulate |
| () Escape   |                            |
| Туре        |                            |
| () Other    |                            |
| · ·         |                            |
| () Other    |                            |

#### Head, Eye, Ear Protection ( ) N/A

- ( ) Hard Hat
- ( ) Goggles
- ( ) Safety Glasses w/ Sideshields
- ( ) Face Shield
- ( ) Chemical Goggles
- ( ) Ear Muffs or Plugs
- ( ) Other

Portable Eye Wash to be present.

- Foot Protection ( ) N/A
- ( ) Safety shoes
- ( ) Disposable Overboots

Respiratory (X) N/A

() Other

( ) Halfmask

Cartridge

() Other

() Other

(X) Hard Hat

() Face Shield

() Goggles

Туре

L

Ε

۷

Ε

L

D

() Escape

# Clothing () N/A (NA) Fully Encapsulated suit () Chemically Resistant Splash Suit () Tyvek Coverall, Standard () Tyvek Coverall, Polyethylene

- ( ) Tyvek Coverall, Saranex
- ( ) Coverall, other
- Specify:

() Other

() Other

#### Hand Protection

( ) Undergloves

Type:

( ) Gloves

Type: Standard Work Gloves

# ( ) Overgloves

Type:

() Other

#### Clothing () N/A

(X) Tyvek Coverall, Standard

- ( ) Tyvek Coverall, Polyethylene
- ( ) Tyvek Coverall, Saranex
- () Coverall, other
- Specify:
- () Other

() Other

# Hand Protection ( ) N/A

(X) Undergloves

Type: Surgical latex

(X) Gloves

Type: Cotton work gloves

- ( ) Overgloves
- Туре:
- () Other

may be required during drilling

Head, Eye, Ear Protection ( ) N/A

(X) Safety Glasses w/ Sideshields

Foot Protection ( ) N/A

() Chemical Goggles

(X) Ear Muffs or Plugs\*

- (X) Safety shoes
- ( ) Disposable Overboots
- () Other

() Other

-5-

MN-COMP 0044925

#### D. PERSONAL AIR MONITORING

Depending on the throughness of the Initial Site Survey and the hazard levels resulting from the survey, additional breathing zone air monitoring may be necessary to protect the health of site workers and verify the level of protection employees are utilizing. Applicibility of this section is subject to Industrial Hygiene review.

ADDITIONAL AIR MONITORING NECESSARY (X)

ADDITIONAL AIR MONITORING NOT NECESSARY ( )

() Attach employee air sampling requirements to addendum.

\* HNu measurements to be taken as work proceeds to confirm appropriateness of Level D determination

#### E. ENVIRONMENTAL MONITORING REQUIREMENTS

Additional environmental site monitoring may or may not be necessary during the course of this investigation.

ADDITIONAL ENVIRONMENTAL MONITORING NECESSARY ( )

ADDITIONAL ENVIRONMENTAL MONITORING NOT NECESSARY (X)

| Frequency          | Notes                                 |
|--------------------|---------------------------------------|
|                    | · · · · · · · · · · · · · · · · · · · |
|                    |                                       |
|                    |                                       |
| If unknown waste   | es are contacted, exposure            |
| to this plan made. |                                       |
|                    |                                       |
|                    |                                       |
|                    |                                       |

() See addendum for additional notes / requirements MN-COMP 0044926

**.** . .

F. Personnel Decontamination
() Required

Attach diagram if required. (X) Not required

Equipment Decontamination (X) Required

( ) Not required

If required, describe and list equipment:

Steam cleaning of drilling rig and augers prior to and after use on site. Clean augers to be used between borings for QA/QC purposes.

MN-COMP 0044927

- - - -

.....

...

\_

#### G. Personnel

All CRA field personnel are required to participate in training and medical management programs prior to field assignment and annually thereafter. Original copies of physical exams and training certifications are on file in the Minnesota Industrial Hygiene office.

#### PERSONNEL AUTHORIZED TO ENTER SITE

| Name         | Work Location<br>Title/Task            | Medical<br>Current | Fit Test<br>Current | Training<br>Current |
|--------------|----------------------------------------|--------------------|---------------------|---------------------|
| Rob Field    |                                        | ( X)               | ( X)                | (X)                 |
| Chuck Ahrens |                                        | ( X)               | ( X)                | (X)                 |
| Jon Michels  |                                        | ( X)               | (X)                 | (X)                 |
|              | <u> </u>                               | ( )                | ( )                 | ( )                 |
|              |                                        | ( )                | ()                  | ( )                 |
|              |                                        | ( )                | ()                  | ( )                 |
|              |                                        | ( )                | ()                  | ()                  |
|              |                                        | ( )                | ()                  | ( )                 |
|              | ······································ | ( )                | ()                  | ( )                 |
|              |                                        | ( )                | ()                  | ( )                 |
| •            | ·                                      | ( )                | ()                  | ( )                 |

Site Safety Coordinator

MN-COMP 0044928

--- -

# H. Activities Covered Under This Plan

•.

| Task No. | Description                                          | Preliminary<br>Schedule |  |
|----------|------------------------------------------------------|-------------------------|--|
| 1.       | Soil borings and sampling                            | On going                |  |
| 2.       | Well installation and development                    | *                       |  |
| 3.       | Groundwater and surface water sampling, water levels | -                       |  |
| 4.       | Sample draintile sump at UST site                    |                         |  |
| 5.       | Soil gas monitoring                                  | м                       |  |

۰.

MN-COMP 0044929

ţ

| Agency             |                     | Cont              | act                                     | Phone #                   |
|--------------------|---------------------|-------------------|-----------------------------------------|---------------------------|
| Fire Department    |                     | City of St. Paul  |                                         | 911                       |
| Police Department  |                     | City of St. Paul  |                                         | 911                       |
| Health Department  |                     | Ron Koch          |                                         | 627-5146                  |
| Local Hospital     |                     |                   |                                         |                           |
| Poison Control Cen | ter                 | <u>N/A</u>        | · • •                                   |                           |
| State Environmenta | al Agency           | J. Todd Goeks -   | MPCA                                    | 296-7710                  |
| EPA-Regional Offic | e                   |                   |                                         |                           |
| EPA-ERT ICOM       |                     |                   |                                         | ·                         |
| Spill Contractor   |                     | <del></del>       |                                         |                           |
| FAA                |                     |                   |                                         |                           |
| On Site Coordinato | r                   | CRA St. Paul Of   | fice                                    | 639-0913                  |
| Site Telephone     |                     | Plant Engineerir  | ant Engineering – John Kallaus 696–0585 |                           |
| Nearest Telephone  |                     | Plant Security    |                                         | 699–1321                  |
| CRA INDUSTRIAL     | HYGIENE             | MITCHELL S. B     | ERGNER CIH ROH                          | 612-639-0913              |
| Other .            |                     |                   |                                         |                           |
| J. Contingency Pla | ins                 | ]                 |                                         |                           |
|                    | itional information | ALL EMERGENCY AC  | TIONS ARE TO BE REPORTED TO             | ) INDUSTRIAL HYGIENE ASAP |
| Medical I          | Emergency           |                   |                                         |                           |
| Name of Hospital:  | Midway H            | ospital           | 641-5500                                |                           |
| Address:           | 1700 Univ           | versity Ave. West | Phone No.:                              |                           |
| Name of Contact:   | Emergeno            | · · · · · · · ·   | 641-5700                                |                           |
| Address:           |                     |                   | Phone No.:                              |                           |

,

\*\*\*

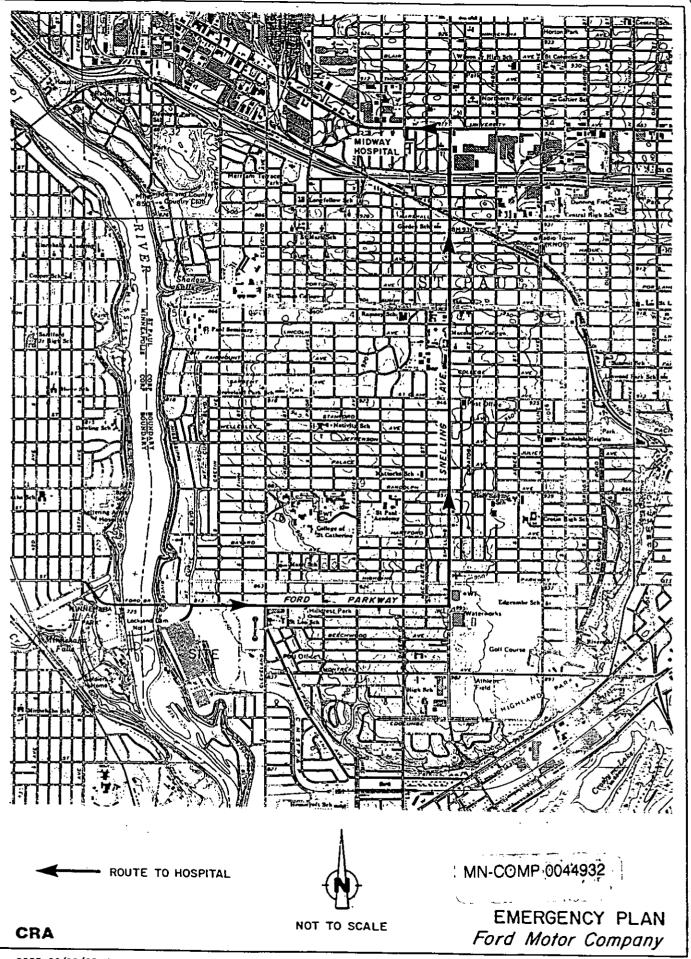
,

· · · · · ·

Í

Route to Hospital (attach map)

(


Ń

MAP ATTACHED

#### East on Ford Parkway to Snelling Ave. North on Snelling to University Ave. West on University 3 blocks. Hospital on south side of University Ave.

| Travel Time<br>form Site (min.) | 10                | Distance to<br>Hospital (Miles) | 4.5 |
|---------------------------------|-------------------|---------------------------------|-----|
|                                 |                   | <u>1105pital (miles)</u>        | 4.5 |
| Name / Number 24 Hr.            | Ambulance Service | 911                             |     |

MN-COMP 0044931



2853-20/08/90-M



# Minnesota Pollution Control Agency

'93 JUL 12 P12:01

July 8, 1993

Mr. Jerome S. Amber Principal Staff Engineer Stationary Source Environmental Control Office Ford Motor Company Commerce Park North 15201 Century Drive, Suite 608 Dearborn, Michigan 48120

Dear Mr. Amber:

RE: PLP De-listing Status, Ford Motor Company -Twin Cities Assembly Plant Site

The Minnesota Pollution Control Agency Board, at its June 22, 1993, meeting, approved the Board Item deleting Ford Motor Company-Twin Cities Assembly Plant site from the Permanent List of Priorities.

