

Limited Phase II Environmental Investigation Vacant Property, Highway 280 and Kasota Avenue St. Paul, Minnesota

> Prepared for: Venture Pass Partners, LLC Mason Holdings III, LLC

June 2019

Table of Contents

1.0	Introduction and Background	
1.1	Introduction	
1.2	Background and Phase I Summary	
2.0	Investigation Results	
2.1	Field Investigation Summary	
2.2	Field Investigation Results	
2.3	Laboratory Analytical Results	9
3.0	Conclusions and Recommendations	11

Tables

Table 1	Investigation Location Rationale and Sampling Summary
Table 2	Laboratory Soil Data – Detected Parameters

Figures

Figure 1	Property Location Map
Figure 2	Property Layout Map With Investigation Locations
Figure 3	Previous Investigation Locations

Appendicies

- Appendix A Landmark Standard Operating Procedures
- Appendix B Braun Geotechnical Evaluation Report
- Appendix C Photo Log
- Appendix D Test Trench Logs
- Appendix E Pace Analytical Laboratory Reports

www.landmarkenv.com

© Copyright 2016. Landmark Environmental LLC. All rights reserved. Proprietary and confidential content contained within. No part of this document may be reproduced, distributed or transmitted by any means, electronic or physical, for any purpose without the expressed prior written consent of Landmark Environmental. This document contains specific Intellectual Property (IP) owned by Landmark Environmental. This document is intended solely for the party specified within.

1.0 Introduction and Background

1.1 Introduction

Landmark Environmental, LLC (Landmark) conducted a Limited Phase II Environmental Investigation (Investigation) at the property located northwest of Kasota Avenue and MN-280 in the City of St. Paul, Ramsey County, Minnesota (Property). Landmark conducted the Investigation on behalf of Venture Pass Partners, LLC and Mason Holdings III, LLC. The field work portion of the Investigation was conducted on May 30, 2019. The location of the Property is shown on **Figure 1**.

The Investigation was based on the information included in the *Phase I Environmental Site Assessment, Northwest of Kasota Avenue and MN-280, St. Paul, Minnesota* (Phase I ESA Report), which was prepared on behalf of Venture Pass Partners, LLC and Mason Holdings, LLC and dated April 2019, as well as the *Proposal for Limited Phase II Environmental Investigation, Vacant Property, Highway 280 and Kasota Avenue, St. Paul*, prepared by Landmark for Venture Pass Partners, LLC and dated January 8, 2019. The Investigation provides an evaluation of soil and fill material on the Property and takes into account the results of previous investigations. Landmark collected and field screen soil samples at eight (8) test trenches to investigate the findings from the Phase I ESA and provide overall spatial coverage across the Property.

Figure 2 shows the Investigation locations and **Table 1** summarizes the Investigation location rationale and the corresponding analytical sampling summary. All Investigation activities were conducted in accordance with Landmark Standard Operating Procedures (SOPs), which are included in **Appendix A**, as well as applicable Minnesota Pollution Control Agency (MPCA) guidance documents.

1.2 Background and Phase I Summary

The Property is currently owned by Stan Koch and Sons Trucking, Inc. The Property consists of 1.668 acres of land that currently is zoned for light industrial use. The Property has never been developed. Historical aerial photographs from 1947 show surface water on the northern half and far-south sections of the Property. Surface water was no longer present by 1953, but visible again in 1966. This fluctuation may be the result of seasonal changes, precipitation or snowmelt. By 1974, the majority of the Property was occupied by surface water. By 1980, fill material appears to have been brought onto the Property because surface water is present on adjacent sites but is no longer present on the Property. The southwestern corner of the Property appears to support a stormwater pond/low-lying area between 1988 and present. The current Property owner, Stan Koch and Sons Trucking Inc., acquired the Property on February 25, 1992 and the Property has been vacant and unused since then.

Previous environmental investigations indicated that the Property supported a portion of the Elm Street Ash dump, which was used for disposal of incinerator ash containing heavy metals and other wastes. Therefore, historic uses on the Property have likely involved the use, storage, and/or disposal of hazardous substances and petroleum products, and the documented presence of impacted fill soils at the Property, likely caused by historic dumping (Elm Street Ash Dump), was identified as a Recognized Environmental Conditions (REC) in the Phase I ESA Report.

Based on the identified REC, a Limited Phase II Environmental Investigation was recommended to further understand the potential for sub-surface impacts related to the planned redevelopment.

The following previous environmental assessments and investigations were conducted at the Property and were summarized in the Phase I ESA. Summaries of the scope and findings of these previous investigations are included below, and the analytical sample data listed in these summaries were compared to MPCA criteria at the time that these reports were published.

- *Exploratory Soil Borings for Phillips Klein, 280 & Kasota*, prepared by Advance Surveying & Engineering, Co. and dated March 14, 1986 (1986 Soil Borings Report);
- *MPCA Property File Evaluation Letter*, prepared by the MPCA and dated August 10, 1995 (1995 MPCA File Evaluation);
- *Phase I Environmental Site Assessment, Kasota Avenue and Highway 280, St. Paul, Minnesota*, prepared by GME and dated August 17, 1995 (1995 Phase I ESA);
- A Geotechnical Evaluation Report for Stan Koch & Sons Trucking, Proposed Manufacturing/Warehouse Building Northwest of the Intersection of Kasota Avenue and the Southbound Minnesota Highway 280 Entrance Ramp in St. Paul, Minnesota, prepared by Braun Intertec Corporation (Braun) and dated January 15, 1996 (1996 Geotechnical Report);
- *Environmental Profile, Kasota and Highway 280 Saint Paul, Ramsey County, MN*, prepared by EnPro Assessment Corp (EnPro) and dated May 21, 1996 (1996 Environmental Profile); and
- Log of Boring Sheets and Monitoring Well Details for the Site Located in the Northwest Quadrant of Kasota Avenue and Highway 280 in St. Paul, Minnesota, prepared by Braun and dated March 27, 1996 (1996 Borings Logs).

1986 Soil Borings Report

As summarized in the 1986 Soil Borings Report, two borings were advanced at the Property on March 13, 1986, at opposite corners of the "buildable area". One of the boring locations is shown on **Figure 3**. The second boring location could not be deciphered from the map included in the 1986 Soil Borings Report. Soils at the Property were reported to be sandy clay fill with concrete chunks and other debris down to a depth of approximately 22 feet below ground surface (bgs), where black, peaty clay was encountered. Peaty clay was underlain by firm brown sandy

clay from 23 to 29 feet, where borings were terminated. Water was observed in borings at approximately 22 feet bgs. Analytical samples were not collected.

1995 MPCA File Evaluation

This document is a compilation of excerpts from regulatory files for regulatory-listed sites in the vicinity of the Property. Current regulatory-listed sites are described in Section 5.1 of the Phase I ESA.

1995 Phase I ESA

Based upon historical and regulatory information reviewed, in-house files, and Property reconnaissance, the 1995 Phase I ESA identified multiple observations related to environmental conditions at the Property. Relevant observations include the following:

- The Property is covered with fill containing glass, plastic, slag, tires, wood, and metal. There is a sewer line extending along the south side of the Property.
- The land use surrounding the Property is industrial to the west and north with railyards to the south.
- According to previous investigations, subsurface soils are sandy clay fill with debris to a depth of 22 feet where water was encountered.
- Monitoring wells were observed on sites located approximately ¹/₄ mile northwest and ¹/₄ mile southeast of the Property.
- The Property and surrounding sites were used as an ash dump by Burlington Northern and the City of Minneapolis for years. Records indicate that some of the City of Minneapolis ash deposits exceed the recommended levels for heavy metals. Other wastes may have been dumped in the area.
- A wetland is present on the southwest corner of the Property.
- Multiple regulatory-listed sites are present in the Property vicinity, including multiple SPILL sites, Leak sites, hazardous waste generators. Three releases were also documented at the intersection of Highway 280 and Kasota Avenue.

1996 Geotechnical Report

The 1996 Geotechnical Report summarizes a November 1995 geotechnical investigation which determined that conditions at the Property are unsuitable for spread footing foundations. The subsequent 1996 geotechnical investigation was conducted in order to evaluate deeper conditions.

During the November 1995 investigation, six borings were advanced at the Property to a maximum depth of 25 feet bgs. All borings encountered 16 to 22 feet of debris-laden, variably organic fill consisting of silty sand mixed with glass, sandy lean clay, concrete, gravel, wood, cinder, paper and peat. Fill was underlain by glacially-deposited sandy lean clay or silty sand. Fuel odors were detected at two borings locations (ST-1 and ST-4) at a depth of 2.5 feet bgs.

During the 1996 geotechnical investigation, two of the original sampling locations (ST-2 and ST-3) were re-sampled to a maximum depth of 70 to 80 feet bgs. Approximately 18 to 20 feet of variably organic fill was reported. Fill was underlain with glacially-deposited poorly graded sand, clayey sand and sandy lean clay to approximately 58 feet bgs. Below 58 feet, one boring location encountered shale bedrock to its termination depth of 80 feet bgs. Groundwater was observed at depths of approximately 16 to 21 feet bgs.

1996 Environmental Profile

The 1996 Environmental Profile summarizes a soil and groundwater investigation conducted at the Property in 1996. This investigation was conducted as a follow up to a 1995 Phase II Investigation (report not available), during which EnPro monitored three of six geotechnical borings advanced by Braun (SB-3, SB-5, and SB-6). EnPro reported no visual or olfactory evidence of contamination, other than organic vapor readings of 0.1 to 11.2 parts per million (ppm) from 4 to 16 feet at one location (SB-5) and from 6 to 12 feet at a second location (SB-6). Braun reported strong petroleum odors from 2-4 feet at two of the geotechnical boring locations (SB-1 and SB-4).

Analytical data from the 1995 Phase II Investigation is not available, but the 1996 Environmental Profile indicated that several gasoline compounds were detected at one sampling location (SB-5) from 20 to 22 feet bgs and 1,2,4-trimethylbenzene was detected at a second location (SB-6) from 24 to 26 feet bgs. One semi-volatile (bis 2 ethyl-hexyl phthalate) and two pesticides (heptachlor and dieldrin) were detected in the same location (SB-6) from 24 to 26 feet (near the water table). Pesticide levels were reportedly low. Petroleum volatile organic compounds (VOCs) were detected in water table samples (SB-5 and SB-6) below MPCA action levels. Lead and cadmium were detected at one location (SB-6) from 8 to 10 feet bgs at levels that reportedly would warrant a leach test to determine if soil is hazardous. EnPro recommend additional sampling of soil and groundwater.

During the follow-up 1996 investigation, ten additional soil borings and three monitoring wells were advanced at the Property in the footprint of a proposed building and along the western Property boundary. Sampling locations are shown on **Figure 3**. Debris was reported at all borings, including glass, concrete, plastic, brick, cinders, paper, metal, and wood. Fuel odors were reported in multiple boring locations (MW-11, SB-14, SB-15, SB-16, SB-18, SB-19, SB-21). Organic vapor readings collected in the field were above background at nine of the borings and above 10 ppm at MW-11 (6 to 8 feet), SB-20 (0 to 4 feet), SB-14 (2 to 6 feet), SB-15 (2 to 6 feet), SB-16 (2 to 4 feet), and SB-18 (4 to 6 feet).

Laboratory analysis of soil samples indicated that petroleum, polychlorinated biphenyls (PCBs), lead, and pesticides are primary contaminants of concern. Petroleum contamination is said to consist of fuel oil, possibly mixed with gasoline and/or solvents, which is laterally widespread, but vertically confined to 2 to 6 feet bgs, with the exception of one boring location (SB-5), where field screening indicated that contamination extends to the water table. The continuous layer was said to suggest that petroleum-contaminated soil or ash was disposed of at the Property

during one or several specific events. Diesel range organics (DRO) was detected at or over 100 milligrams per kilogram (mg/kg), the current MPCA criteria for unregulated excess fill, at SB-18 from 2 to 4 feet (100 mg/kg) and SB-21 from 4 to 6 feet (500 mg/kg). Soil samples were also analyzed for benzene, toluene, ethylbenzene and xylene (BETX). All reported BTEX concentrations were well below current MPCA screening criteria for an industrial setting.

