

Energy Scenarios

CODE

Built to code using typical HVAC systems (gas and electric)

BUSINESS-AS-USUAL

Built 10% better than code using typical HVAC systems (gas and electric)

BUNDLE 1A

High-efficiency buildings with distributed geothermal (all electric)

BUNDLE 1B – ATES

High-efficiency buildings with district aquifer thermal energy storage (all electric)

BUNDLE 1B – GEOTHERMAL

High-efficiency buildings with district geothermal (all electric)

Hillcrest GHG Emissions Scenarios

- Wastewater
- Solid Waste
- Transportation
- Natural Gas
- Electricity

Key Findings

- A high-efficiency, all-electric community can be cost competitive over its life cycle.
- District solutions are viable and should continue to be developed.
- There is no "clear winner" among the evaluated scenarios. Their relative costeffectiveness will vary based on how incremental costs are distributed over time.

Disclaimers

The following variables are not currently accounted for:

- Cost of Xcel infrastructure/savings from not installing natural gas infrastructure
- Operational savings from EV fueling and maintenance
- Rate structure for on-site solar
- Energy storage costs/savings

Incremental Costs

Incremental Costs vs. Saint Paul Port Authority Business-As-Usual		
	Bundle 1A	Bundle 1B
Residential Energy Efficiency	\$24-30M	\$17-\$26M
Industrial Energy Efficiency	\$13-16M	\$9-\$14M
District Energy System	n/a	\$15-21M
Solar	\$27M	\$27M
EV Charging	\$1M	\$1M
Total	\$65-74M	\$69-89M

Incremental costs to achieve 19 LEED points are in the 10s of millions of dollars.

The incremental cost of a district system may be comparable to a non-district system.

Operational Savings

Operational Savings vs. Saint Paul Port Authority BAU			
	Bundle 1A	Bundle 1B	
Residential Energy Efficiency	\$17-\$30M	\$14-29M	
Industrial Energy Efficiency	\$11-\$20M	\$10-19M	
District Energy System	n/a	n/a	
Solar	\$36M	\$36M	
EV Charging	not quantified	not quantified	
Total	\$64-\$86M	\$60-\$84M	

Operational savings on utility bills, O&M, and equipment replacement over a 25-year period could offset incremental costs.

Utility Costs – Low-Rise Residential Building (Xcel)

The monthly utility costs for low-rise residential buildings are significantly lower than the business-as-usual scenario.

^{*} Assumes all savings from efficiency are passed to residents

^{**} Assumes all savings from efficiency and solar are passed to residents (doesn't account for service fees, etc.)

Utility Costs – Industrial Building (Xcel)

The monthly utility costs for industrial buildings are significantly lower than the business-as-usual scenario.

^{*} Assumes all savings from efficiency are passed to residents

^{**} Assumes all savings from efficiency and solar are passed to residents (doesn't account for service fees, etc.)

Life Cycle Costs – Entire Site (Ever-Green Energy)

Life cycle cost analysis can be used to compare costeffectiveness.

Key variables:

- cost of capital
- geothermal well costs

Next steps?

- Port to define key questions to answer and timeline for decision-making.
- Investigate sources to fund incremental costs.
 Kick-off meeting with Xcel, Ever-Green, and IPS?
- Further develop on-site solar concept. Discuss rate structures with Xcel. Evaluate energy storage options.
- Explore business plan for district system options. Conduct on-site testing to confirm assumptions and refine pricing estimates.