Rick Jolley and I have enjoyed working with you to complete this project. If you have any questions, please feel free to contact me at (612) 296-7710 or toll-free at 1-800-657-3864.

Sincerely,

Todol Such

J. Todd Goeks Project Manager Response Unit II Site Response Section Ground Water and Solid Waste Division

JTG:pk

cc: Jon Christofferson, Conestoga Rovers & Associates John Kallaus, Ford Motor Company Jim Gibbson, Ford Motor Company Kathy Hofer, Ford Motor Company, Office of General Counsel

Jim Gibson - BAD looks like you + plant received copies. A nare "Success" however, we still have monitor ing to do and need to continue to rely on CRA to keep us in compliance. LIFE



Certified Mail Receipt 7001 0320 0004 2633 4634

Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, Minnesota 55155-4194

Subject:

Tunnel Survey Report, Collapse Area with Buried Drums – Feature 150 Ford Twin Cities Assembly Plant, St. Paul, Minnesota MPCA VIC Project Number VP23530 MPCA PBP Project Number PB3682

Dear Ms. Schmitt and Ms. Hendry-Van Patten:

On behalf of Ford Motor Company (Ford), ARCADIS has prepared this brief summary report describing the tunnel survey for the Collapse Area with Buried Drums – Feature 150 for the Twin Cities Assembly Plant (Site) in St. Paul, Minnesota. This survey work was completed in accordance with the requirements of the Minnesota Pollution Control Agency (MPCA) Voluntary Investigation and Cleanup (VIC) Program and Petroleum Brownfields Program (PBP). The work was completed in accordance with discussions involving the MPCA.

#### **Property Location and Description**

The Site is located at 966 South Mississippi River Boulevard in St. Paul, Ramsey County, Minnesota at the approximate easting coordinate 484562.5 meters (m) and northing coordinate 4973822.5m. The Site is located in a mixed industrial, commercial, and residential use area on the eastern shore of the Mississippi River, along the east side of South Mississippi River Boulevard, south of Ford Parkway, and west of South Cleveland Avenue in St. Paul, Minnesota (see Figure 1). A network of tunnels underlies the site, and was described in the "*Phase I Environmental Site Assessment*" completed June 2007 by ARCADIS (Phase I).

ARCADIS 430 First Avenue North Suite 720 Minneapolis Minnesota 55401 Tel 612.339.9434 Fax 612.336.4538 www.arcadis-us.com

ENVIRONMENT

Date: March 17, 2009

<sup>Contact:</sup> Bryan Zinda

Phone: 612.373.0234

Email: bryan.zinda@arcadis-us.com

Our ref: MN000593.0003

# ARCADIS

Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten March 17, 2009

#### **Health and Safety**

The survey of the tunnel was conducted according to the Health and Safety Plan (HASP) in accordance with Occupational Safety and Health Administration requirements as specified in the Code of Federal Regulations Title 29 Part 1910.120. The tunnels beneath the plant are a permitted confined space. All personnel that entered the tunnel were confined spaced trained prior to conducting the field work. Mid America Technical and Environmental Services of Maplewood, Minnesota provided the rescue teams for the work and the required permitting.

#### Survey of Feature 150 Collapse Area with Buried Drums

On October 3, 6 and 7, 2008 the tunnel leading to the Feature 150 was surveyed by Sunde Land Surveying (Sunde) of Bloomington, Minnesota. The tunnel location was surveyed to Ramsey County coordinate system [North American Datum of 1983 (NAD83)] and the elevation to vertical datum National Geodetic Vertical Datum of 1929 (NGVD 29). The location of the tunnel along with it terminus are presented on Figure 2.

The base of Feature 150 is located at an elevation of 711.0 feet mean sea level (MSL). The ground surface above the terminus of the tunnel is at an elevation of 772.9 feet MSL. The distance from the ground surface to the ceiling of the tunnel is approximately 56.7 feet. The end of the tunnel is located directly below the northeast corner of historical Disposal Area C, beneath the concrete parking area. A profile view of the terminus of the tunnel provided by Sunde is presented as Appendix A. Photographs of the tunnel and the location are presented in Appendix B.

Based on the location of the tunnel it is believed that the material encountered at the terminus is the consistent with material disposed of in the historical Disposal Area C. The description of the materials placed in Area C is consistent with the materials found at the end of the tunnel. As described in the Phase I the material at the terminus of the tunnel is concrete, wood chunks and paint sludge. Thus it is believed that the tunnel terminus has been filled from Disposal Area C materials and not a collapse of the tunnel.

# ARCADIS

Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten March 17, 2009

#### Closing

Upon the closure of the TCAP the Feature 150 will be further evaluated. We appreciate your assistance with this project. If you have questions or need additional information, please call Bryan Zinda of ARCADIS at your convenience.