PCB impacts to soil were detected from 2 to 4 feet in the vicinity of SB-20 and SB-21. PCBs were reported to be linked or possibly linked to petroleum contamination. Total PCBs were detected at 7.7 mg/kg in the sample collected at SB-20, and at 6.7 mg/kg in the sample collected at SB-21. Both of these concentrations are below the current MPCA criteria of 10 mg/kg for an industrial setting.

Lead impacts to soil exceeded 1996 screening criteria (MPCA Tanks and Emergency Response action limits for land farming of petroleum) at four locations, MW-11, SB-21, SB-6, and SB-23. Only one of these detections, 1,300 mg/kg at MW-11, exceeds current MPCA screening criteria for an industrial setting. Additional metals were detected in soil but all detections were also well below current MPCA screening criteria for an industrial setting.

Pesticides previously detected at SB-6 were not detected in other borings and were not determined to have impacted groundwater.

Monitoring wells were installed in three locations to depths of 22 to 23 feet bgs with a 10 foot screened interval. MW-11 was located on the upgradient side of the Property and MW-12 and MW-13 were located downgradient. Groundwater was reported at 10 to 19.5 feet bgs. Based on water level measurements collected in monitoring wells, groundwater at the Property was determined to be flowing to the west-northwest. Groundwater samples were analyzed for VOCs, pesticides, and metals. Multiple petroleum-based parameters as well as cadmium and silver were detected in groundwater. Concentrations of PCB 1254 and cadmium exceeded the Minnesota Department of Health (MDH) Health Risk Limit (1996 standard) in samples collected from each of the three wells, as well as the current MDH HRLs. No additional detections exceed current HRLs.

1996 Borings Logs

As summarized in the 1996 Borings Logs, thirteen soil borings and three monitoring wells were advanced at the Property on March 5, 6, and 7, 1996. Soils were reported to be 15 to 22 feet of fill underlain by till, with the exception of MW-12, MW-13, and SB-20, where up to 4 feet of swamp and lake deposits were present above till. Outwash was encountered at depth in boring MW-13. Groundwater was encountered at 10 to 19.5 feet bgs.

2.0 Investigation Results

2.1 Field Investigation Summary

The REC identified in the Phase I ESA Report was assessed as part of this Investigation. Landmark completed the field work portion of the Investigation on May 30, 2019, at the locations shown on **Figure 2**. The Investigation focused on assessing soil and characterizing fill material across the Property.

Prior to conducting the fieldwork, Landmark prepared a Site Safety Plan. Excavation services for the test trench portion of the Investigation for the collection of soil samples were provided by Frattalone Companies (Frattalone). In addition, Braun Intertec (Braun) was onsite to conduct a geotechnical evaluation for the proposed parking lot design and their associated report is included in **Appendix B**. A summary of the Investigation location rationale and analytical summary is listed in **Table 1** and a Photo Log documenting Investigation activities is included in **Appendix C**.

2.1.1 Soil Sampling Summary

Eight test trenches, labeled Landmark Test Trench 1 (LTT-1) through LTT-8, were advanced and excavated to investigate the REC and to provide overall spatial coverage across the Property. The test trenches were excavated to an approximate depth of 5 feet bgs for the collection of soil samples. Soil samples submitted for laboratory analysis focused on characterizing near surface soil (approximately 0 to 5 feet bgs) across the Property for soil that may be disturbed during future redevelopment (construction of a semi-trailer parking lot), and to assess the potential for contamination.

Soil samples are labeled according to location and depth. For instance, sample LTT-5/2-4 was collected at location LTT-5 from 2 to 4 feet bgs. All soil samples were screened in the field for organic headspace values with a photoionization detector (PID) equipped with an 11.7 eV bulb as well as visual observation including screening for suspect regulated asbestos containing materials (RACM). A total of 16 soil samples (two samples at each test trench) were submitted to Pace Analytical Services, Inc. (Pace) for analysis; however, 8 of the 16 soil samples (one sample at each test trench) were held for analysis. Soil samples were analyzed for Resource Conservation and Recovery Act (RCRA) metals, VOCs, DRO, polynuclear aromatic hydrocarbons (PAHs) and PCBs, and these parameters were determined at each location based on field screening indications of contamination and to provide spatial coverage across the Property. Because suspect RACM were not observed, samples for RACM were not collected. Field screening results are listed on the test trench logs in **Appendix D** and the detected analytical parameters are listed in **Table 2**.

2.2 Field Investigation Results

Figure 2 shows the Property layout with the Investigation locations and **Table 1** provides the Investigation Location Rationale and Sampling Summary. Fill material was observed across the

Property to depths of 5 feet bgs, as shown on the cross-sectional photos in the test trench logs in **Appendix D**. Fill material was comprised of silty sand with varying amounts of gravel and debris.

Field screening indications of contamination, including elevated PID readings [greater than 10 parts per million (ppm)], were observed in each test trench. A petroleum odor and elevated PID readings ranging from 12.9 to 254.2 ppm were observed at each test trench. Debris consisting of concrete, brick, clay tile, glass, plastic, wood, rubber, slag/coke, ash, metal and styrofoam were observed in each test trench.

2.3 Laboratory Analytical Results

Detected analytical parameters for soil samples are listed in **Tables 2** along with the MPCA Tier 1 Soil Leaching Values (SLVs), MPCA Residential Soil Reference Values (RSRVs) and the MPCA Industrial Soil Reference Values (ISRVs) for comparison purposes. The Pace laboratory reports are included in **Appendix E**.

The following items summarize the analytical results of soil samples listed in Table 2:

Except for arsenic, chromium, lead and mercury, all detected RCRA metals were reported below the MPCA criteria. Arsenic was reported above the Tier 1 SLV of 5.8 milligrams per kilogram (mg/kg) in sample LTT-5/0-2' (10.3 mg/kg), LTT-6/0-2' (5.9 mg/kg) and LTT-7/2-4' (7.1 mg.kg). In addition, arsenic in sample LTT-5/0-2' was reported above the RSRV of 9 mg/kg, but below the ISRV of 20 mg/kg. Total chromium was reported from 43.3 to 75.1 mg/kg in samples LTT-1/1-2', LTT-2/2-3', LTT-5/0-2', LTT-6/0-2', LTT-7/2-4' and LTT-8/0-2'. The chromium detections are above the Tier 1 SLV of 36 mg/kg for Chromium VI, but below the RSRV of 87 mg/kg. However, because the samples were analyzed for total chromium at Pace, the concentrations of chromium are not discussed further. Lead was reported in samples LTT-1/1-2' and LTT-5/0-2' at 579 mg/kg and 1,430 mg/kg, respectively. Theses lead detections are above the RSRV of 300 mg/kg and the lead detection in sample LTT-5/0-2' is above the ISRV of 700 mg/kg. Mercury was reported above the RSRV of 0.5 mg/kg in sample LTT-5/0-2' (0.52 mg/kg), but well below the Tier 1 SLV of 3.3 mg/kg and ISRV of 1.5 mg/kg.

Because lead was detected in all 8 samples above 100 mg/kg, each sample was analyzed for lead using the Toxicity Characteristic Leaching Procedure (TCLP). However, lead was not detected above the laboratory's method detection limit (MDL) in any of the samples.

• Soil samples were collected for analysis of PCBs at each location. Total PCBs were detected in each sample and concentrations ranged from 0.37 to 5.5 mg/kg. These concentrations are above the Tier 1 SLV of 0.13 mg/kg. Total PCBs were detected above the RSRV of 1.2 mg/kg, but below the ISRV of 8 mg/kg in samples LTT-1/1-2' (4.0

mg/kg), LTT-2/2-3' (5.5 mg/kg), LTT-4/2-4' (3.3 mg/kg), LTT-5/0-2' (2.6 mg/kg) and LTT-7/2-4' (3.5 mg/kg). No PCBs were reported above the ISRV of 8 mg/kg.

- Three (3) soil samples were submitted to Pace for laboratory analysis of VOCs including LTT-4/2-4', LTT-6/0-2' and LTT-7/2-4'. Of the 14 VOCs detected, all of the detected VOCs were reported below the Tier 1 SLVs, RSRVs and ISRVs, except for benzene, ethylbenzene and trichloroethylene (TCE). Benzene was detected above the Tier 1 SLV of 0.017 mg/kg in sample LTT-7/2-4' (0.14 mg/kg), but below the RSRV of 6 mg/kg and ISRV of 10 mg/kg. Ethylbenzene was detected above the Tier 1 SLV of 1 mg/kg in sample LTT-7/2-4' (2.6 mg/kg), but well below the RSRV and ISRV of 200 mg/kg. TCE was detected at 0.099 mg/kg, 0.09 mg/kg and 0.10 mg/kg in samples LTT-4/2-4', LTT-6/0-2' and LTT-7/2-4', respectively. These TCE detections are above the Tier 1 SLV of 0.0023 mg/kg, but well below the RSRV of 29 mg/kg and ISRV of 46 mg/kg.
- DRO was detected in each sample and concentrations ranged from 89.2 mg/kg to 1,660 mg/kg. The reported DRO concentrations were "T6-flagged" in the Pace laboratory reports to indicate that "high boiling point hydrocarbons are present in the sample". In addition, the reported DRO concentrations at LTT-2 through LTT-8 were "T7-flagged" in the Pace laboratory report to indicate that "low boiling point hydrocarbons are present in the sample. The MPCA does not list risk-based criteria for DRO. Rather, the MPCA Petroleum Remediation Program lists a Best Management Practice (BMP) criteria for DRO of 100 mg/kg when defining unregulated fill for soil with no field screening indications of contamination. Seven of the 8 sampling locations exceeded 100 mg/kg for DRO, including LTT-1/1-2', LTT-2/2-3', LTT-3/0-2', LTT-4/2-4', LTT-5/0-2', LTT-6/0-2' and LTT-7/2-4'.
- PAHs were reported in each of the 8 soil samples submitted to Pace for analysis. PAH concentrations were calculated as the benzo(a)pyrene (BaP) equivalent for comparison with MPCA risk-based criteria. BaP equivalent concentrations ranged from 0.30 mg/kg to 1.3 mg/kg and all PAH concentrations were reported below the MPCA ISRV (3.0 mg/kg) the RSRV (2.0 mg/kg) and the Tier 1 SLV (1.4 mg/kg).

3.0 Conclusions and Recommendations

The Phase I ESA Report indicated that historic activities on the Property have likely involved the use, storage, and/or disposal of hazardous substances and petroleum products, and the documented presence of impacted fill soils at the Property, likely caused by historic dumping (Elm Street Ash Dump), was identified as a REC in the Phase I ESA Report. This REC was addressed during the Investigation, which involved the excavation of 8 test trenches at the locations shown on **Figure 2**. Test trench logs included in **Appendix C** provide descriptions of the soil and fill material.

Eight soil samples (one from each test trench) were analyzed at Pace for RCRA metals, VOCs, DRO, PAHs and PCBs, as well as TCLP lead. Impacts to soil at the Property were observed and/or reported at the following locations:

- Fill material was observed across the Property to depths of 5 feet bgs, as shown on test trench logs in **Appendix D**. Fill material was comprised of silty sand with varying amounts of gravel and debris. Field screening indications of contamination, including elevated PID readings, were observed in each test trench. A petroleum odor, elevated PID readings that ranged from 12.9 ppm to 254.2 ppm, and debris consisting of concrete, brick, clay tile, glass, plastic, wood, rubber, slag/coke, ash, metal and styrofoam were observed in each of the test trenches.
- Arsenic was reported above the Tier 1 SLV in sample LTT-5/0-2', LTT-6/0-2' and LTT-7/2-4'. In addition, arsenic in sample LTT-5/0-2' was reported above the RSRV, but below the applicable MPCA ISRV criteria.
- Lead was reported in samples LTT-1/1-2' and LTT-5/0-2' above the RSRV and the lead detection in sample LTT-5/0-2' is above the applicable MPCA ISRV criteria. Because lead was detected in all 8 samples above 100 mg/kg, each sample was analyzed for TCLP lead. TCLP lead sample was not detected above the Pace MDL.
- Mercury was reported above the RSRV in sample LTT-5/0-2', but well below the Tier 1 SLV and the applicable MPCA ISRV criteria.
- Total PCBs were detected in the 8 soil samples above the Tier 1 SLV. In addition, total PCBs were detected above the RSRV in samples LTT-1/1-2', LTT-2/2-3', LTT-4/2-4', LTT-5/0-2' and LTT-7/2-4'. Total PCBs were not detected above the MPCA ISRV.
- Soil samples LTT-4/2-4', LTT-6/0-2' and LTT-7/2-4' were submitted to Pace for laboratory analysis of VOCs. Of the 14 VOCs detected, all of the detected VOCs were reported below the Tier 1 SLVs, RSRVs and the applicable MPCA ISRV criteria, except for benzene, ethylbenzene and TCE. Benzene was detected above the Tier 1 SLV in sample LTT-7/2-4', but below the RSRV and the ISRV. Ethylbenzene was detected

above the Tier 1 SLV in sample LTT-7/2-4', but well below the RSRV and the ISRV. TCE was detected in samples LTT-4/2-4', LTT-6/0-2' and LTT-7/2-4' above the Tier 1 SLV, but well below the RSRV and the ISRV.