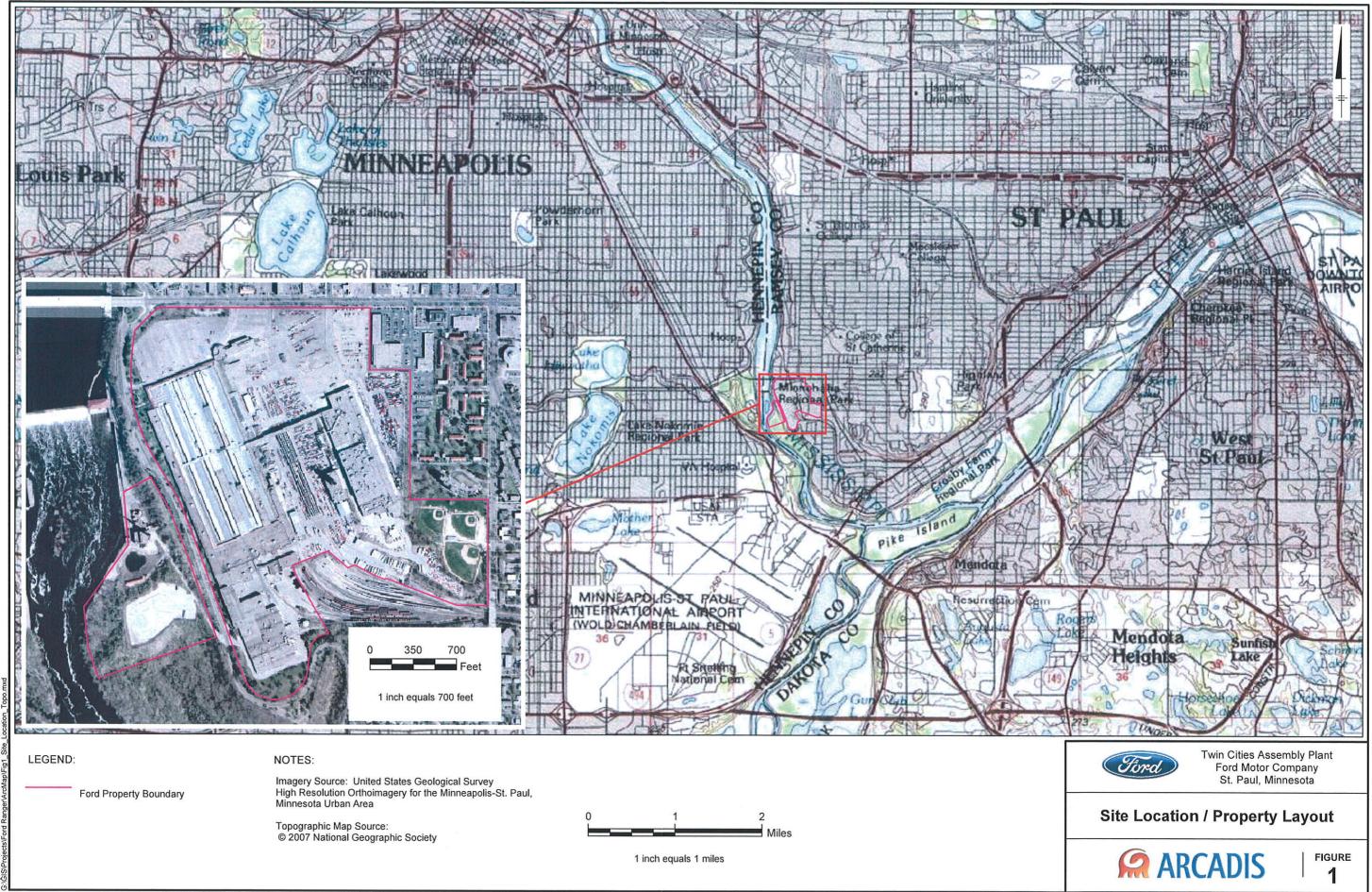
Andrew Fiskness, PG

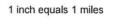
Staff Geologist

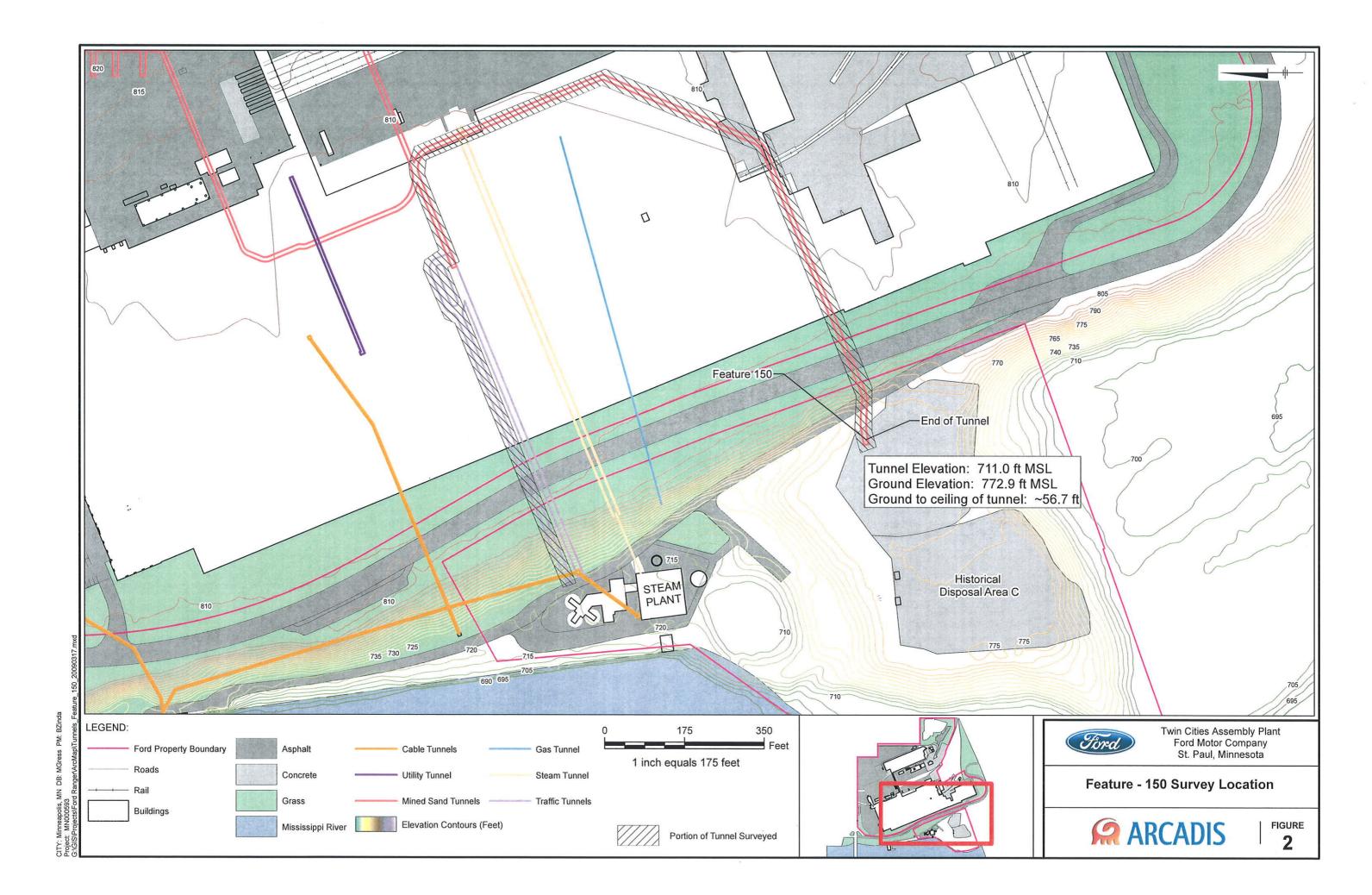
Sincerely,

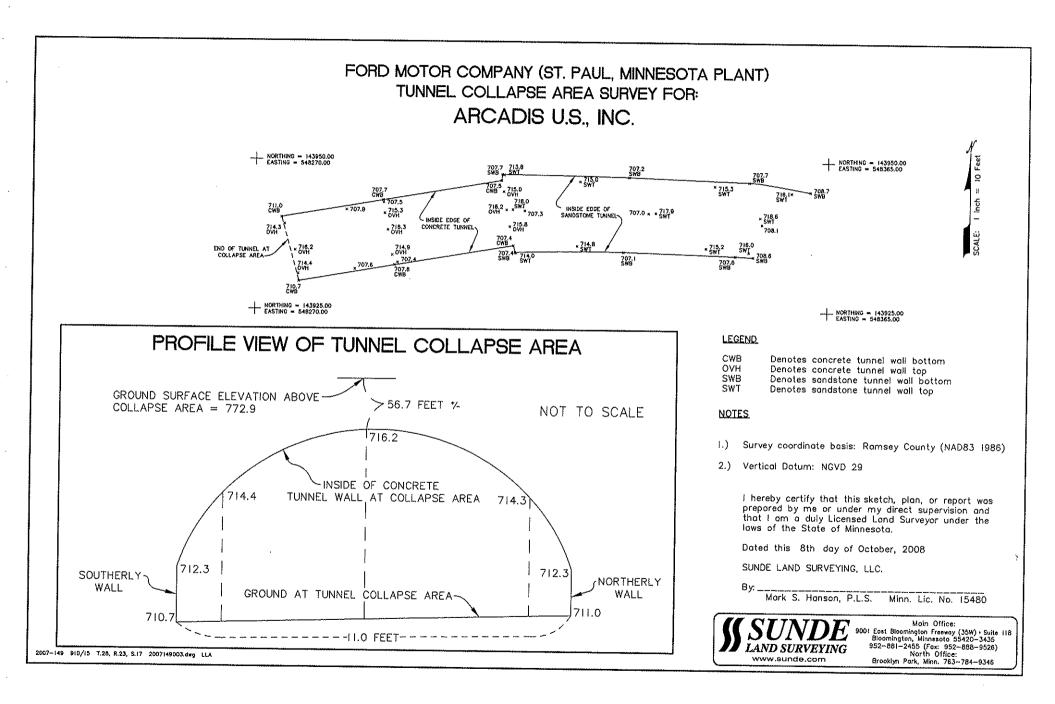
ARCADIS

Bargon Jula


Bryan Zinda, PE Project Manager

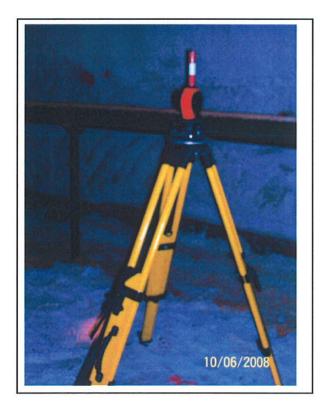

Copies:


Ms. Barbara Rusinowski, Ford Motor Company, Dearborn, Michigan Mr. John Meyers, Ford Twin Cities Assembly Plant, St. Paul, Minnesota

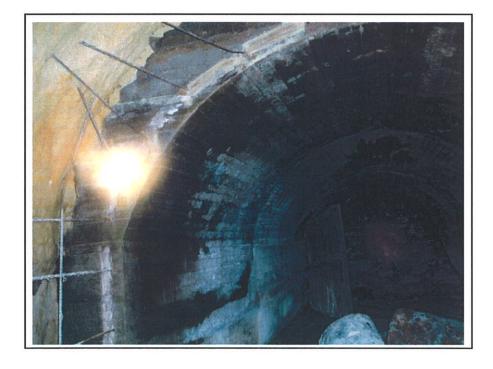

# ARCADIS

Figures





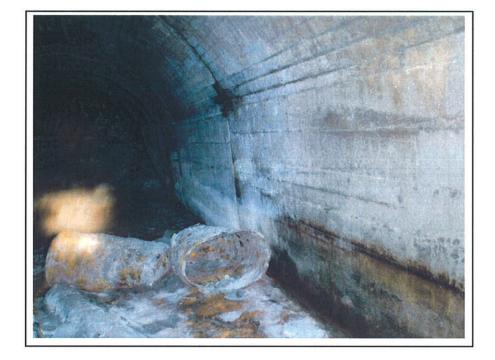



**Tunnel Survey Photos** 

Twin Cities Assembly Plant (TCAP) St. Paul, Minnesota




Survey equipment in tunnel.



Drum at Feature 150 at end of tunnel.

## **Tunnel Survey Photos**

Twin Cities Assembly Plant (TCAP) St. Paul, Minnesota



Drums at Feature 150 at the terminus of the tunnel.



Material at terminus of the tunnel.

## **Tunnel Survey Photos**

Twin Cities Assembly Plant (TCAP) St. Paul, Minnesota



Floor of tunnel at Feature 150 at the terminus of the tunnel.



Close up of material at Feature 150 at the terminus of the tunnel.

## **Tunnel Survey Photos**

Twin Cities Assembly Plant (TCAP) St. Paul, Minnesota



End of the tunnel marked in paint on the ground surface at historical Disposal Area C. Photograph looking to the southeast.



Tunnel marked in paint on the ground surface at historical Disposal Area C. Photograph looking to the southeast.

## **Tunnel Survey Photos**

Twin Cities Assembly Plant (TCAP) St. Paul, Minnesota



Location of south wall of tunnel marked with pink paint. Looking to the west.



Certified Mail Receipt 7001 0320 0004 2633 4573

Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, Minnesota 55155-4194

Subject: Remedial Action Plan, 1A Tunnel Barrier Wall, Feature 150 Ford Twin Cities Assembly Plant, St. Paul, Minnesota MPCA VIC Project Number VP23530 MPCA PBP Project Number PB3682

Dear Ms. Schmitt and Ms. Hendry-Van Patten:

On behalf of Ford Motor Company (Ford), ARCADIS has prepared this Remedial Action Plan (RAP) for the 1A Tunnel to prevent direct contact with waste materials present near the terminus of the tunnel for the Twin Cities Assembly Plant (Site) in St. Paul, Minnesota. The Site location is depicted on Figure 1.

### **Background Information**

The area referred to as Feature 150 at the Ford Twin Cities Assembly Plant is an accumulation of materials on the far southern end of the 1A Tunnel. On October 3, 6, and 7, 2008 the 1A Tunnel leading to Feature 150 was surveyed by Sunde Land Surveying (Sunde) of Bloomington, Minnesota. The tunnel location was surveyed to Ramsey County coordinate system [North American Datum of 1983 (NAD83)] and the elevation to vertical datum National Geodetic Vertical Datum of 1929 (NGVD 29). The location and extent of the tunnel are presented on Figure 2.

The base of Feature 150 is located at an elevation of 711.0 feet above mean sea level (MSL). The ground surface above Feature 150 is at an elevation of 772.9 feet above MSL and the distance from the ground surface to the ceiling of the tunnel is approximately 56.7 feet. Feature 150 is located directly below the northeast corner of historical Disposal Area C. Historical Disposal Area C is now a concrete parking area.

ARCADIS 430 First Avenue North Suite 720 Minneapolis Minnesota 55401 Tel 612.339.9434 Fax 612.336.4538 www.arcadis-us.com

ENVIRONMENT

Date: December 14, 2009

<sup>Contact:</sup> Bryan Zinda

Phone: 612.373.0234

Email: bryan.zinda@arcadis-us.com

Our ref: MN000593.0003

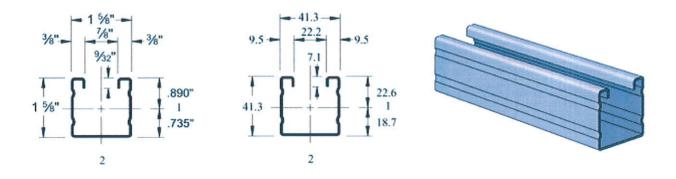
Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten December 14, 2009

### **Response Action**

The MPCA requested a plan for the installation of a barrier wall in the 1A Tunnel to isolate the impacted area within the tunnel at Feature 150 in a letter dated October 16, 2009. The barrier wall will be installed near the terminus of the 1A tunnel just east of the waste material. The barrier wall, in combination with the locks at the entrance of the tunnels will be sufficient to prevent direct contact with the waste materials.

The barrier will be constructed at a point in the tunnel which is several thousand feet away from the entry portal of the tunnel. Since all materials will have to be handcarried into position, the design theme for the work is to use materials that are readily available, relatively lightweight, and easy to construct.

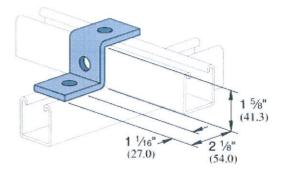
Unistrut framing is a strong proven product, is relatively lightweight and has preengineered connectors. The Unistrut will be used for the main skeletal framing with a chain-link fence fabric attached for additional security. The barrio wall detail is presented in Figure 3. The Unistrut framing will be secured to the tunnel walls by drilling into the sandstone rock and anchoring with a sand/cement grout.


The general construction sequence will be as follows:

- 1. Bore 3-inch diameter holes in the tunnel floor to set the bottom portion of the P2000 Unistrut posts (shown below).
- 2. Bore matching holes in the tunnel ceiling for the upper portion of the posts to be installed.
- 3. Splice the upper and lower sections together with the P9200 tubing (shown below) and bolt in place.
- 4. Splice the horizontal sections together with the P9200 tubing (shown below) and bolt in place.
- 5. Install the horizontal Unistrut sections to the vertical sections using the P1045 connectors (shown below).
- 6. Attach the chain link fabric to the framing.
- 7. Mix sand/cement grout in approximate 2:1 proportions with water and fill the drilled holes in the tunnel floor with the grout mix.
- 8. Allow grout mix to cure before installing the chain link fabric (approximately 24 hours).

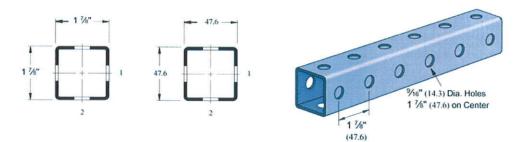
Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten December 14, 2009

### **Unistrut Components**


P2000 - 1-5/8" x 1-5/8", 16 Gauge, Solid



P1045 - Z Shape Fitting


### **Standard Dimensions:**

- Hole Diameter: 9/16" (14.3mm)
- Hole Spacing (From End): 13/16" (20.6mm)
- Width: 1-5/8" (41mm)
- Thickness: 1/4" (6.4mm)



Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten December 14, 2009

## P9200 - 1 7/8" x 1 7/8" Telestrut Tubing



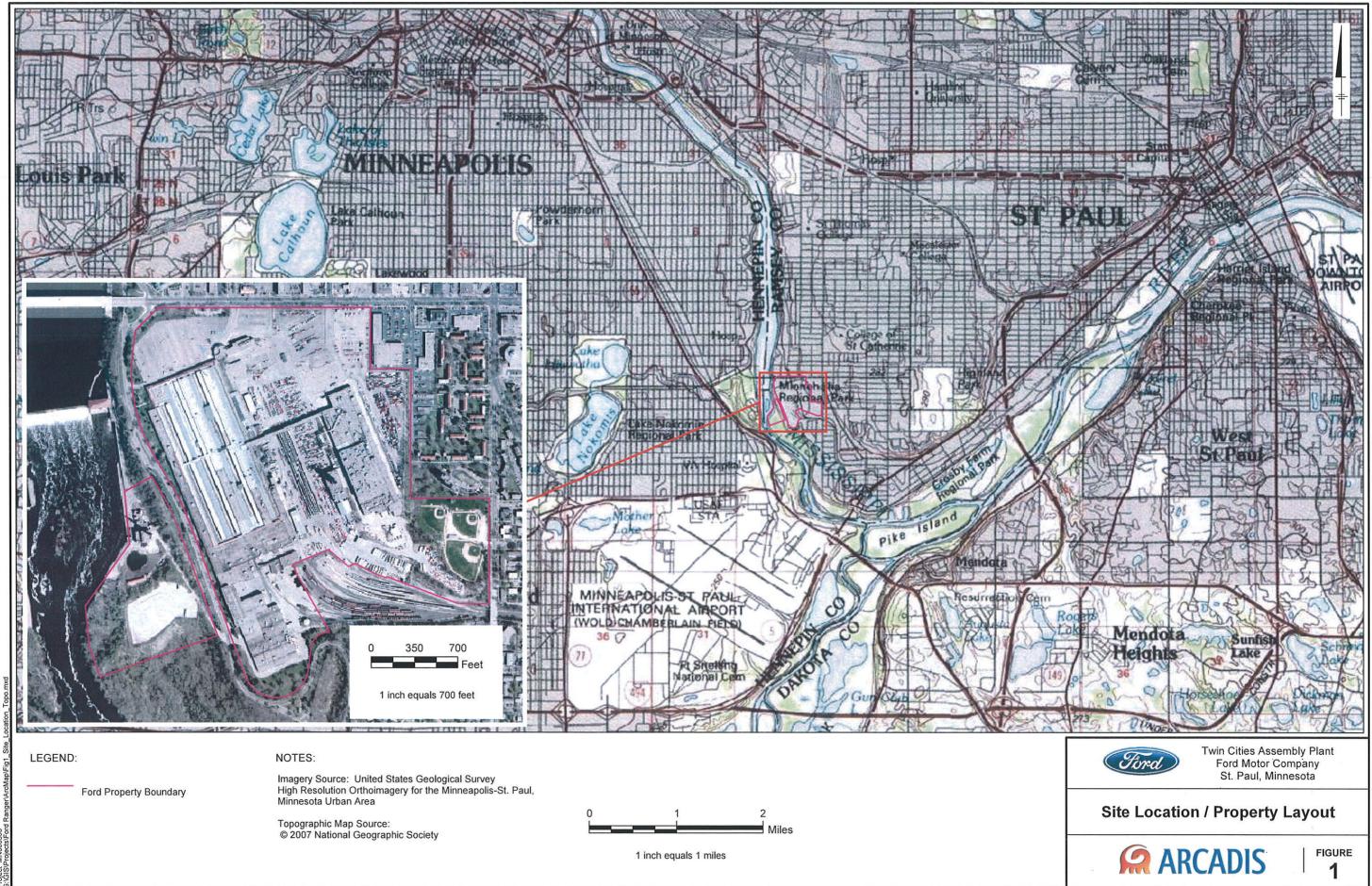
### Schedule

Installation of the barrier wall will commence within two months of approval of the RAP by MPCA.