- DRO was reported in each of the 8 samples. Except for the DRO sample at LTT-8, DRO was reported above the MPCA BMP criteria of 100 mg/kg in each of the samples
- PAHs were reported in each sample; however, concentrations were reported below the MPCA ISRV, RSRV and the Tier 1 SLV.

Based on the Investigation results, Landmark offers the following recommendations:

- The current Property owner should report the soil results listed in this Report to the Minnesota Department of Emergency Management Duty Officer.
- Landmark recommends that Venture Pass Partners, LLC and Mason Holdings III, LLC prepare an enrollment application to the MPCA Voluntary Brownfields Program. The application should request that the MPCA Voluntary Investigation and Cleanup (VIC) Program issue a No Association Determination for Venture Pass Partners, LLC, Mason Holdings III, LLC, and any lenders for the identified impacts to soil listed in this Investigation Report.
- Landmark recommends that a Voluntary Response Action Plan (VRAP) be prepared and submitted to the MPCA VIC and Petroleum Brownfields Programs for review and approval to address the management of impacted soil and fill material (and groundwater if necessary) associated with future construction activities to redevelop the Property as a surface parking lot for semi-trailer parking. Also, Landmark recommends that an Environmental Construction Contingency Plan (ECCP) be prepared and submitted to the MPCA VIC and Petroleum Brownfields Programs for review and approval to address any unknown conditions related to impacted soil and fill material and groundwater contamination that may be encountered during construction activities.

Tables

Table 1Investigation Location Rationale and Sampling Summary
Vacant Property, Highway 280 and Kasota Avenue
St. Paul, Minnesota
May 2019

Location Name	Trench Depth (feet bgs)	Historical and/or Location Rationale	Sample Depth and Analytical Parameters
LTT-1	5	Test trench located in the southeast corner of the Property and just southwest of monitoring well 11.	Soil sample LTT-1/1-2' collected from fill material for DRO, PAHs, RCRA metals, PCBs and TCLP lead analysis. (Hold VOCs) Soil sample LTT-1/4-5' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)
LTT-2	5.5	Test trench located just south of the trees on the southeastern portion of the Property.	Soil sample LTT-2/2-3' collected from fill material for DRO, PAHs, RCRA metals, PCBs and TCLP lead analysis. (Hold VOCs) Soil sample LTT-2/4-5' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)
LTT-3	5	Test trench located just north of monitoring well 12.	Soil sample LTT-3/0-2' collected from fill material for DRO, PAHs, RCRA metals, PCBs and TCLP lead analysis. (Hold VOCs) Soil sample LTT-3/2-4' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)
LTT-4	5	Test trench located in the proposed stormwater pond area.	Soil sample LTT-4/0-2' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs) Soil sample LTT-4/2-4' collected from fill material for DRO, PAHs, RCRA metals, PCBs, TCLP lead and VOCs analysis.
LTT-5	5	Test trench located just east of monitoring well 13.	Soil sample LTT-5/0-2' collected from fill material for DRO, PAHs, RCRA metals, PCBs and TCLP lead analysis. (Hold VOCs) Soil sample LTT-5/2-4' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)
LTT-6	5	Test trench located in the northwest corner of the Property.	Soil sample LTT-6/0-2' collected from fill material for DRO, PAHs, RCRA metals, PCBs, TCLP lead and VOCs analysis. Soil sample LTT-6/2-4' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)
LTT-7	5	Test trench located in the north-central portion of the Property at about 80 feet northeast of LTT-5 and about 80 feet southeast of LTT-6.	Soil sample LTT-7/0-2' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs) Soil sample LTT-7/2-4' collected from fill material for DRO, PAHs, RCRA metals, PCBs, TCLP lead and VOCs analysis.
LTT-8	5	Test trench located in the central portion of the Property at about 105 feet northeast of LTT-4 and about 80 feet northwest of LTT-3.	Soil sample LTT-8/0-2' collected from fill material for DRO, PAHs, RCRA metals, PCBs and TCLP lead analysis. (Hold VOCs) Soil sample LTT-8/2-4' collected from fill material. (Hold DRO, PAHs, RCRA metals, PCBs and VOCs)

Table 2 Laboratory Soil Data - Detected Parameters Vacant Property, Highway 280 and Kasota Avenue, St. Paul, Minnesota (Results in mg/kg)

Sample Name	MPCA	MPCA	MPCA	US EPA ¹	LTT-1	LTT-2	LTT-3	LTT-4
Depth	2013	2009	2009	Characteristic Waste	1-2'	2-3'	0-2'	2-4'
Soil Type	Tier 1	Residential	Industrial	for Toxicity for	Fill	Fill	Fill	Fill
Date Collected	SLVs	SRVs	SRVs	Landfill Disposal	5/30/2019	5/30/2019	5/30/2019	5/30/2019
Petroluem								
PID Readings (ppm)	10	10	10	NS	0.0	1.2	0.0	3.8
DRO	100*	100*	100*	NS	151	171	128	159
			100				.=•	
PCBs	0.13	1.2	8	NS	4.0	5.5	0.37	3.3
RCRA Metals								
Arsenic	5.8	9	20	NS	4.5	4.6	3.8	4.5
	1,700	1,100	18,000	NS	119	123	62.7	110
Cadmium	8.8	25	200	NS	0.95	1.0	0.55	0.84
Chromium (III/VI)	100000000/36	44000/87	10000/650	NS	43.9	43.3	30.5	23.5
Lead	2,700	300	700	NS	579	260	154	208
Selenium	2.6	160	1,300	NS	<1.1	<1.1	<1.1	<1.1
Silver	7.9	160	1,300	NS	0.62	0.58	0.59	<0.57
Mercury	3.3	0.5	1.5	NS	0.19	0.28	0.12	0.23
TCLP RCRA Metals (mg/L)								
Lead	NS	NS	NS	5.0	<0.10	<0.10	<0.10	<0.10
	•		-	•		•	-	-
VOCs	- I		1	1 1		ſ	1	
1,2,4-Trimethylbenzene	2.7	8	25	NS	NA	NA	NA	0.12
1,2-Dichlorobenzene	11	26	75	NS	NA	NA	NA	<0.063
1,3,5-Trimethylbenzene	2.7	3	10	NS	NA	NA	NA	< 0.063
Benzene	0.017	6	10	NS	NA	NA	NA	<0.025
Ethylbenzene	1	200	200	NS	NA	NA	NA	0.64
Isopropylbenzene (Cumene)	9.5	30	87	NS	NA	NA	NA	< 0.063
Naphthalene	4.5	10	28	NS	NA	NA	NA	<0.25
Toluene	2.5	107	305	NS	NA	NA	NA	0.19
Trichloroethene (TCE)	0.0023	29	46	NS	NA	NA	NA	0.099
Xylene (Total)	5.4	45	130	NS	NA	NA	NA	0.52
n-Butylbenzene	NS	30	92	NS	NA	NA	NA	<0.063
n-Propylbenzene	NS	30	93	NS	NA	NA	NA	<0.063
p-Isopropyltoluene	NS	NS	NS	NS	NA	NA	NA	<0.063
sec-Butylbenzene	NS	25	70	NS	NA	NA	NA	<0.063
DALLa								
PAHs Acenaphthene	81	1,200	5,260	NS	0.027	0.028	0.041	0.019
Acenaphthylene	NS		NS	NS	0.027	0.028	0.041	<0.019
Acenaphinylene	1,300	7,880	45,400	NS	0.018	0.022	0.070	0.012
Benzo(a)anthracene	BaP Eq	BaP Eq	BaP Eq	NS	0.33	0.24	0.41	0.19
Benzo(a)pyrene	BaP Eq BaP Eq	BaP Eq	BaP Eq	NS	0.39	0.24	0.65	0.19
Benzo(b)fluoranthene	BaP Eq	BaP Eq	BaP Eq	NS	0.63	0.46	0.90	0.30
Benzo(g,h,i)perylene	NS	NS	NS	NS	0.34	0.28	0.50	0.17
Benzo(k)fluoranthene	BaP Eq	BaP Eq	BaP Eq	NS	0.24	0.28	0.37	0.11
Chrysene	BaP Eq BaP Eq	BaP Eq	BaP Eq	NS	0.24	0.31	0.58	0.11
Dibenz(a,h)anthracene	BaP Eq BaP Eq	BaP Eq BaP Eq	BaP Eq BaP Eq	NS	0.097	0.075	0.58	0.24
Fluoranthene	670	<u>Бар Еч</u> 1,080	6,800	NS	0.59	0.44	0.12	0.31
Fluorene	110	850	4,120	NS	0.026	0.032	0.039	0.029
Indeno(1,2,3-cd)pyrene	BaP Eq	BaP Eq	4,120 BaP Eq	NS	0.026	0.032	0.42	0.029
Napththalene	4.5	<u>ВаРЕ</u> 10	28	NS	0.26	0.21	0.42	0.13
•	4.5 NS	NS	NS 28	NS	0.14	0.13	0.30	0.077
Dhonanthrong		IN 3	- C.V.	110	U.33	0.50	U.3/	U.22
Phenanthrene Pyrene	440	890	5,800	NS	0.57	0.39	0.59	0.28

Footnotes:

¹ As defined under 40 CFR 261 Subpart C. Analytical method is Toxicity Characteristics Leaching Procedure (TCLP) under US EPA SW-846 Method 1311

* Meets MPCA Unregulated Fill Criteria for DRO

BaP Eq: benzo(a)pyrene equivalent

DRO: diesel range organics

mg/kg: milligrams per kilogram

mg/L: milligrams per liter

MPCA: Minnesota Pollution Control Agency

NA: not analyzed

NS: no standard PAHs: polynuclear aromatic hydrocarbons PCBs: polychlorinated biphenyls PID: photoionization detector ppm: parts per million RCRA: Resource Conservation Recovery Act SLV: Soil Leaching Value SRV: Soil Reference Value VOCs: Volatile Organic Compounds

Table 2 Laboratory Soil Data - Detected Parameters Vacant Property, Highway 280 and Kasota Avenue, St. Paul, Minnesota (Results in mg/kg)