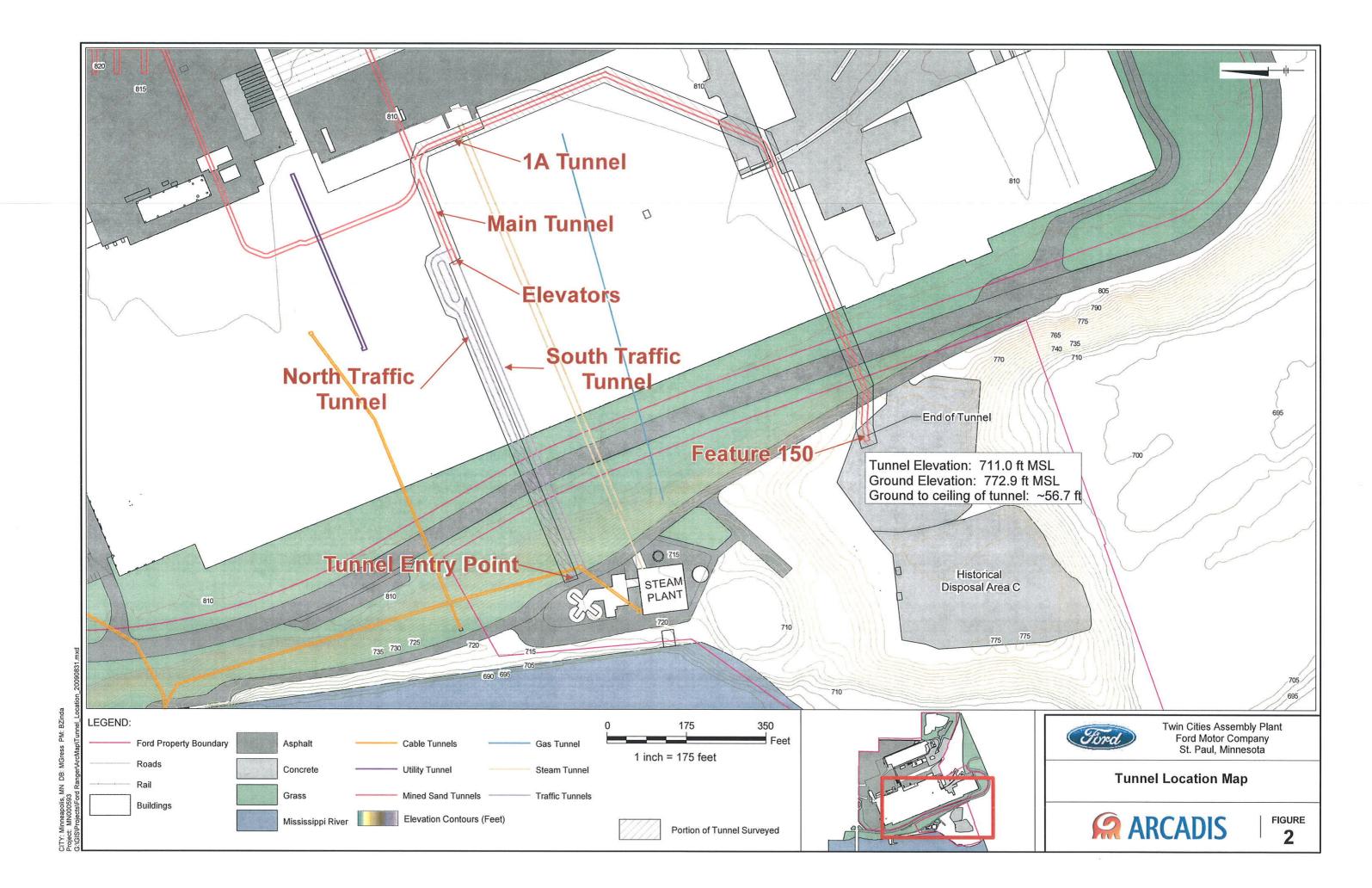
### Closing

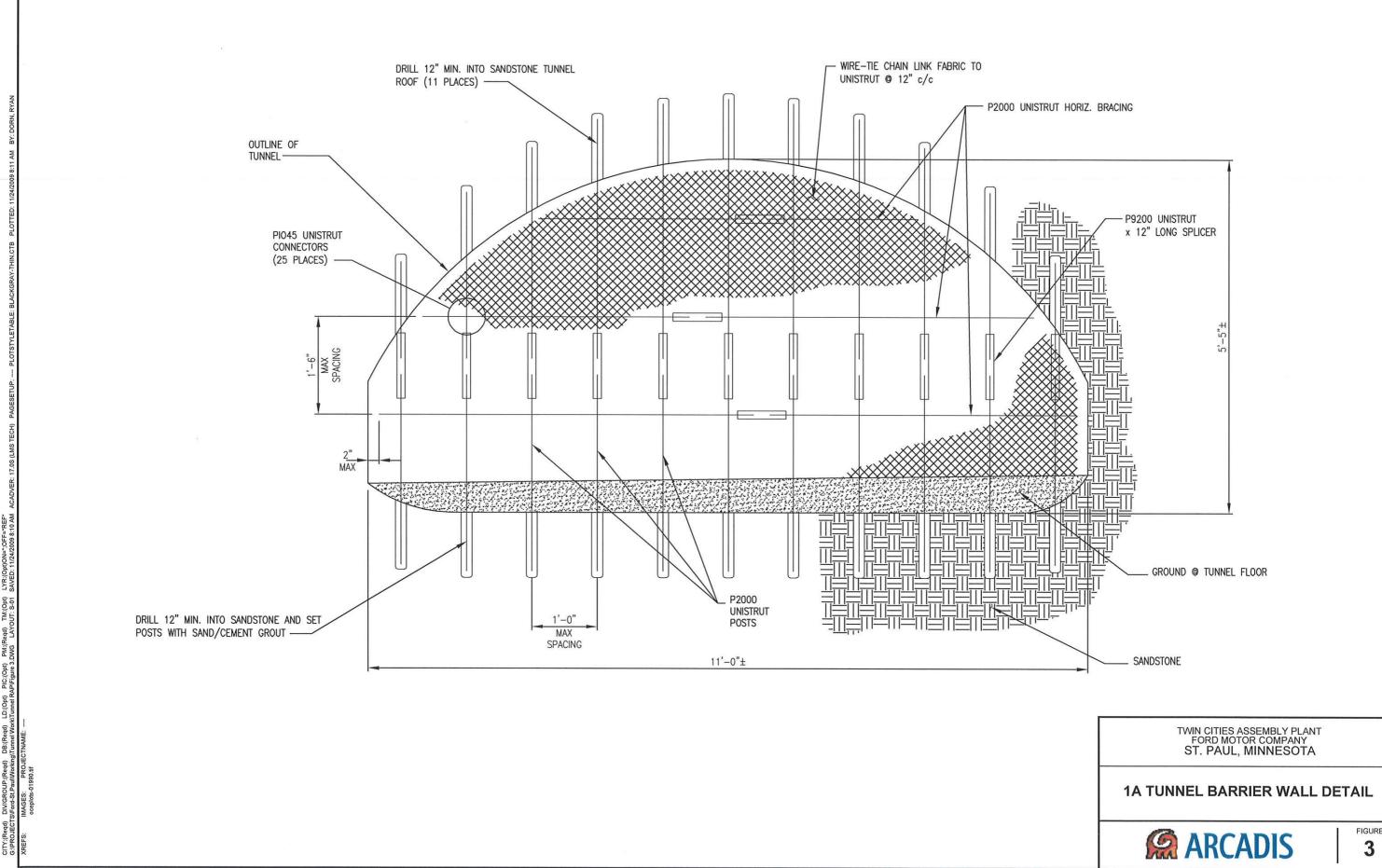
We appreciate the MPCA's understanding in this matter and look forward to receipt of your approval. If you have questions or need additional information, please call Bryan Zinda of ARCADIS at 612.373.0234 at your convenience.

Sincerely,


ARCADIS

Bryn Jul


Bryan Zinda, PE Project Manager/Senior Engineer


Copies:

Ms. Barbara Rusinowski, Ford Motor Company, Dearborn, Michigan Mr. John Meyers, Ford Twin Cities Assembly Plant, St. Paul, Minnesota











FIGURE



Certified Mail Receipt 7001 0320 0004 2633 4399

Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, Minnesota 55155-4194

Subject:

Response Action Implementation Report, 1A Tunnel Barrier Wall, Feature 150 Ford Twin Cities Assembly Plant, St. Paul, Minnesota MPCA VIC Project Number VP23530 MPCA PBP Project Number PB3682

Dear Ms. Schmitt and Ms. Hendry-Van Patten:

On behalf of Ford Motor Company (Ford), ARCADIS has prepared this Response Action Implementation Report (RAIR) for the 1A Tunnel to prevent direct contact with waste materials present near the terminus of the tunnel for the Twin Cities Assembly Plant (Site) in St. Paul, Minnesota. The Site location and property layout are depicted on Figure 1.

### **Background Information**

The area referred to as Feature 150 at the Ford Twin Cities Assembly Plant is an accumulation of materials on the far southern end of the 1A Tunnel. On October 3, 6, and 7, 2008 the 1A Tunnel leading to Feature 150 was surveyed by Sunde Land Surveying (Sunde) of Bloomington, Minnesota. The tunnel location was surveyed to Ramsey County coordinate system [North American Datum of 1983 (NAD83)] and the elevation to vertical datum National Geodetic Vertical Datum of 1929 (NGVD 29). The location and extent of the tunnel are presented on Figure 2.

The base of Feature 150 is located at an elevation of 711.0 feet above mean sea level (MSL). The ground surface above Feature 150 is at an elevation of 772.9 feet above MSL and the distance from the ground surface to the ceiling of the tunnel is approximately 56.7 feet. Feature 150 is located directly below the northeast corner of historical Disposal Area C. Historical Disposal Area C is now a concrete parking area.

ARCADIS U.S., Inc. 430 First Avenue North Suite 720 Minneapolis Minnesota 55401 Tel 612.339.9434 Fax 612.336.4538 www.arcadis-us.com

ENVIRONMENT

Date: January 11, 2011

Contact: Bryan Zinda

Phone: 612.373.0234

Email: bryan.zinda@arcadis-us.com

Our ref: DE000380.0001

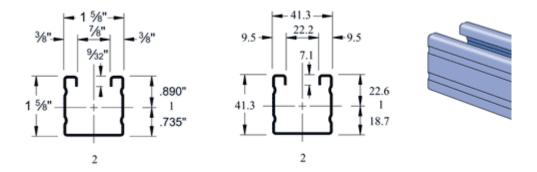
Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten January 11, 2011

### **Remedial Action**

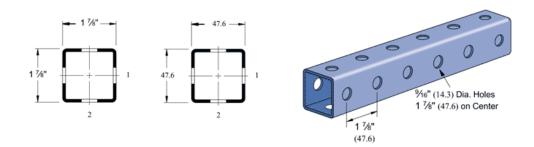
A Remedial Action Plan (RAP) was submitted to the MPCA on December 14, 2009 and approved by the MPCA on February 24, 2010. The remedial action consisted of the installation of a barrier wall in the 1A Tunnel (Feature 150) to isolate the impacted area. The barrier wall was installed near the terminus of the 1A Tunnel just east of the waste material. Work was conducted on December 10, 2010 and December 13 through 15, 2010.

The barrier was constructed at Feature 150, which is several thousand feet away from the entry portal of the tunnel. All materials were hand-carried into position via a permit-required confined pace entry. Unistrut framing was utilized since it is a strong proven product, is relatively lightweight and has pre-engineered connectors. The Unistrut was used for the main skeletal framing with a chain-link fence fabric attached for additional security. The Unistrut framing was secured to the tunnel walls by drilling and anchoring into the concrete formed wall.

The general construction consisted of the following:


- 1. Install chain link fabric in place using existing rebar from the concrete formed wall.
- 2. Core into the concrete formed wall; install anchor bolts through the Unistrut and into the concrete.
- 3. Splice the upper and middle horizontal Unistrut sections together with the P9200 tubing and bolt in place.
- 4. Fasten the vertical Unistrut sections to the horizontal sections.
- 5. Tie the chain link fabric to the Unistrut framing.

Photos of the barrier are shown on Figures 3, 4 and 5


Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten January 11, 2011

## Unistrut Components

P2000 - 1-5/8" x 1-5/8", 16 Gauge, Solid



P9200 - 1 7/8" x 1 7/8" Telestrut Tubing



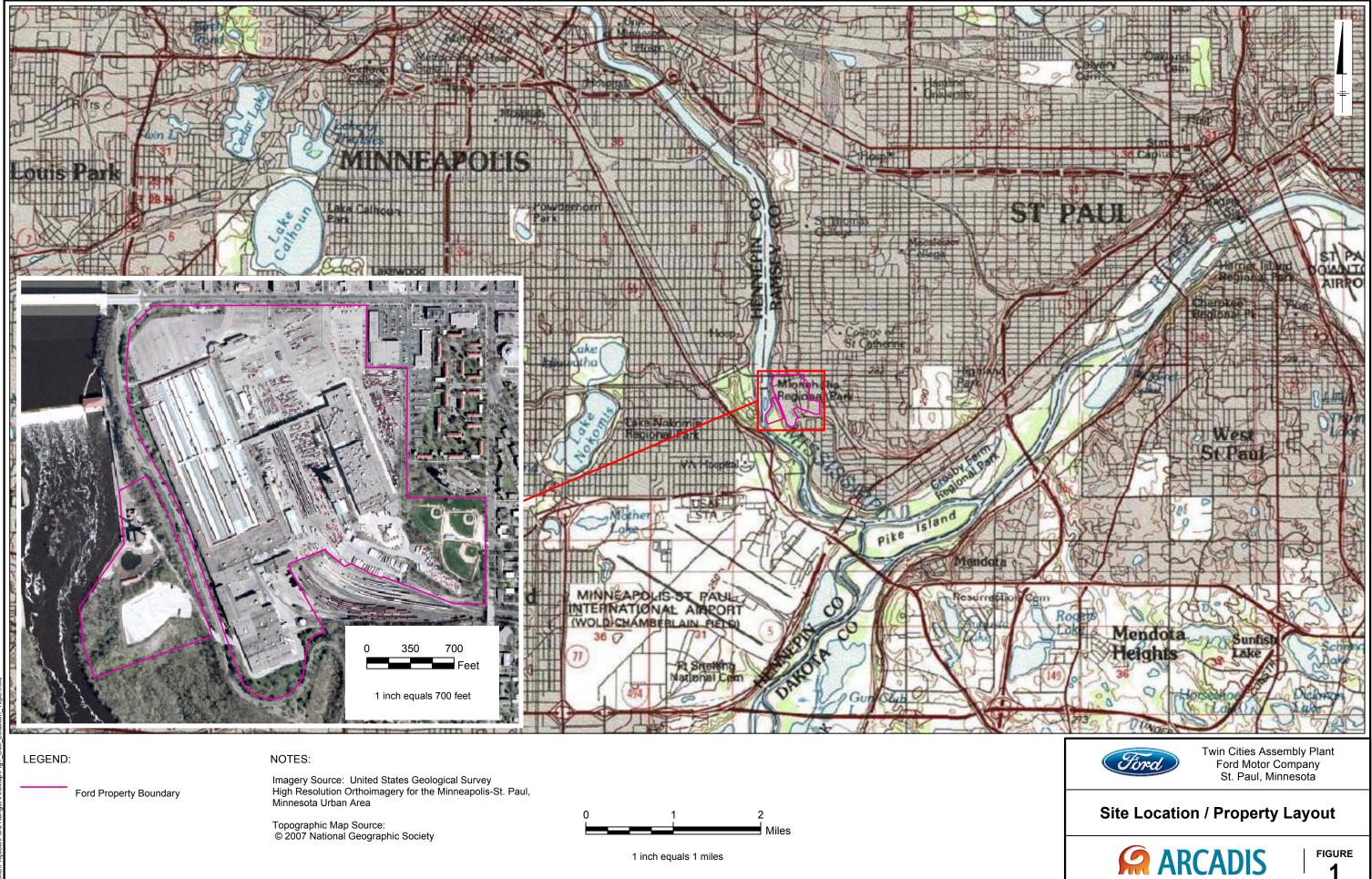
### Summary

The installed barrier wall, in combination with the locks at the entrance of the tunnels is sufficient to prevent direct contact with the waste materials located at the terminal end of the 1A Tunnel and by installing the barrier wall, Ford has fulfilled is obligation of preventing direct contact with the waste materials present.