Sample Name	MPCA	MPCA	MPCA	US EPA ¹	LTT-5	LTT-6	LTT-7	LTT-8
Depth	2013	2009	2009	Characteristic Waste	0-2'	0-2'	2-4'	0-2'
Soil Type	Tier 1	Residential	Industrial	for Toxicity for	Fill	Fill	Fill	Fill
Date Collected	SLVs	SRVs	SRVs	Landfill Disposal	5/30/2019	5/30/2019	5/30/2019	5/30/2019
Petroluem								
PID Readings (ppm)	10	10	10	NS	0.0	0.0	50.2	0.0
DRO	100*	100*	100*	NS	163	106	1,660	89.2
PCBs	0.13	1.2	8	NS	2.6	0.40	3.5	0.67
RCRA Metals								
Arsenic	5.8	9	20	NS	10.3	5.9	7.1	5.4
Alsellic	1,700	1,100	18,000	NS	242	138	191	98.5
Cadmium	8.8	25	200	NS	6.8	5.4	2.1	1.1
					59.5	43.9	61.2	75.1
Chromium (III/VI)	100000000/36	44000/87	10000/650	NS NS		43.9 261	268	173
Lead Selenium	2,700	300 160	700 1,300	NS	1,430	<1.2		
Selenium	7.9	160	1,300	NS	<1.2 0.69	<1.2 0.82	<1.3 2.0	<1.3 0.66
Silver Mercury	3.3	0.5	1,300	NS	0.69	0.82	0.16	0.66
werdury	3.3	0.5	6.1	ονi	0.51	0.23	0.10	0.20
TCLP RCRA Metals (mg/L)								
Lead	NS	NS	NS	5.0	<0.10	<0.10	<0.10	<0.10
V00-								
VOCs	0.7	0	25	NC	NIA	0.40	4.0	NIA
1,2,4-Trimethylbenzene	2.7	8	25	NS	NA	0.18	1.6	NA
1,2-Dichlorobenzene	11 2.7	26	75 10	NS	NA NA	<0.085 0.085	0.090	NA NA
1,3,5-Trimethylbenzene	0.017	3 6	10	NS NS	NA NA	<0.085	0.36	NA
Benzene	1	200	200	NS	NA	0.39	2.6	NA
Ethylbenzene Isopropylbenzene (Cumene)	9.5	30	87	NS	NA	<0.085	0.16	NA
Naphthalene	4.5	10	28	NS	NA	<0.085	0.61	NA
Toluene	2.5	107	305	NS	NA	<0.34 0.59	0.73	NA
Trichloroethene (TCE)	0.0023	29	46	NS	NA	0.09	0.10	NA
Xylene (Total)	5.4	45	130	NS	NA	1.3	3.4	NA
n-Butylbenzene	NS	30	92	NS	NA	<0.085	0.43	NA
n-Propylbenzene	NS	30	92	NS	NA	<0.085	0.43	NA
p-Isopropyltoluene	NS	NS	NS	NS	NA	<0.085	0.17	NA
sec-Butylbenzene	NS	25	70	NS	NA	<0.085	0.29	NA
,	- I		ł	4				ł
PAHs								
Acenaphthene	81	1,200	5,260	NS	0.040	<0.062	0.081	< 0.027
Acenaphthylene	NS	NS	NS	NS	0.022	0.080	0.027	<0.027
Anthracene	1,300	7,880	45,400	NS	0.16	0.098	0.055	0.073
Benzo(a)anthracene	BaP Eq	BaP Eq	BaP Eq	NS	0.92	0.44	0.17	0.29
Benzo(a)pyrene	BaP Eq	BaP Eq	BaP Eq	NS	0.88	0.47	0.22	0.35
Benzo(b)fluoranthene	BaP Eq	BaP Eq	BaP Eq	NS	1.3	0.75	0.32	0.47
Benzo(g,h,i)perylene	NS	NS	NS	NS	0.63	0.43	0.21	0.30
Benzo(k)fluoranthene	BaP Eq	BaP Eq	BaP Eq	NS	0.48	0.26	0.11	0.20
Chrysene	BaP Eq	BaP Eq	BaP Eq	NS	0.94	0.51	0.26	0.35
Dibenz(a,h)anthracene	BaP Eq	BaP Eq	BaP Eq	NS	0.19	0.15	0.058	0.09
Fluoranthene	670	1,080	6,800	NS	1.3	0.70	0.29	0.43
Fluorene	110	850	4,120	NS	0.039	<0.062	0.11	< 0.027
Indeno(1,2,3-cd)pyrene	BaP Eq	BaP Eq	BaP Eq	NS	0.52	0.34	0.16	0.23
Napththalene	4.5	10	28	NS	0.18	0.14	0.44	0.14
Phenanthrene	NS	NS	NS	NS	0.63	0.39	0.38	0.36
Pyrene	440	890	5,800	NS	1.2	0.67	0.35	0.40
Total BaP Equivalent	1.4	2	3	NS	1.3	0.74	0.33	0.52

Footnotes:

¹ As defined under 40 CFR 261 Subpart C. Analytical method is Toxicity Characteristics Leaching Procedure (TCLP) under US EPA SW-846 Method 1311

* Meets MPCA Unregulated Fill Criteria for DRO

BaP Eq: benzo(a)pyrene equivalent

DRO: diesel range organics

mg/kg: milligrams per kilogram

mg/L: milligrams per liter

MPCA: Minnesota Pollution Control Agency

NA: not analyzed

NS: no standard PAHs: polynuclear aromatic hydrocarbons PCBs: polychlorinated biphenyls PID: photoionization detector ppm: parts per million RCRA: Resource Conservation Recovery Act SLV: Soil Leaching Value SRV: Soil Reference Value VOCs: Volatile Organic Compounds

Figures

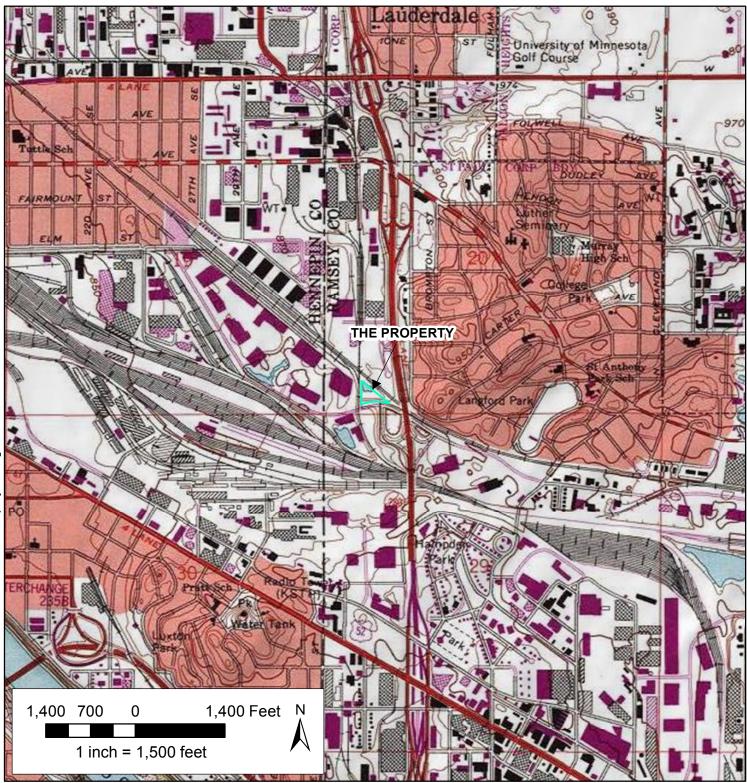
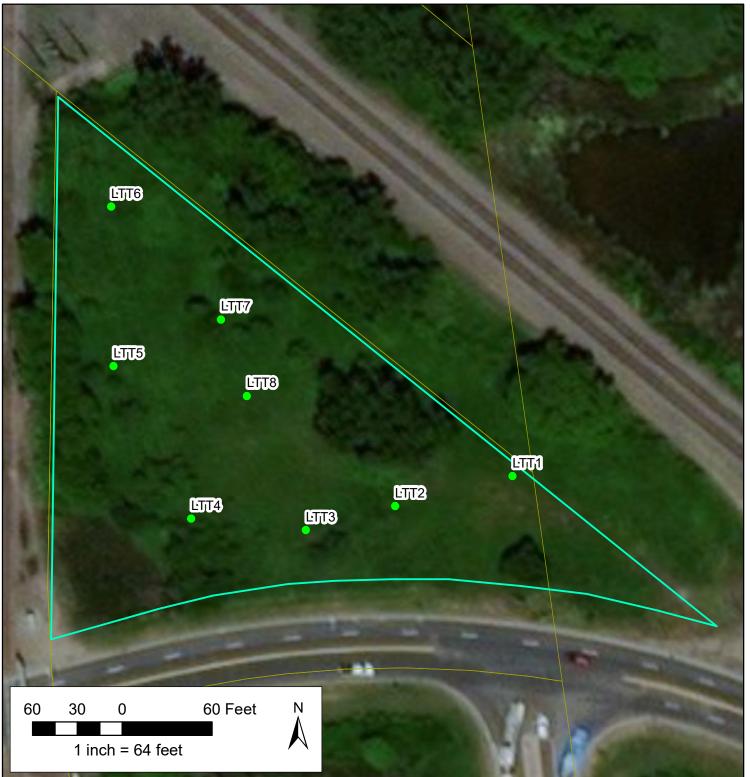
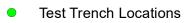



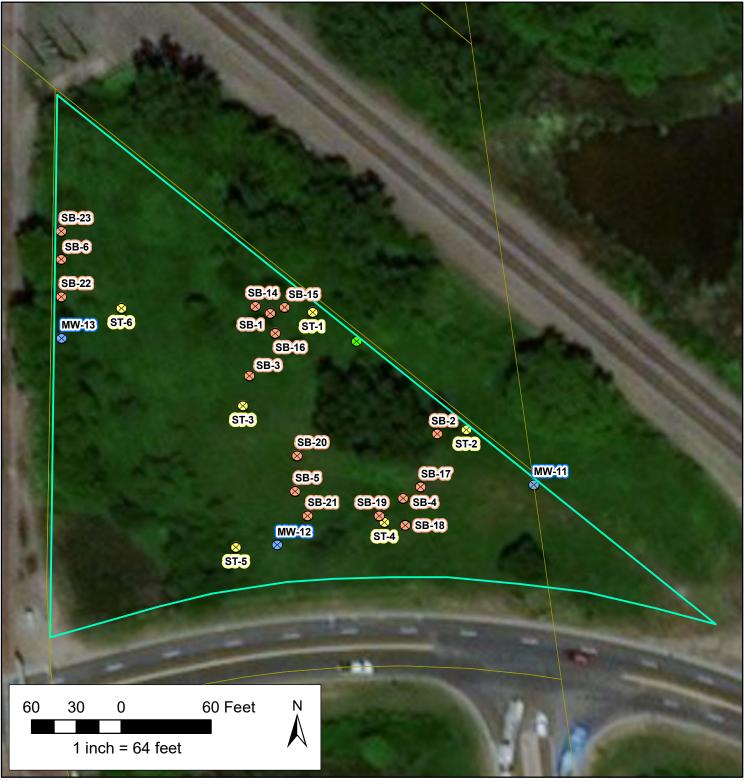
Figure 1

PROPERTY LOCATION MAP NW of Kasota Ave and MN-280 St. Paul, Minnesota


LANDMARK ENVIRONMENTAL, LLC

Legend

Tax Parcels



Property Boundary

Figure 2

PROPERTY LAYOUT MAP WITH INVESTIGATION LOCATIONS NW of Kasota Ave and MN-280 St. Paul, Minnesota

LANDMARK ENVIRONMENTAL, LLC

Legend

Property Boundary

Tax Parcels

Previous Investigation Locations

- 8 1986 Advance Surveying Geotechnical Boring
- 8 1996 Braun Geotechnical Boring
- 8 1996 EnPro Boring
- 8 1996 EnPro Monitoring Well

Figure 3

PROPERTY LAYOUT MAP WITH PREVIOUS INVESTIGATION LOCATIONS NW of Kasota Ave and MN-280 St. Paul, Minnesota

LANDMARK ENVIRONMENTAL, LLC

Appendices

Appendix A

Standard Operating Procedures for the Bag Headspace Procedure Soil Sample Collection and Analysis May 29, 2018

Introduction

This document describes technical standard operating procedures (SOPs) prepared by Landmark Environmental, LLC (Landmark). The SOPs, which are being submitted to the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) for review, are based on the MPCA's Risk Based Site Characterization and Sampling Guidance, Working Draft, September 16, 1998 and Soil Sample Collection and Analysis Fact Sheet #3.22, July 1996 and has been prepared in accordance with Guidance for Preparing Standard Operating Procedures (QA/G-6), EPA/600/B-07/001, April 2007.

While it is understood that different practitioners will employ various methods based on their experience and equipment, due care will be taken to ensure integrity of the samples and data quality. The procedures recommended in the SOPs may be varied or changed, with MPCA or EPA approval, depending on site-specific conditions or emerging technologies and methodologies. In all cases, the methodologies used in the field must be thoroughly described and documented in the final report accompanying the sampling results. Field work will be completed using the same methods and procedures at all sampling locations throughout the project. Equipment required to collect headspace readings includes, nitrile gloves, self-sealing quart-size bags, a photoionization detector (PID), and the appropriate personal protective equipment necessary for collection and handling of soil samples as described in the Site Safety Plan (SSP).

Field Screening Procedure

The MPCA recommends the polyethylene bag headspace method described below as the field procedure for characterization of soil contamination:

Use a PID with 11.7 or greater eV. Perform PID instrument calibration of site and at the start, end of the day and at least once mid-day to yield "total organic vapors" in volume parts per million (ppmv) of PCE equivalent. Follow the manufacturer's instructions for operation, maintenance, and calibration of the instrument. Daily calibration records will be kept. MPCA staff reserve the right to request these records.

Use a self-sealing quart-size polyethylene freezer bag. Half-fill the bag with the sample to be screened so the volume ratio of soil to air is equal. The bag should then be immediately sealed. If necessary, manually break up the soil clumps within the bag. *Note:* Soil collected from a split spoon should be transferred to the bag immediately after opening the split spoon; soil collected from an excavation or soil pile should be collected from freshly exposed surfaces.

Allow headspace development for at least 10 minutes. Vigorously shake bags for 15 seconds both at the beginning and end of the headspace development period. Headspace development decreases with temperature. When temperatures are below the operating range of the instrument perform headspace development and analysis within a heated vehicle or building. Record the ambient temperature during headspace screening. *Complete headspace analysis within approximately 20 minutes of sample collection.*

Following headspace development introduce the instrument sampling probe through a small opening in the bag to a point about one-half of the headspace depth. Keep the probe free of water droplets and soil particles.

Record the highest meter response in the appropriate field documentation (Drilling Log, Environmental Sampling Log, Excavation Sidewall Stratigraphic Log or the Field Information Data Sheet. Maximum response usually occurs within about two seconds. Erratic meter response may occur at high organic vapor concentrations or if moisture is present. Note any erratic headspace data.

This SOP was prepared by:

Name: Eric Gabrielson

2. In Cohol

Signature: Title: Field Manager

This SOP was reviewed by:

Name: Jason Skramstad

An D Shand

Signature: Title: Project Manager

This SOP was approved by:

Name: Ken Haberman

Len Abelerman

Signature: Title: Quality Assurance Manager

Standard Operating Procedure for Classification of Soils for Engineering Purposes May 29, 2018

Introduction

This document describes technical standard operating procedures (SOPs) prepared by Landmark Environmental, LLC (Landmark). This SOP, which has been submitted to the U.S. Environmental Protection Agency (EPA) for review.is based on the Minnesota Pollution Control Agency (MPCA) and has been prepared in accordance with *Guidance for <u>Preparing</u> Standard Operating Procedures* (*QA*/*G*-6), EPA, EPA/240/B-01/004, March 2001. This SOP provides procedures for field methods and procedures for the collection of soil samples that will be submitted for laboratory analysis for a variety of hazardous substances. This SOP also provides procedures for the classification of soils for Engineering purposes specifically following ASTM D 2487-06 method.

Soil classification is used to systematically group soils with similar physical characteristics in the same classification category. The use of a soil classification system produces a consistent description of soil samples that can be readily understood by engineers, geologists, drillers and other members of the project team. Soil classification systems groups soils based upon physical characteristics (e.g. grain size, gradation, plasticity, etc.). General engineering and hydrologic properties of soils can be estimated from these physical characteristics allowing rapid preliminary assessment of site conditions during a field investigation program when little time is available for laboratory analyses. A systematic grouping of similar soil types based upon physical characteristics aids in the identification and correlation of subsurface stratigraphy. Accurate identification of subsurface structures of heterogeneities can have a significant impact on rates and directions of contaminant movement.

Procedure

Qualified individual will ensure that samples to be classified are representative of the soil strata from which they were obtained. Soil will be identified on the field data sheets to where it was collected. In addition, field personnel will write an extensive description of the soil encountered. Equipment necessary in the field for soil identification include; a knife or similar steel tools, a hand lens, a soil chart, a Munsell color chart, and a USCS Soil Classification Chart.

The following criteria are to be recorded in the field:

- Color
- Moisture
- Density
- Shape
- Size
- Plasticity
- Odor
- Noted if contaminated

The soil will be given one or more of the following designations:

- GW –well graded gravels
- GP –poorly graded gravels with little or no fines
- GM –silty gravels

- SW –well graded sands
- SP –poorly graded sands
- SM –silty sands
- SC –clayey sands
- ML –inorganic silts
- CL –inorganic clays
- OL –organic silts
- MH –inorganic silts
- CH –inorganic clay (fat clays)
- OH –organic clays
- PT –organic based soils

Fill and Debris Soils

Fill and debris soils are common to encounter during the initial depths of any soil boring. Fill and or debris represent any material that has been placed un- naturally typically occurring at the ground surface. These types of soils include soils that do not appear natural, concrete, brick, glass, plastic and organic materials. When fill/debris soils are encountered, they will be noted on the field data sheet.

Documentation

Documentation will be noted on the field data sheets or the soil boring logs.

Reference

ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (ASTM D 2487).

This SOP was prepared by:

Name: Eric Gabrielson

2. In Cohol

Signature: Title: Field Manager

This SOP was reviewed by:

Name: Jason Skramstad

An D Shand

Signature: Title: Project Manager

This SOP was approved by:

Name: Ken Haberman

Ken Abelieuman

Signature: Title: Quality Assurance Manager

Standard Operating Procedure for General Soil Sample Collection May 29, 2018

Introduction

This document describes technical standard operating procedures (SOPs) prepared by Landmark Environmental, LLC (Landmark). This SOP, which has been submitted to the U.S. Environmental Protection Agency (EPA) for review.is based on the Minnesota Pollution Control Agency (MPCA) and has been prepared in accordance with *Guidance for Preparing Standard Operating Procedures (QA_G-6)*, EPA, EPA/240/B-01/004, March 2001. This SOP provides procedures for field methods and procedures for the collection of soil samples that will be submitted for laboratory analysis for a variety of hazardous substances. This SOP also provides procedures for integrated and grab sample collection, as well as quality assurance/quality control (QA/QC) procedures for field sample collection, as well as quality assurance/quality control (QA/QC) procedures for field sample collection and laboratory analysis. This SOP also provides procedures for grab and composite sample collection and laboratory analysis.

A variety of samplers (Geoprobe, backhoe, split-barrel, auger, shovel, and hand sampling methods) may be used to retrieve soil from sampling locations. Immediately after collection, the soil sample will be transferred to laboratory-supplied containers. Equipment required to transfer soil from the sampler to the laboratory-supplied sample containers includes single uses disposable nitrile gloves, stainless steel spoons or scoops, and the appropriate personal protective equipment necessary for collection and handling of soil samples as described in the Site Safety Plan (SSP).

To prevent sample cross-contamination, all soil sampling equipment will be new and or cleaned prior to sampling. All sampling tools, including split-barrels and stainless steel spoons and scoops, will be cleaned before use and between samples by washing with a soap free of phosphate and 1,4-dioxane/clean-water solution (such as Seventh Generation Free ®) and rinsed with potable water. using a brush if necessary, and rinsing with potable water. Gloves will be discarded between sampling locations.

Metals, PAHs, VOC, and other General Analytical Samples

Soil samples collected with a sampler:

- 1. Open the sampler.
- 2. For VOCs analysis collect sample directly from the sampler using either a subcoring device, such as an Encore sampler[™] or a modified syringe. Obtain the soil sample and either cap the subcoring device immediately or extrude the sample into a sample jar that contains methanol from the laboratory and immediately screw on the lid.
 - 3. If a composite sample is required, place the remaining soil into a stainless steel or other inert container for mixing. Mix thoroughly to obtain a homogenous sample that is representative of the entire sample. Mixing soil for homogenous sample is applicable for Metals, PAH and other General Analytical Samples. Mix thoroughly with either a gloved hand or clean inert mixing apparatus. This will ensure a sample that represents a mixed

aliquot of the soil. Place soil into each appropriate container and wipe the jar lip and screw threads to remove soil and provide a good sealing surface, immediately screw on the lid. If the sample was homogenized, complete notes on the field homogenization sheet. Laboratory performed incremental sub-sampling techniques procedures are presented in the Appendix C (Laboratory Certifications) of the QAPP.

- 4. These and all samples will be documented with in a chain-of custody (COC), one per cooler and cooled to approximately 4°C. Ice used for cooling will be made from potable water. When the MPCA provides a COC, it will be adopted. The samples will either be hand delivered to the laboratory or direct courier. A Pace provided COC is provided as Attachment 1.
- 5. For MS/MSD samples two extra jars of soil will be collected for of VOC analysis but not TAL metals, PCGs and PAH. The extra volumes for VOC samples will be collected as stated below with a Encore Sampler TM or a modified syringe.

Soil samples collected by hand:

- 1. Dig to the desired sampling interval, exposing a fresh soil surface to sample.
- 2. Collect a large sample on a shovel or auger and bring it to the surface, or collect the sample directly from the fresh soil surface.
 - 3. For VOCs analysis collect sample directly from the sampler using either a subcoring device, such as an Encore sampler[™] or a modified syringe. Obtain the soil sample and either cap the subcoring device immediately or extrude the sample into a sample jar that contains methanol from the laboratory and immediately screw on the lid.
- 4. .
 - 5. If a composite sample is required, place the remaining soil into a stainless steel or other inert container for mixing. Mix thoroughly to obtain a homogenous sample representative of the entire sample. Mixing soil for homogenous sample is applicable for Metals, PAH and other General Analytical Samples place the remainder of the sample into a clean stainless steel or other homogenization container and mix thoroughly with either a gloved hand or inert clean mixing apparatus. If the sample was homogenized, complete notes on the field homogenization sheet. This will ensure a sample that represents a mixed aliquot of the soil. Wipe the jar lip and screw threads to remove soil and provide a good sealing surface, and immediately screw on the lid. Laboratory performed incremental sub-sampling techniques procedures are presented in the Appendix C (Laboratory Certifications) of the QAPP.
- 6. These and all samples will be documented with in a chain-of custody (COC), one per cooler and cooled to approximately 4°C. Ice used for cooling will be made from potable water. (See example COC at end of SOP.)

Volatile Organic Samples

Soil samples collected either by sampler or by hand:

- 1. Expose fresh soil surface in sampler.
- 2. Using a subcoring device, such as an Encore sampler[™] or a modified syringe obtain a soil sample and either cap the subcoring device immediately or extrude the sample into a sample jar that contains methanol from the laboratory.

- 3. Wipe the jar lip and screw threads to remove soil and provide a good sealing surface, and immediately screw on the lid.
- 4. These and all samples will be documented with in a chain-of custody (COC), one per cooler and cooled to approximately 4°C. Ice used for cooling will be made from potable water.

Sample Storage

Field personnel will maintain custody of the samples until transferred to the shipper or laboratory.

Documentation on a Chain-of-Custody

The Chain-of-Custody (see Attachment 1) shows traceable possession of samples from the time they are obtained until they are introduced as evidence in legal proceedings (when the MPCA provides a chain of custody form it will be adopted for use).

- 1. Complete the Chain-of-Custody prior to leaving the sampling location.
- 2. Complete one Chain-of-Custody or more as needed for each cooler of samples.
- 3. Provide the following information on the Chain-of-Custody form:
 - Project number
 - Sample identification
 - Date and time of sample collection
 - Container type and number
 - Whether the sample is a grab, composite, or blank sample
 - Project manager
 - Project contact
 - Laboratory
 - Analyses required
 - Signature of sampler(s)
 - Signature of transferee
 - Date and time of transfer
 - Method of transport and any shipping numbers

This SOP was prepared by:

Name: Eric Gabrielson

9. In Cohol

Signature: Title: Field Manager

This SOP was reviewed by:

Name: Jason Skramstad

An D. Shand

Signature: Title: Project Manager

This SOP was approved by:

Name: Ken Haberman

Ken Abelieuman

Signature: Title: Quality Assurance Manager

Appendix B

Geotechnical Evaluation Report

Proposed Pavements 280 Trailer Storage Kasota Avenue and Hwy 280 South Entrance Ramp St. Paul, Minnesota

Prepared for

Venture Pass Partners, LLC or assigns and Mason Holdings III, LLC or assigns

Professional Certification:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of Minnesota.