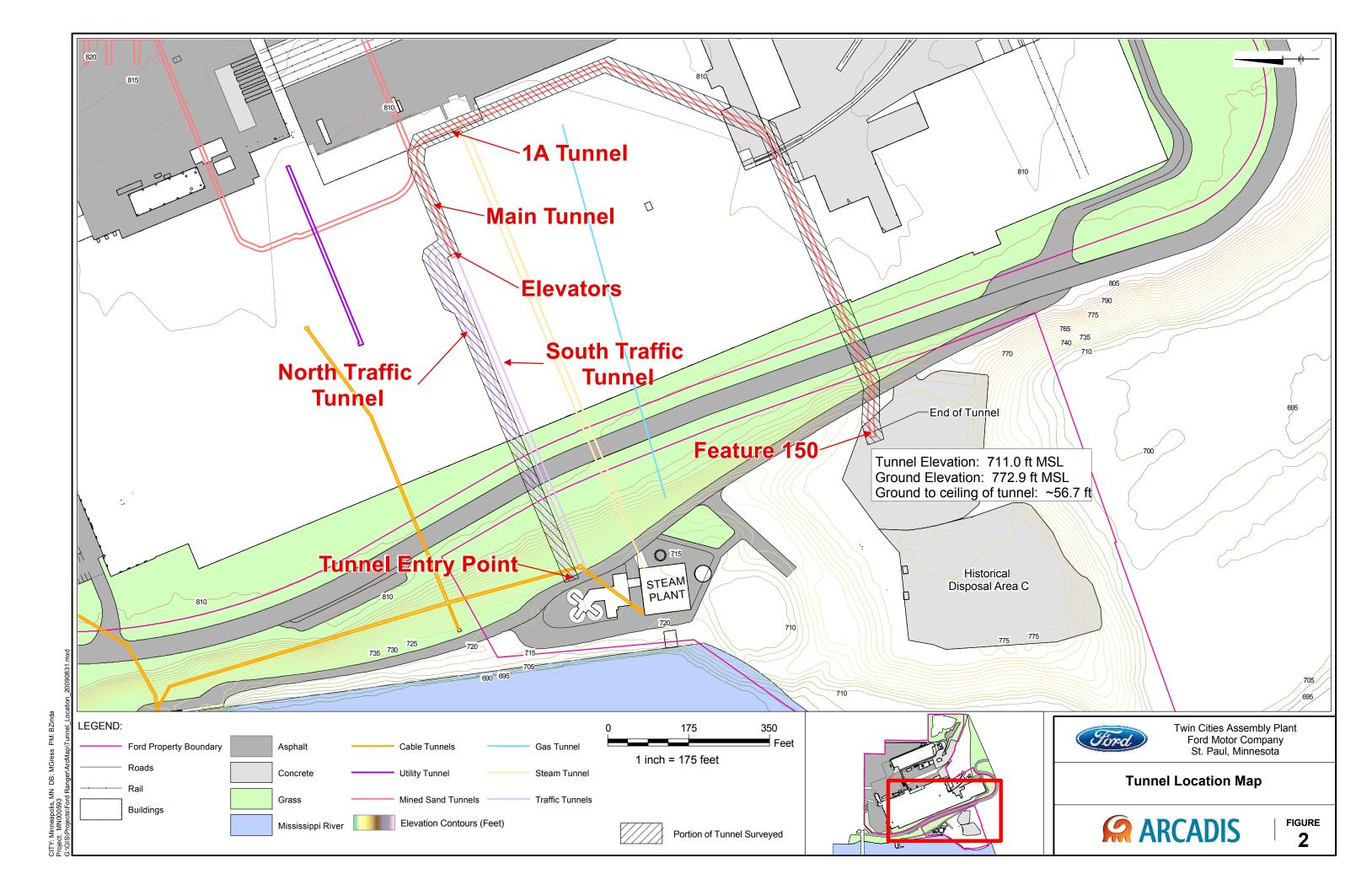
Ms. Shanna Schmitt and Ms. Stacey Hendry-Van Patten January 11, 2011

If you have questions or need additional information, please call Bryan Zinda of ARCADIS at 612.373.0234 at your convenience.

Sincerely,


ARCADIS U.S., Inc.

Buyer Jinda


Bryan Zinda, PE Senior Engineer

Copies:

Ms. Barbara Rusinowski, Ford Motor Company, Dearborn, Michigan Mr. John Meyers, Ford Twin Cities Assembly Plant, St. Paul, Minnesota







**Figure 3.** Tunnel 1A – Barrier Wall Installation Twin Cities Assembly Plant Ford Motor Company St. Paul, Minnesota



Pre-Construction Photo.



Chain Link Fencing Installation.

**Figure 4.** Tunnel 1A – Barrier Wall Installation Twin Cities Assembly Plant Ford Motor Company St. Paul, Minnesota



Close-Up of Securing the Chain Link Fencing to the Concrete Wall.



Securing the Chain Link Fencing to the Concrete Wall.

**Figure 5.** Tunnel 1A – Barrier Wall Installation Twin Cities Assembly Plant Ford Motor Company St. Paul, Minnesota



Unistrut Installation.



**Barrier Wall Construction** Completion.

| WELL OR BORING LOCATION                                           | <u> </u>           | т м                               | INNESOT                      | TA DE  | EPARTMENT OF HEALTH Minnesota Well and Boring Sealing No. H 39547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------------------------------------------------------|--------------------|-----------------------------------|------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| County Name                                                       |                    |                                   |                              |        | NG SEALING RECORD Minnesota Unique No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Ramsey                                                            |                    |                                   |                              |        | Statutes, Chapter 1031 Or W-series No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Township Name Township                                            | No. Range No.      | Section No. Fra                   | ction (sm.                   | • lg.) | Date Sealed Approximate Date Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| et Paul 28                                                        | N 23W              | 17 NI                             | E', A.E. 1/4                 | SWIA   | 11/19/93 or Boring Constructed 11/81 Iwell 4/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| ncal Street Address or Fire N<br>15t of 966 5. P<br>of Current Fi | Number and City o  | I Well or Boring Lo               | and N                        | Vorte  | and south 60.5, 24.5, 22.6 60.5, 24.5, 22.6, 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Show exact location of well or boring                             | 0.0.000            | Sketch ma                         | p of well or I               | boring | Static Water Level Accurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| in section grid with "X".                                         | 155                | location, show<br>roa             | ing property<br>ds. and buil |        | Alo' XApproximate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                   | M155.55            | Bived.                            | 1,                           |        | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                   | RIVER              |                                   |                              |        | Single Aquifer Multiaquifer 41.5 ft. below above land surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| W! +!-<br>W                                                       | Ē_                 | Rot                               | \$                           | B-5    | CASING TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| X                                                                 | - 4 - 6            | Lever ber                         |                              |        | Steel Plastic I Tile Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                   | * mile             | Trailer<br>Storage                | -                            |        | B-1 60.5 7-Bottom Depth<br>B-3 24.5 7-Bottom Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                   | ⊥ <b>⊻</b> #₿      | 5-1 Area                          | ¢                            | B-3    | Screen from to ft. Open Hole from to ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| t mile                                                            | RUPP               | - B-6                             |                              |        | OBSTRUCTION/DEBRIS/FILL37.9 - 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| PROPERTY OWNER'S NAME                                             |                    | `                                 |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Ford Mot                                                          |                    |                                   |                              |        | Type of debris/obstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Mailing Address if different than pro<br>966 So. W                | operty address ind | i Blud.                           |                              |        | Obstruction/Debris/Fill removed? Ves No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 100 50.                                                           | AAL                |                                   |                              |        | PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| St. Paul;                                                         | 10110              |                                   |                              |        | A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Removed      Removed      Other      ther      Other      Other     Other     Other |  |  |  |  |
| GEOLOGICAL MATERIAL                                               | COLOR              | HARDNESS OF                       | FROM                         | то     | 4 wells7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| If not known, indicate estimated for                              | mation log from ne | FORMATION<br>earby well or boring | ].<br>].                     |        | Diameter Depth Set in oversize hole? Annular space initially grouted?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| - 1 1                                                             | 11                 | 1                                 |                              | 3      | in, from to ft Vres No Yes No Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Sunds, gravels, si                                                | 75                 | md                                | 06                           | 60.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              |        | in. from to ft. LI Yes LI No LI Yes LI No LI Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                   |                    |                                   |                              |        | in. from to ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              |        | METHOD USED TO SEAL ANNULAR SPACE BETWEEN 2 CASINGS, OR CASING AND BORE HOLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                   |                    |                                   |                              |        | X No Annular Space Exists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Casing Perforation/Removal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                   |                    |                                   |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              |        | in. from to ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              | t      | in from to ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Type of perforator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Type of periorator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                   |                    |                                   |                              |        | GROUTING MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Grouting material_Neat Cement from to to true bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Grouting material <u>recar cerricer</u> from to <u>coss</u> ft. yards bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                   |                    | CE AL INC                         |                              |        | Neat Cement from 0 to 24.5 ft. yards bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| REMARKS, SOURCE OF DATA, I<br>monitoring<br>4 "Wells See          |                    | SEALING                           | 9/92                         |        | B-3 <u>Neat Cement</u> from <u>0</u> to <u>24.5</u> ft. <u>yards</u> bags<br>B-5 <u>Neat Cement</u> from <u>0</u> to <u>22.6</u> ft. <u>yards</u> bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                   |                    |                                   |                              |        | B-6 Neat Cement from O to 47 th. yards bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 2" Diameter                                                       | Casin              | 15 fili                           | led                          |        | UNSEALED WELLS AND BORINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ith mate                                                          | ement              | anden                             | .+                           |        | Other unsealed well or boring on property?  Yes XNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| with neat coment and cut                                          |                    |                                   |                              |        | LICENSED OR REGISTERED CONTRACTOR CERTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| off at grade.                                                     |                    |                                   |                              |        | This well or boring was sealed in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Braun Interter Corp. Moiog<br>Contractor Business Name License or Registration No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                   |                    |                                   |                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                   |                    |                                   |                              |        | Authorized 12/8/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| B-1, B-3, B-                                                      |                    |                                   | - (                          |        | Autorized mepresentative signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| IMPORTANT-FILE WITH PROP<br>PAPERS-WELL OWNER CO                  | PERTY H            | 39547                             | (                            | _      | Name of Person Sealing Well or Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| HE-01434-01                                                       |                    | 110041                            |                              |        | Mane or resolt bearing wen or boning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

| STATE | 0F | MINNESOTA | DEPARTMENT OF HEALTH |  |
|-------|----|-----------|----------------------|--|
|       |    | ARANDONED | HELL RECORD          |  |