Robert J. Janssen, PE President - Principal Engineer License Number: 19943 June 21, 2019

Project B1905336

Braun Intertec Corporation

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438 Phone: 952.995.2000 Fax: 952.995.2020 Web: braunintertec.com

June 21, 2019

Project B1905336

Mr. Randy Rauwerdink Venture Pass Partners, LLC or assigns and Mason Holdings III, LLC or assigns 19620 Waterford Court Shorewood, MN 55331

Re: Geotechnical Evaluation Proposed Pavements 280 Trailer Storage Kasota Avenue and Hwy 280 South Entrance Ramp St. Paul, Minnesota

Dear Mr. Rauwerdink:

We are pleased to present this Geotechnical Evaluation Report for the proposed parking lot at in the northwest quadrant of Kasota Avenue and Highway 280 in St. Paul, Minnesota.

Thank you for making Braun Intertec your geotechnical consultant for this project. If you have questions about this report, or if there are other services that we can provide in support of our work to date, please contact Belick Pha at 612.750.2148 (bpha@braunintertec.com) or Bob Janssen at 612.865.8786 (bjanssen@braunintertec.com).

Sincerely,

BRAUN INTERTEC CORPORATION

rderd for Belick Pha, EIT

Staff Engineer

Robert J. Janssen, PE President - Principal Engineer

c: Mr. Jerry Mullin, Landmark Environmental Mr. Chad Ayers, Sambatek

Table of Contents

Desc	cription			Page				
A.	Introdu	ction		1				
	A.1.	Project	Description	1				
	A.2.	Site Co	nditions and History	2				
	A.3.	Purpos	e	3				
	A.4.	Backgr	ound Information and Reference Documents	3				
	A.5.	Scope of	of Services	3				
В.	Results	4						
	B.1.	B.1. Geologic Overview						
	B.2.	Test Pit and Previous Boring Results						
	B.3.	Groundwater						
C.	Recom	mendati	ions	7				
	C.1.	Site Gr	ading and Subgrade Preparation	7				
		C.1.a.	Existing Fill					
		C.1.b.	Reuse of On-Site Soils					
		C.1.c.	Excavated Slopes					
		C.1.d.	Excavation Dewatering					
		C.1.e.	Pavement and Exterior Slab Subgrade Preparation					
		C.1.f.	Pavement Subgrade Proofroll					
		C.1.g.	Engineered Fill Materials and Compaction					
	C.2.		ents and Exterior Slabs					
		C.2.a.	Design Sections					
		C.2.b.	Aggregate Base Materials					
		C.2.c.	Bituminous Pavement Materials					
		C.2.d.	Concrete Pavement Materials					
		C.2.e.	Geotextile Grid					
		C.2.f.	Subgrade Drainage					
		C.2.g.	Performance and Maintenance					
	C.3.		S					
		C.3.a.	Subgrade Stabilization					
_			Corrosion Potential					
D.								
	D.1.	Exploratory Test Pits						
	D.2.	•	ation Logs					
			Log of Test Pit and Previous Boring Sheets					
			Geologic Origins					
	D.3.		al Classification and Testing					
			Visual and Manual Classification					
			Laboratory Testing					
_	D.4.		dwater Measurements					
Ε.		Qualifications						
	E.1.							
		E.1.a.	Material Strata					
	F 2	E.1.b.	Groundwater Levels					
	E.2.		uity of Professional Responsibility					
		E.2.a.	Plan Review	16				

Table of Contents (continued)

Description Page E.2.b. Construction Observations and Testing 16 E.3. Use of Report 17 E.4. Standard of Care 17 Appendix Soil Boring Location Sketch Image

Log of Test Pit Sheets TP-1 to TP-8 Log of Previous Borings ST-1 to ST-6 (Project No. BAAX-95-846, dated January 15, 1996) Descriptive Terminology of Soil

A. Introduction

A.1. Project Description

This Geotechnical Evaluation Report addresses the proposed design and construction of a new trailer parking lot located at the junction of MN 280 and Kasota Avenue in Saint Paul, Minnesota. The project will include the construction of a bituminous paved parking lot for semi-truck trailers. Table 1 provides project details.

Table 1. Site Aspects and Grading Description

Aspect	Description
Pavement type(s)	Bituminous or concrete with concrete dolly pads
Assumed pavement loads	Heavy-duty: 150,000 ESALs*
Grade changes	2 (provided)

*Equivalent 43,000-lb multi-axle loads based on 15 semitrailers per day for a 20-year design life.

The figure below shows an illustration of the proposed site layout.

Figure 1. Site Layout

Figure provided by Google Earth[©] dated June 2019. Approximate property line denoted in solid red lines.

A.2. Site Conditions and History

Currently, the site exists as undeveloped property. The surface is generally populated with vegetation including grass and trees with no structures currently existing on site. Generally, the site is flat, increasing in elevation from the southwest to northeast.

Correspondences with Venture Pass Partners, LLC indicated the site had previously been used as a landfill. No further documents were provided about the site's use history, except for those mentioned in section A.4.

A.3. Purpose

The purpose of our evaluation was to characterize subsurface geologic conditions at selected exploration locations, evaluate their impact and provide recommendations for use in the design and construction of the proposed parking lot.

A.4. Background Information and Reference Documents

We reviewed the following information:

- Topographic map and Concept Plan 4 prepared by Sambatek, Inc.
- Previous geotechnical report prepared by Braun Intertec (Project No. BAAX-95-849) and dated January 15, 1996. As part of that evaluation, 6 soil borings were performed on this site. The approximate locations of those borings are shown on the sketch and those boring logs are included with this report.
- Communications with Venture Pass Partners, LLC regarding test pit locations and scheduling.
- Discussions with you, along with the Civil Engineers with Sambatek and the Environmental consultants with Landmark to discuss design details.

In addition to the provided sources, we have used several publicly available sources of information.

We have described our understanding of the proposed construction and site to the extent others reported it to us. Depending on the extent of available information, we may have made assumptions based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, the project team should notify us. New or changed information could require additional evaluation, analyses and/or recommendations.

A.5. Scope of Services

We performed our scope of services for the project in accordance with our Proposal to Venture Park Pass, LLC, dated May 17, 2019. The following list describes the geotechnical tasks completed in accordance with our authorized scope of services.

- Reviewing the background information and reference documents previously cited.
- Landmark Environmental (Landmark) selected the new test pit locations. We acquired the surface elevations and locations with Landmark GPS technology using the Universal Transverse Mercator (UTM) coordinate system NAD83/UTM 15T. The attached Sketch shows the approximate locations of the test pits, along with the locations of the previously performed soil borings.
- Performing 8 test pits, denoted as TP-1 to TP-8, to nominal depths of 5 feet below grade across the site.
- Preparing this report containing a test pit location sketch, logs of test pits, a summary of the soils encountered, and recommendations for pavement subgrade preparation and the design and pavements.

Our scope of services did not include environmental services or testing. Environmental testing and services were provided by Landmark Environmental (Landmark). When the test pits were excavated, an environmental scientist was present from Landmark.

B. Results

B.1. Geologic Overview

We based the geologic origins used in this report on the soil types and available common knowledge of the geological history of the site.

B.2. Test Pit and Previous Boring Results

We performed 6 soil borings at this site in 1995. Borings ST-1 to ST-6 are in the area of the proposed parking lot footprint. The borings were extended to nominal depths of 25 1/2 to 80 feet. Logs of the previous borings are included in the Appendix.

Table 2 provides a summary of the test pits and previous soil boring results, in the general order we encountered the strata. Please refer to the Log of Test Pits and Boring sheets in the Appendix for additional details. The Descriptive Terminology sheet in the Appendix includes definitions of abbreviations used in Table 2.

Strata	Soil Type - ASTM Classification	Range of Penetration Resistances	Commentary and Details
Topsoil Fill	SM		 Predominantly SM. Generally black. Topsoil fill not present at all borings and was measured to be less than 1 foot when observed. Moisture condition generally moist.
Fill	SM, CL, OL, PT	Weight of hammer to 39 blows per foot (BPF)	 General penetration resistance of 4 to 15 BPF. Intermixed layers of dark brown, dark gray, and black. Moisture condition generally moist to wet. Thicknesses at soil boring locations varied from 16 to 22 feet. Highly variable, soils intermixed; layers of organic clay and peat observed in Boring ST-1. Existing fill contained variable amounts of gravel and debris, including glass, bricks, metal, concrete and bituminous. Possible cobbles and boulders.
Swamp deposits	OL	1 to 4 BPF	 A 3-foot layer was observed in Boring ST-5. Generally black. Moisture condition generally wet. Swamp deposits not observed in test pits.
Alluvial	CL	4 BPF	 Moisture condition generally wet. Only observed beneath the fill in Borings ST-3/ST-3A and ST-6. Alluvial soils not observed in test pits.
Glacial	SP, SP-SM, SM	2 to 58 BPF	 Intermixed layers of glacial outwash and till. Variable amounts of gravel; may contain cobbles.
deposits	SC, CL, ML	4 to 20 BPF	Moisture condition generally wet.Glacial deposits not observed in test pits.
Bedrock	Shale	17 to 44 BPF	 Top of bedrock observed at depth of 80 feet. Generally bluish gray. Bedrock not observed in test pits.

Table 2. Subsurface Profile Summary*

*Abbreviations defined in the attached Descriptive Terminology sheet.

B.3. Groundwater

While excavating the test pits, water was observed seeping into 3 of the test pits. Table 3 summarizes the depths where we observed groundwater while excavating test pits. Table 3 also summarizes groundwater observed while advancing previous soil borings. The attached Log of Test Pits and Log of Borings in the Appendix also include this information and additional details.

Location	Measured or Estimated Depth to Groundwater (ft)
TP-1	Not observed in test pit to 5 feet
TP-2	Not observed in test pit to 5 1/2 feet
TP-3	Not observed in test pit to 5 feet
TP-4	2
TP-5	Not observed in test pit to 5 feet
TP-6	Not observed in test pit to 5 feet
TP-7	1.1/2
TP-8	1 1/2
ST-1	Not observed in boring to 25.5 feet
ST-2/ST-2A	19 1/2
ST-3/ST-3A	Not observed in boring to 80 feet
ST-4	16
ST-5	18
ST-6	21.2

Table 3. Groundwater Summary

Groundwater observed in test pits were relatively shallow and likely due to perched water conditions. Precipitation or seasonal changes, such as thawing, will increase perched water conditions in sand seams in the fill.

Based on the available data, it appears that at the time those borings were performed, the hydrostatic water level will be below excavations for the proposed parking lot.

C. Recommendations

C.1. Site Grading and Subgrade Preparation

C.1.a. Existing Fill

As indicated by the soil borings and test pit data, the on-site soils consist of significant amounts of fill materials consisting of variable soils types which are intermixed with miscellaneous debris and organic soils, and the penetration resistances recorded in the soil borings indicate that some of the fill is very soft or loose. Ideally, and to reduce risks of long-term differential settlement, all or a significant portion of the existing fill would have to be removed from beneath the proposed pavements. However, because of the environmental concerns associated with the removal of the existing fill and considering that some risk of long-term settlements associated with pavements can typically be tolerated, the significant costs associated with the removal of the existing fill can likely not be tolerated. As such, the recommendations we are providing in this report assumes that the risk of long-term differential settlement to the pavements can be tolerated. Within this report, we will provide design and earthwork recommendations to reduce risks associated with adverse amounts of long-term settlement.

As discussed in more detail in the following sections, our recommendations include the removal of the surficial topsoil, scarifying and compacting the in place soils prior to placement of fill or pavement areas, removing any exposed large-sized or compressible debris, and placement of geogrid beneath the recommended pavement designs.

C.1.b. Reuse of On-Site Soils

With the exception of the topsoil and unsuitable debris, assuming that the soils are acceptable per the Response Action Plan (RAP) that is being prepared by Landmark, it is our opinion that much of the excavated soils on site will be suitable to be reused for subgrade fill material. Any on-site soils with an organic content greater that 3 percent, or debris or boulders larger than 4 inches in diameter should be considered unsuitable for use as pavement fill material. Those materials should be placed in a green area or hauled off site. Furthermore, much of the soils on this site are moisture sensitive, and it is likely that some moisture conditioning (wetting or drying) will be necessary to reuse the on-site soils as compacted backfill.

C.1.c. Excavated Slopes

Based on the borings, we anticipate on-site soils in excavations will consist of silty sands intermixed with clay. These soils are typically considered Type B Soil under OSHA (Occupational Safety and Health

Administration) guidelines. OSHA guidelines indicate unsupported excavations in Type B soils should have a gradient no steeper than 1H:1V. Slopes constructed in this manner may still exhibit surface sloughing. OSHA requires an engineer to evaluate slopes or excavations over 20 feet in depth.

An OSHA-approved qualified person should review the soil classification in the field. Excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches." This document states excavation safety is the responsibility of the contractor. The project specifications should reference these OSHA requirements.

C.1.d. Excavation Dewatering

We recommend removing groundwater from the excavations. Project planning should include temporary sumps and pumps for excavations in low-permeability soils, such as clays. If it is necessary to pump water from excavations, that work should be done in accordance with the RAP.

C.1.e. Pavement and Exterior Slab Subgrade Preparation

We recommend the following steps for pavement and exterior slab subgrade preparation, understanding the site will have a grade change of 2 feet or less. Note that project planning may need to require additional subcuts to limit frost heave.

- Strip unsuitable soils consisting of surficial vegetation and soils with an organic content greater than 3 percent any existing structures and pavements that exists within2 feet of the surface of the proposed pavement subgrade. At depths greater than 2 feet, assuming the surficial organic materials are removed and the underlying soils can be stabilized as addressed below, the existing soils can remain in place.
- 2. Have a geotechnical representative observe the excavated subgrade to evaluate if additional subgrade improvements are necessary.
- Prior to placement of fill or the pavement materials, Scarify the exposed soils to a depth of 10 inches, moisture condition the soils to near optimum moisture content and then compact the soils to the relative densities indicated in Table 5.
- 4. Place pavement engineered fill to grade and compact in accordance with Section C.1.g. to bottom of pavement.
- 5. Proofroll the pavement or exterior slab subgrade as described in Section C.1.f.

Along with the earthwork correction recommendations previously provided and because much of the existing fill that will be left in place beneath the pavement areas are very soft/loose and contain organic soils and debris, to improve long-term pavement performance of the pavement, we recommend incorporating biaxial geogrid at the interface of the prepared subgrade and aggregate base layer.

C.1.f. Pavement Subgrade Proofroll

After preparing the subgrade as described above and prior to the placement of the geogrid and aggregate base, we recommend proofrolling the subgrade soils with a fully loaded tandem-axle truck. We also recommend having a geotechnical representative observe the proofroll. Areas that fail the proofroll likely indicate soft or weak areas that will require additional soil correction work to support pavements.

The contractor should correct areas that display excessive yielding or rutting during the proofroll, as determined by the geotechnical representative. Possible options for subgrade correction include moisture conditioning and recompaction, subcutting and replacement with soil or crushed aggregate, chemical stabilization and/or geotextiles. We recommend performing a second proofroll after the aggregate base material is in place, and prior to placing bituminous or concrete pavement.

C.1.g. Engineered Fill Materials and Compaction

The engineered fill materials placed in proposed pavement areas should consist of on-site soils as addressed previously in Section C.1.b or imported soils consisting of soils classified as sands or clays with an organic content less than 3 percent containing a plastic index less than 25 percent. We recommend placing an aggregate base below the pavement to provide a suitable subgrade for pavement, reduce faulting and help dissipate loads.

Table 4 provides recommended subgrade relative compaction of fill based on depth and location.

	Relative Compaction,	Moisture Content Variance from Optimum, percentage points					
Reference	percent (ASTM D698 – Standard Proctor)	< 12% Passing #200 Sieve (typically SP, SP-SM)	> 12% Passing #200 Sieve (typically CL, SC, ML, SM)				
Within 3 feet of pavement subgrade	100	±2	-1 to +2				
More than 3 feet below pavement subgrade	95	±3	±3				
Below landscaped surfaces	90	±5	±4				

Table 4. Compaction Recommendations Summary

*Increase compaction requirement to meet compaction required for structure supported by this engineered fill.

The project documents should not allow the contractor to use frozen material as engineered fill or to place engineered fill on frozen material. Frost should not penetrate under foundations during construction.

We recommend performing density tests in engineered fill to evaluate if the contractors are effectively compacting the soil and meeting project requirements.

C.2. Pavements and Exterior Slabs

C.2.a. Design Sections

Based on the previous year's average load and estimated average daily traffic, provided by Venture Pass Partners, LLC., and test pit observations, we recommend pavement design assume an R-value of 12. We based the concrete pavement designs on a modulus of subgrade reaction (k) of 75 pci.

Note the contractor may need to perform limited removal of unsuitable or less suitable soils to achieve this value.

Table 5 provides recommended pavement sections, based on the soils support and traffic loads.

	Component Thicknesses (inches) Heavy-duty								
Material Component	Bituminous ^a Concrete								
Bituminous Wear	2	-							
Bituminous Non-wear	2	_							
Bituminous Non-wear	2	-							
Concrete	_	6							
Aggregate Base	8	6							
Geotextile Grid	Yes (see Section C.2.e)	No							

Table 5. Recommended Bituminous and Concrete Pavement Sections

C.2.b. Aggregate Base Materials

We recommend specifying crushed aggregate base meeting the requirements of Minnesota Department of Transportation (MnDOT) Specification 3138 for Class 5.

Table 6 shows recommended Minnesota Department of Transportation (MnDOT) Class 5 and Class 6 baseaggregate gradations. Gradation recommendations assume base aggregate will contain less than25 percent, by weight, recycled aggregate.

Base Aggregate**	% passing 1 1/2" Sieve	% passing 3/4" Sieve	% passing 3/8" Sieve	% passing #4 Sieve	% passing #10 Sieve	% passing #40 Sieve	% passing #200 Sieve
Class 5	100	70 - 100	45 - 90	35 - 80	20 - 65	10 - 35	3.0 - 10.0
Class 6	100	70 - 100	45 - 85	35 - 70	20 - 55	10 - 30	3.0 - 7.0

Table 6. MnDOT Class 5 and 6 Aggregate*

*Gradations based on Minnesota Department of Transportation (MnDOT) 2018 Standard Specification for Construction section 3138.

**Percent passing value should be total percent passing by weight.

We recommend that the aggregate base be compacted to a minimum of 100 percent of its maximum standard Proctor dry density at a moisture content within 1 percentage point of its optimum moisture content.

C.2.c. Bituminous Pavement Materials

We recommend that the bituminous wear and base courses meet the requirements of Minnesota Department of Transportation Specification 2360, Type SP. We recommend the aggregate gradations for the asphalt mixes meet Gradation B for the non-wear and wear courses. We recommend that the lightand heavy-duty bituminous mixes incorporate Traffic Level 3. With that, we recommend using the following mix designations for heavy- duty pavements:

- Heavy-duty Non-Wear: SPNWB330E; Asphalt Binder Grade PG 58H-28 (PG 64-28)
- Heavy-duty Wear: SPWEB340E; Asphalt Binder Grade PG 58H-28 (PG 64-28)

We recommend that the bituminous pavement be compacted to an average density of at least 92 percent (per the core method) of the maximum theoretical Rice density, with no core test result being less than 90 percent and no core test result being greater than 97 percent.

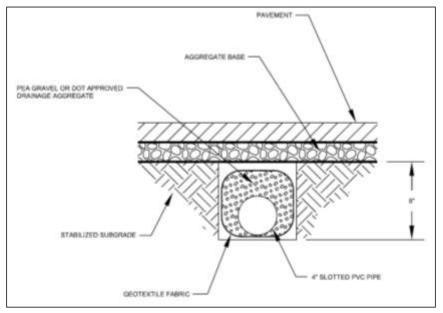
C.2.d. Concrete Pavement Materials

We assumed the concrete pavement sections in Table 5 will have edge support. We recommend placing an aggregate base below the pavement to provide a suitable subgrade for concrete placement, reduce faulting and help dissipate loads. Appropriate mix designs, panel sizing, jointing, doweling, and edge reinforcement are critical to performance of rigid pavements.

We recommend specifying concrete for pavements that has a minimum 28-day compressive strength of 4,000 psi, and a modulus of rupture (M_r) of at least 600 psi. We also recommend Type I cement meeting the requirements of ASTM C 150. We recommend specifying 5 to 7 percent entrained air for exposed concrete to provide resistance to freeze-thaw deterioration. We also recommend using a water/cement ratio of 0.45 or less for concrete exposed to deicers.

C.2.e. Geotextile Grid

We recommend placing Tensar[®] Biaxial Geogrid BX1200 or equivalent directly below the aggregate base layer.


C.2.f. Subgrade Drainage

We recommend installing plastic perforated drainpipes throughout pavement areas at low points and about catch basins. The drainpipes should be placed in small trenches extended at least 8 inches below the aggregate base material. A cross-section illustration of a drainage trench is shown below in Figure 2. We recommend installing the draintile at a pitch of no less than 1/4 percent. We recommend routing the draintile to nearby storm sewer or other suitable outlet.

We suggest that we work with the civil engineer to determine the spacing of drainpipes.

C.2.g. Performance and Maintenance

We based the above pavement designs on a 20-year performance life for bituminous and a 20-year life for concrete. This is the amount of time before we anticipate the pavement will require reconstruction. This performance life assumes routine maintenance, such as seal coating and crack sealing. The actual pavement life will vary depending on variations in weather, traffic conditions and maintenance.

It is common to place the non-wear course of bituminous and then delay placement of wear course. For this situation, we recommend evaluating if the reduced pavement section will have sufficient structure to support construction traffic.

Many conditions affect the overall performance of the exterior slabs and pavements. Some of these conditions include the environment, loading conditions and the level of ongoing maintenance. With regard to bituminous pavements in particular, it is common to have thermal cracking develop within the first one to two years of placement, and continue throughout the life of the pavement. We recommend developing a regular maintenance plan for filling cracks in exterior slabs and pavements to lessen the potential impacts for cold weather distress due to frost heave or warm weather distress due to wetting and softening of the subgrade.

C.3. Utilities

C.3.a. Subgrade Stabilization

For exterior utilities, we anticipate the soils at typical invert elevations will generally be suitable for utility support. However, if construction encounters unfavorable conditions such as soft clay, organic soils, perched water or large debris within 2 feet of invert grades, the unsuitable soils should be removed and replaced with sand or crushed rock to prepare a proper subgrade for pipe support. Project design and construction should not place utilities within the 1H:1V oversizing of foundations.

C.3.b. Corrosion Potential

Based on our experience, the soils encountered by the borings are moderately corrosive to metallic conduits, but only marginally corrosive to concrete. We recommend specifying non-corrosive materials or providing corrosion protection, unless project planning chooses to perform additional tests to demonstrate the soils are not corrosive.

D. Procedures

D.1. Exploratory Test Pits

Frattalone excavated the test pits with a Bobcat E85 backhoe, under the direction and observation of our staff, Landmark, and Venture Pass Partners, Inc. We prepared Test Pit Logs by visually examining the sidewalls of the test pits and classifying the materials brought to the surface by the backhoe bucket. We measured strata boundary depths with a steel tape and generally rounded to the nearest 1/2-foot.

D.2. Exploration Logs

D.2.a. Log of Test Pit and Previous Boring Sheets

The Appendix includes Log of Test Pit sheets as well as Logs of Borings from previous projects. The logs classify and describe the geologic materials exposed in the sidewalls and bottoms of the pits, present the results of laboratory tests performed on bulk samples obtained from them, and depict groundwater measurements.

D.2.b. Geologic Origins

We assigned geologic origins to the materials shown on the logs and referenced within this report, based on: (1) a review of the background information and reference documents cited above, (2) visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, (3) penetration resistance and other in-situ testing performed for the project, and (4) available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

D.3. Material Classification and Testing

D.3.a. Visual and Manual Classification

We visually and manually classified the geologic materials encountered based on ASTM D2488. When we performed laboratory classification tests, we used the results to classify the geologic materials in accordance with ASTM D2487. The Appendix includes a chart explaining the classification system we used.