#2

ABANDONED WELL RECORD

İ

٠,

| 1. LOCATION OF WELL                                                   | ×                    |                                             | ABAIDONC               |               | MINNESOTA UNIQUE WELL NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------|----------------------|---------------------------------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| County Name CAMSU                                                     | 1                    |                                             |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Township Name Township M                                              | N Rang               | ge Number   Sec<br>E                        |                        | tion<br>tof t | 4. WELL DEPTH (completed) Date sealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28                                                                    | or s                 | 3 0 1                                       | 7                      | NW-SE         | 44.5 th. 5-31-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Numerical Street Address and<br>Intersection                          | City of Well         | l Location or D                             | istance from Ro        | ad            | 5. DRILLING METHOD (if known)<br>1 Cable tool 4 Reverse 7 Driven 10 Dug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 500' from Miss                                                        | sissipp              | ; Blud, S                                   | t. Paul,               | Mn            | 2 Hollow Rod 5 Air 8 Bored 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Show exact location of well                                           | ,,                   |                                             |                        |               | 3 Rotary 6 Jetted 9 Power Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (in section grid with "X")                                            |                      | ind Plan                                    | of well locati<br>.+   | on            | 6. OBSTRUCTIONS<br>Well obstructed Tyes D No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| W                                                                     | FC<br>E              | enclosu<br>Ae                               | d                      |               | Obstructions removed Arès No If obstructions cannot be<br>removed, contact MDH<br><u>before</u> sealing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       | ſ,                   | enclose                                     | tino                   |               | 7. USE<br>1 Domestic 4 Monitoring 8 Heat Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                       | λ, ⊶ί.<br>           |                                             | mal                    |               | 1 Domestic 4 Monitoring 8 Heat Loop<br>2 Irrigation 5 Public 9 Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | 1                    |                                             |                        |               | 3 Test Well 6 Municipal 10 Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                       |                      |                                             |                        |               | 7 Air Conditioning 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 PROPERTY OWNER'S NAME<br>Ford Mutov Company                         | Mailing<br>property  | Address if dif<br>address indica            |                        |               | 8. CASING(S)<br>1 Black 4 Threaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 966 S. MISSISSIPPI                                                    | BINd.                |                                             |                        |               | 2 Galv, S Welded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| St. Paul, Mn                                                          |                      |                                             |                        |               | 3 Plastic 6 Stainless Steel Not Known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>FORMATION LOG</li> <li>If not known, indicate for</li> </ol> | COLOR<br>rmation log | HARDNESS OF<br>FORMATION<br>from new well o | FROM<br>r nearby well. | TO            | in. toft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cobbles, boulders                                                     |                      |                                             | 0                      | 7             | 9. SCHER<br>Screened well from ft. to Wo tr. Known<br>(If known)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| gravel, sand                                                          | brown                |                                             | 7                      | 13            | (If known)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sand                                                                  | brown                |                                             | 13                     | 25            | 10. STATIC WATER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rand-gravel                                                           |                      |                                             | 25                     | 44            | 10. STATIC WATER LEVEL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| /                                                                     |                      |                                             |                        |               | 11. WELLHEAD COMPLETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       |                      |                                             |                        |               | 1 Pitless Adapter  Found Buried  Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S Pitless Adapter  S |
|                                                                       |                      |                                             |                        |               | 3 Well Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16. REMARKS, ELEVATION, SOURCE                                        | of data - CA         | SINGS REMOVED.                              | CASINGS PERFOR         | ATED, ETC.    | 12. GROUTING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Enclosed                                                              | DITE                 | map.                                        |                        |               | 10 Neat Cement 2 Bentonite at <u>Clmint</u><br>Grout material <u>Clmint</u> from <u>D</u> to <u>2</u> ft. cu. yds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Enclosed<br>Site mw #2                                                |                      |                                             |                        |               | neat <u>cement</u> 2 49:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       |                      |                                             |                        |               | 13. NEAREST SOURCES OF CONTAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                       |                      |                                             |                        |               | feet direction type<br>Well disinfected before sealing? [] Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                       |                      |                                             |                        |               | 14. PUMP Removed Not Present N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                       |                      |                                             |                        |               | Type: 1 Submersible 3 L.S. Turbine 5 Reciprocating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       |                      |                                             |                        |               | 2] Jet 4] Centrifugal 6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                      |                                             |                        |               | 15. EXISTING WELLS (Please sketch locations of abandoned and active wells in remarks section or on back.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       |                      |                                             |                        |               | Other unused [well(s) on property? Yes No<br>Abandoned: Permanent Temporary Not sealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                       |                      |                                             |                        |               | 17. WATER WELL CONTRACTORS CERTIFICATION<br>This well was sealed under my jurisdiction and this report<br>is true to the best of my knowledge and belief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       |                      |                                             |                        |               | GME Consultants, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                       |                      |                                             |                        |               | Licensee Business Name License No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       |                      |                                             |                        |               | Address 14000 21= HVC D. 11015, MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       |                      |                                             |                        |               | Tom Moore Date 6-9-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OFFICIAL ABANDONED WELL RECORD                                        | (May be use          | d for Property                              | Transfer)              |               | Name of Driller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IMPORTANT: PILE WITH DE                                               | BED                  |                                             |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| STATE | OF | MINNESOTA | DEPARTMENT | OF | HEALTH |
|-------|----|-----------|------------|----|--------|
|-------|----|-----------|------------|----|--------|

#4

ABANDONED WELL RECORD

Ń

2 9

| 1. LOCATION OF WELL                                                   |                                                        |                                                                                                                                   |                               | MINNESOTA UNIQUE WELL NO.<br>(leave blank if not known)                                                                                                                                               |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| County Name Cambles                                                   |                                                        |                                                                                                                                   |                               | T                                                                                                                                                                                                     |  |  |
| Township Name Township Number F                                       | $\frac{23 \times 17}{5}$                               | 4                                                                                                                                 | tion<br>tof t                 | 4. WELL DEPTH (completed) Date sealed $29.5$ ft. $5-31-89$                                                                                                                                            |  |  |
| Numerical Street Address and City of M<br>Intersection                | Vell Location or Distance                              | 1 1                                                                                                                               | W-SE                          | 5. DRILLING METHOD (if known)<br>1 Cable tool 4 Reverse 7 Driven 10 Dug                                                                                                                               |  |  |
| 500' From Mississi                                                    | ppi Blvd, 5t.                                          | 1, my                                                                                                                             | 2 Hollow Rod 5 Air 8 Bored 11 |                                                                                                                                                                                                       |  |  |
| Show exact location of well<br>(in section grid with "x")             | Sketch map of well                                     |                                                                                                                                   |                               | 3 Rotary 6 Jetted 9 Power Auger                                                                                                                                                                       |  |  |
| N<br>- L                                                              | Ford Planty<br>Enclosed                                | Well obstructed Yes No<br>Obstructions removed Yes No If obstructions cannot be<br>removed, contact MDH<br><u>before</u> sealing. |                               |                                                                                                                                                                                                       |  |  |
|                                                                       | M                                                      | ~1                                                                                                                                |                               | 7. USE<br>1 Domestic 4 Monitoring 8 Heat Loop<br>2 Irrigation 9 Public 9 Industry<br>3 Test Well 6 Municipal 10 Commercial<br>7 Air Conditioning 11                                                   |  |  |
| 2 PROPERTY OWNER'S NAME Mail                                          | ng Address if different t<br>ty address indicated abov |                                                                                                                                   |                               | 8. CASING(S)<br>1[] Black 4[] Threaded 7[]<br>2[] Galv. 5[] Welded                                                                                                                                    |  |  |
| St. Paul, Mn                                                          | HARDNESS OF                                            |                                                                                                                                   |                               | 3 Plastic 6 Stainless Steel Not Known                                                                                                                                                                 |  |  |
| 3. FORMATION LOG COLOR<br>If not known, indicate formation lo         | FORMATION<br>og from new well or nearby                | FROM<br>y well.                                                                                                                   | τo                            | in. toft.                                                                                                                                                                                             |  |  |
| Clay brown                                                            |                                                        | 0                                                                                                                                 | /                             | 9. SCREEN<br>Screened well from ft. to Note. Known<br>(If known)                                                                                                                                      |  |  |
| nana proun                                                            |                                                        | 1                                                                                                                                 | 2                             | Open Hole from ft. to ft.                                                                                                                                                                             |  |  |
| Nand - Fill plack<br>Nand brown                                       |                                                        | 27                                                                                                                                | 29                            | 10. STATIC WATER LEVEL<br><u>19.5</u> ft. below above<br>1and surface Date Measured <u>11-19-8</u>                                                                                                    |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | 11. WELLHEAD COMPLETION<br>1] Pitless Adapter                                                                                                                                                         |  |  |
| 16. REMARKS, ELEVATION, SOURCE OF DATA -                              |                                                        | PERFORM                                                                                                                           | ATED, ETC.                    | 12. GROUTING INFORMATION<br>120 Neat Cement 2 Bentonite 3                                                                                                                                             |  |  |
| Enclosed site r.<br>Site MW#4                                         | - P                                                    |                                                                                                                                   |                               | Grout material from to ft. cu. yes<br>EOB fo SUVFACe                                                                                                                                                  |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | 13. NEAREST SOURCES OF CONTAMINATIONfeetdirectiontyp                                                                                                                                                  |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | Well disinfected before sealing?  Yes                                                                                                                                                                 |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | 14. PUMP Removed Not Present N/A<br>Type: 1 Submersible 3 L.S. Turbine 9 Reciprocati<br>2 Jet 4 Centrifugal 6                                                                                         |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | 15. EXISTING WELLS (Please sketch locations of abandoned and<br>active wells in remarks section or on back.)<br>Other unused well(s) on property? Yes No<br>Abandoned: Permanent Temporary Not sealed |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | 17. WATER WELL CONTRACTORS CERTIFICATION<br>This well was sealed under my jurisdiction and this report<br>is true to the best of my knowledge and belief.<br>GME CONSULTANTS, Inc.                    |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | Licensee Business Name License No.                                                                                                                                                                    |  |  |
|                                                                       |                                                        |                                                                                                                                   |                               | Address 4000 21- 1712 10. 1110/5, 11110<br>Signet Date                                                                                                                                                |  |  |
|                                                                       | and for Desserts Taxat                                 | -1                                                                                                                                |                               | Iom Moore Date 6-9-89<br>Name of Driller                                                                                                                                                              |  |  |
| OFFICIAL ABANDONED WELL RECORD (May be u<br>INPORTANT: FILE WITH DEED | ises for property transfer                             | • )                                                                                                                               |                               |                                                                                                                                                                                                       |  |  |



## Minnesota Pollution Control Agency

520 Lafayette Road, Saint Paul, Minnesota 55155 Telephone (612) 296-6300



CERTIFIED MAIL RETURN RECEIPT REQUESTED

April 9, 1990

Mr. Jerry Amber Ford Motor Company Environmental Control Office Commerce Park North 15201 Century Drive, Suite 608 Dearborn, Michigan 48120

Dear Mr. Amber:

RE: Ford Motor Company-Twin Cities Assembly Plant

This letter is notification that the Minnesota Pollution Control Agency (MPCA) staff intends to recommend that the MPCA Board issue a Request for Response Action (RFRA) for the purpose of a Remedial Investigation and a Feasibility Study/Remedial Design and Response Actions to Ford Motor Company (Ford) for the Ford-Twin Cities Assembly Plant (Site) located at 966 South Mississippi River Boulevard, St. Paul, Minnesota. Ford has been identified by the MPCA staff as the Responsible Person (RP) under Minn. Stat. § 115B.03 for the release of hazardous substances from the Site. The detailed facts which have led MPCA staff to identify Ford as the RP, together with other pertinent statutory information, are found in the Site history provided in the enclosure to this letter.

All hazardous waste sites in the state of Minnesota are ranked by priority to target MPCA efforts most effectively. The ranking is done in accordance with criteria prescribed by the U.S. Environmental Protection Agency (EPA), called the Hazard Ranking Score (HRS) system. Following the scoring, the site may be included in the Minnesota Permanent List of Priorities (PLP) and/or included in the National Priorities List (NPL). The Site has been listed on the PLP, with a HRS score of 8.

The authority for the MPCA to issue the RFRA is found in Minn. Stat. §§ 115B.17 and 115B.18. The RFRA is a statutorily mandated MPCA request that a RP conduct an investigation of contamination, examine alternative response actions and conduct response actions at a specific site, following appropriate procedures. Should the RP choose not to undertake the required investigations and/or response actions, the statutes allow the MPCA to undertake these cleanup steps and recover the expenses incurred or request the Attorney General to bring a lawsuit to compel performance of the RFRA activities.

MN-COMP 0052288

Regional Offices: Duluth • Brainerd • Detroit Lakes • Marshall • Rochester Equal Opportunity Employer Printed on Recycled Paper Mr. Jerry Amber Page 2

The same statute imposes five determinations the MPCA Board must make before issuing RFRAs. The determinations are:

- 1. A facility exists or has been identified to have existed;
- 2. A release or threatened release has been identified;
- 3. The release or threatened release is or was from the identified facility;
- 4. The release or threatened release is or was of a hazardous substance and/or a pollutant or contaminant; and,
- 5. The person(s), to whom the RFRA is to be directed, is a RP.

Based on these five determinations, MPCA staff believes that sufficient evidence exists to support its decision to recommend that the MPCA Board issue a RFRA to Ford. The RFRA is expected to be presented to the MPCA Board at their May 22, 1990, Board meeting.

Should you feel that you have information you wish to have considered in the RFRA or Site history, please submit this information to the Project Manager within thirty (30) days of the date of this letter. Except in limited circumstances (e.g., new analytical data is generated or new information is obtained from record searches or depositions which indicates you may not be a responsible party) information provided after thirty (30) days of the date of this letter will not be considered for inclusion in the preparation of the RFRA and it is unlikely that the MPCA Board will consider that information at its May 22, 1990, meeting. Enclosed is a draft copy of the Site history.

The MPCA staff, in addition to soliciting any information you feel would be relevant to issuance of a RFRA, is hereby soliciting your preference to enter into or not to enter into negotiations of a Consent Order. A Consent Order is a negotiated contract between the MPCA and the Responsible Party. The Consent Order specifies the activities to be undertaken to clean up a site, specifies the order in which cleanup activities will occur and specifies the schedule for the cleanup activities. The MPCA staff will present your preference to the MPCA Board and if you indicate a preference to enter into Consent Order negotiations, a Consent Order negotiation period will be specified in the RFRA that the MPCA staff recommends to the MPCA Board.

Your written preference to either enter into or not to enter into Consent Order negotiations should also be submitted to the Project Manager within 30 days of the date of this letter.

MN-COMP 0052289

Mr. Jerry Amber Page 3

For comments or questions on this letter or the proposed RFRA, please contact Mr. Todd Goeks, Project Manager, of my staff at (612) 296-7710.

Sincerely,

illet

Gerald L. Willet Commissioner

GLW:kkn

Enclosure

## MN-COMP 0052290

### SITE HISTORY

In October 1980, the MPCA staff received a complaint reporting past waste disposal at the Ford Motor Company (Ford)-Twin Cities Assembly Plant Site (Site), located at 966 South Mississippi River Boulevard, St. Paul, Ramsey County, Minnesota. The complainant stated that, during the 1950's, Ford had dumped waste solvents and barreled paint wastes over the river bluff west of the assembly plant. The MPCA staff requested that Ford investigate and report on the company's past waste management practices.

In responses to the information request, Ford stated that unknown quantities of waste paint solvents and sludges had been disposed on-site during a period from early plant operation until approximately 1965.

In addition to the disposal area located over and along the base of the bluff west of Mississippi River Boulevard (Site C), Ford identified the locations of three other historical disposal areas. The first additional dump was located southeast of the main assembly plant. Used solvents and oils were burned and factory wastes were buried at this location during early years of plant operations. No information regarding waste quantities or years of operation was available for this dump. Reportedly, assembly plant engineering records indicate that during a 1962 parking lot expansion, materials from this area were excavated and relocated to Site C.

Another disposal area was located at the south end of an old test track located east of the assembly plant. Waste paint sludges and solvents were disposed of in this area during a period from 1943 to approximately 1960. Materials were reportedly excavated from this disposal area in 1966 during an expansion of the railroad "tri-level" car loading yard. Excavated materials were placed at Site C.

The third additional disposal area identified by Ford was located north of the steam plant. All waste materials from this location were excavated and transported to a permitted disposal facility in 1983. This excavation was conducted to facilitate construction of a wastewater treatment plant.

In addition to the excavated materials and wastes relocated from other dumps to Site C, waste paint solvents and sludges generated by the assembly plant continued to be\_disposed at Site C until approximately 1965. Site C received large quantities of demolition rubble and excavated soil generated during 1984 to 1986 from construction of the Ranger paint plant at the old test track location. Much of the past waste dump is now located under 30 feet of debris fill. Presently, a major portion of the filled area at Site C is paved with eight inches of concrete and is being used as a parking lot for truck trailers.

Ford has been in operation at the Site since 1915. Activities at the Site have included: auto glass manufacturing, automobile manufacturing, and automobile assembly and painting. Initially the plant was used exclusively for auto glass production. Later, the western half of the plant housed Model T manufacturing and painting. Glass manufacturing operations ceased in 1958.

The Site, including all areas discussed above, has been owned by Ford since the early 1900's. At MPCA staff's request, Ford initiated a hydrogeological

investigation at Site C by installing a limited ground water monitoring program in December 1982 to determine whether wastes deposited at the Site had degraded ground water quality. Ground water samples collected and analyzed from Site C in 1982 indicated relatively low-level concentrations of contaminants including: 22 parts per billion (ppb) cis 1,2-dichloroethylene (DCE), 15 ppb trans 1,2-DCE, 59 ppb ethyl acetate, 5 ppb trichloroethylene (TCE), 2.1 ppb toluene, and 70 ppb tetrahydrofuran. Ground water analysis for metals indicated 20 ppb cadmium, 390 ppb chromium, and 220 ppb lead, each of which is above the Recommended Allowable Limit (RAL) for drinking water. Additional ground water samples collected and analyzed in 1989 indicated reduced levels of both metals and solvents; however, since two wells which were directly downgradient were abandoned prior to this sampling event, the samples collected were not completely representative of the ground water underlying the disposal site. Ford is presently conducting additional ground water investigations at Site C to accurately assess ground water quality underlying this disposal site.

At MPCA staff's request, Ford also initiated an investigation at the dump site located southeast of the main assembly plant in June 1989 to determine whether past waste management practices have impacted ground water quality. Soil and ground water samples were collected and analyzed, indicating the following maximum contaminant concentrations: 100,000 ppb ethyl benzene and 980 ppb total xylenes in soil; and 230 ppb methylene chloride, 43 ppb 1,1-DCE, 510 ppb benzene, and 3000 ppb ethyl benzene in ground water.

In October 1989, while investigating the possible sources of earlier reported releases, MPCA staff collected a ground water grab sample from an unlined sump adjacent to underground tanks used for waste solvent storage. Laboratory results indicated 13,000 ppb benzene, 1,920,000 ppb methylisobutyl ketone (MIBK), 16,000 ppb toluene, and 210,000 ppb ethyl benzene. The wastes stored in the tanks include: xylene, toluene, MIBK, methyl ethyl ketone, and small amounts of unspecified solvents.

The MPCA staff believes that the five determinations required before the MPCA can issue a RFRA have been met as follows:

- 1. The Site is a facility because hazardous substances were stored, deposited, disposed of, or placed at the Site. Waste solvents, including toluene, xylene, methyl ethyl ketone (MEK), and MIBK were stored and unknown quantities of unspecified waste paint solvents and sludges were disposed of at the Site. The Site is also a facility because it contains buildings, pipes or pipelines, storage containers, and landfills.
- 2. A release or threatened release of hazardous substances has been identified. MPCA staff has identified, through Ford's responses to information requests, that a release of hazardous substances occurred when waste paint solvents and sludges were disposed of at the Site. Releases of hazardous substances have also been identified by analysis of soil and ground water samples collected at the Site which revealed the presence of ethyl benzene and xylene in soil, and ethyl benzene, toluene, methylene chloride, benzene, cis 1,2-DCE, trans 1,2-DCE, 1,1-DCE, ethyl acetate, TCE, tetrahydrofuran, and MIBK in ground water.
- 3. The release or threatened release of hazardous substances is from the facility. Soil and ground water samples collected at the Site reveal the

presence of ethyl benzene and xylene in soil, and ethyl benzene, toluene, methylene chloride, benzene, cis 1,2-DCE, trans 1,2-DCE, 1,1-DCE, ethyl acetate, TCE, tetrahydrofuran, and MIBK in ground water.

- 4. The releases or threatened releases are hazardous substances. Toluene, ethyl benzene, methylene chloride, benzene, cis 1,2-DCE, trans 1,2-DCE, 1,1-DCE, ethyl acetate, TCE, tetrahydrofuran, xylene, and MIBK are hazardous substances because they are listed as hazardous wastes pursuant to 40 CFR 261.33 or Minn. Rules pt. 7045.0135, subp. 4.F.
- 5. Ford is a responsible person because it owned and operated the facility when the hazardous substances were placed or came to be located in or on the facility and during the time of the release or threatened release. Ford is also a responsible person because it owns the Site property and engaged in the business of generating, storing, and disposing of hazardous substances at the Site.

MN-COMP 0052293