D.3.b. Laboratory Testing

The exploration logs in the Appendix note the results of the laboratory tests performed on geologic material samples. We performed the tests in general accordance with ASTM or AASHTO procedures.

D.4. Groundwater Measurements

While excavating the test pits and at the termination depths, our field personnel observed the sides and bottoms of the excavation for evidence of groundwater seepage and/or accumulation.

E. Qualifications

E.1. Variations in Subsurface Conditions

E.1.a. Material Strata

We developed our evaluation, analyses and recommendations from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth. Therefore, we must infer strata boundaries and

thicknesses to some extent. Strata boundaries may also be gradual transitions, and project planning should expect the strata to vary in depth, elevation and thickness, away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until performing additional exploration work, or starting construction. If future activity for this project reveals any such variations, you should notify us so that we may reevaluate our recommendations. Such variations could increase construction costs, and we recommend including a contingency to accommodate them.

E.1.b. Groundwater Levels

We made groundwater measurements under the conditions reported herein and shown on the exploration logs, and interpreted in the text of this report. Note that the observation periods were relatively short, and project planning can expect groundwater levels to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications and other seasonal and annual factors.

E.2. Continuity of Professional Responsibility

E.2.a. Plan Review

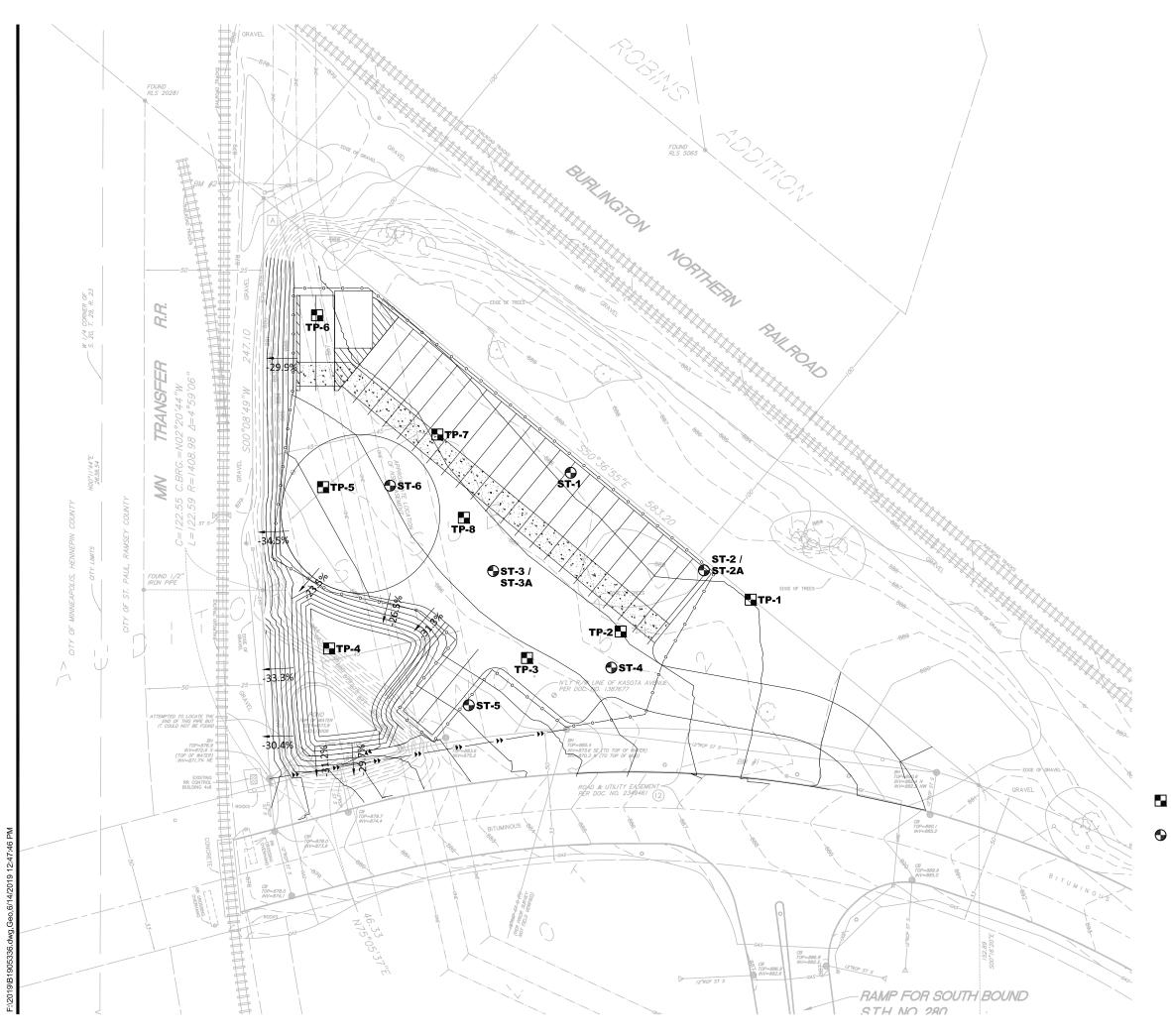
We based this report on a limited amount of information, and we made a number of assumptions to help us develop our recommendations. We should be retained to review the geotechnical aspects of the designs and specifications. This review will allow us to evaluate whether we anticipated the design correctly, if any design changes affect the validity of our recommendations, and if the design and specifications correctly interpret and implement our recommendations.

E.2.b. Construction Observations and Testing

We recommend retaining us to perform the required observations and testing during construction as part of the ongoing geotechnical evaluation. This will allow us to correlate the subsurface conditions exposed during construction with those encountered by the borings and provide professional continuity from the design phase to the construction phase. If we do not perform observations and testing during construction, it becomes the responsibility of others to validate the assumption made during the preparation of this report and to accept the construction-related geotechnical engineer-of-record responsibilities.

E.3. Use of Report

This report is for the exclusive use of the addressed parties. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses and recommendations may not be appropriate for other parties or projects.


E.4. Standard of Care

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

Appendix

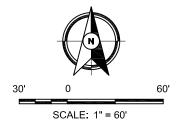
11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Base Drawing Provided By

	Project No: B1905336
	Drawing No: B1905336
Drawn By:	BJB
Date Drawn:	6/14/19
Checked By:	BP
Last Modified:	6/14/19

Project Information

280 Trailer Storage


Kasota Avenue, west of Highway 280

Saint Paul, Minnesota

Test Pit and Soil Boring Location Sketch

DENOTES APPROXIMATE LOCATION OF TEST PIT

DENOTES APPROXIMATE LOCATION OF
 PREVIOUSLY COMPLETED SOIL BORING

Project Numbe	r B190533	6				See Descriptive TEST PIT:		logy sheet	TP-1		
Geotechnical E 280 Trailer Stor Kasota Avenue	Evaluation rage		Entranc	e Ramı)	LOCATION:	stimated	from Con	uses NAD83/UT cept 4 plans, CF		
Saint Paul, Min	nesota			-		NORTHING:	49	980523	EASTING:	483893.0	
EXCAVATOR: F	rattalone	LOGGED BY:		B. Pha		START DAT	E:	05/30/19	END DATE: 05/3		
SURFACE 889.0	ft RIG: Ex	cavator	METHOD:			SURFACING	6:	Grass	WEATHER:	Cloudy	
Elev./ Depth te set ft T		scription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC	EEM	Sample	Sample Blows Recovery	q _p tsf	MC %	Tests or	Remarks	
888.2 - <td>1/2 feet</td> <td>moist (TOPSC AND (SM), fine nd debris, dark ebris includes g</td> <td>DIL) to medium brown to da glass, brick, g nips d odor below</td> <td>sand, ark plastic, v 2</td> <td></td> <td></td> <td></td> <td></td> <td>Soil consisted approximately percent debris</td> <td>y 5 to 10 s served with ling in the</td>	1/2 feet	moist (TOPSC AND (SM), fine nd debris, dark ebris includes g	DIL) to medium brown to da glass, brick, g nips d odor below	sand, ark plastic, v 2					Soil consisted approximately percent debris	y 5 to 10 s served with ling in the	

The Science You Build On. Project Number B190533	6		S	TEST PIT:	Terminol	ogy sheet	for explanation TP-2	of abbreviations
Geotechnical Evaluation 280 Trailer Storage Kasota Avenue and Hwy		ce Ramp		LOCATION: 0	timated	from Con	uses NAD83/UT cept 4 plans, CP	
Saint Paul, Minnesota		•		NORTHING:	NORTHING: 4980517			483868.0
EXCAVATOR: Frattalone	LOGGED BY:	B. Pha		START DATE	:	05/30/19	END DATE:	05/30/19
SURFACE 887.0 ft RIG: Ex	cavator METHOD:			SURFACING	:	Grass	WEATHER:	Cloudy
	scription of Materials 2488 or 2487; Rock-USA 1110-1-2908)	ACE EM	Sample	Sample Blows Recovery	q _₽ tsf	MC %	Tests or	Remarks
Gravel, and ro Gravel, and ro FILL: SILTY S, with Gravel, and FILL: SILTY S, with Gravel, and FILL: SILTY S, with Gravel, and rubber, wood of cinders - - - - - - - - - - - - -	SM), fine to medium san ots, black, moist (TOPS0 AND (SM), fine to mediu nd debris, dark brown to bris includes glass, brick chips, wooden beams, ar	DIL) m sand, dark <, plastic, nd					Soil consisted approximately percent debris	[,] 5 to 10
-	END OF TEST PIT then backfilled with sp	oils					Water not obs 5.5 feet of too ground while o	ling in the
-								
-								
_		10						
-								
-								
			$\left \right $					
-		un Intertec Corpo					TP-	2 page 1 of

The Science You Build On. Project Numbe	er B190533	6				TEST PIT:			for explanation TP-3		
Geotechnical 280 Trailer Sto Kasota Avenue	Evaluation prage		Entrance F	Ramp			stimated	from Con	uses NAD83/UT cept 4 plans, CP etch.		
Saint Paul, Mir						NORTHING:	49	980512	EASTING:	483850.0	
EXCAVATOR:	rattalone	LOGGED BY:	В.	Pha		START DATE	Ξ:	05/30/19	9 END DATE: 05/		
SURFACE 886.0) ft RIG: Ex	cavator	METHOD:			SURFACING	6:	Grass	WEATHER:	Cloudy	
Elev./ Depth transfer ft A		scription of Ma 2488 or 2487; F 1110-1-2908	Rock-USACE E	EM	Sample	Sample Blows Recovery	q _₽ tsf	MC %	Tests or	Remarks	
ft > -1 885.5 0.5 - - - - - - - - -	Gravel, and ro FILL: SILTY S with Gravel, a gray, moist, de rubber chips, i wooden beam <i>Soil dark gra</i> <i>feet</i>	SM), fine to me ots, black, mois AND (SM), fine and debris, dark abris includes g ubber hoses, v s, cinders, and and contained END OF TEST then backfilled	edium sand, wit st (TOPSOIL) to medium sar brown to dark lass, brick, plas vood chips, concrete d odor below 3	nd,	20 20	Recovery			Soil consisted approximately percent debris *8-inch thick of greater than 2 encountered Water not obs 5.0 feet of too ground while of	r 5 to 10 s concrete slab c0"x20" erved with ling in the	
				_							
-				_							
-				_							
-				_							
-											

The Science You Build On.	D400500					Se		ermino	logy sheet		n of abbreviation
Project Number Geotechnical		0					TEST PIT:	oordin	ate datum		JTM Zone 15N.
280 Trailer Sto Kasota Avenue	orage	280 South	Entranc	e Ram	р			timated	from Con	cept 4 plans, C	
Saint Paul, Mi					•		NORTHING:	49	980514	EASTING:	483812.0
EXCAVATOR:	Frattalone	LOGGED BY:		B. Pha			START DATE	:	05/30/19	END DATE:	05/30/19
SURFACE 884.0	0 ft RIG: Ex	cavator	METHOD:				SURFACING:		Grass	WEATHER:	Mostly cloudy
Elev./ Depth and ft A	De (Soil-ASTM D	scription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC	CE EM	Sample		Sample Blows Recovery	q _₽ tsf	MC %	Tests o	r Remarks
	and plastic (TC FILL: SILTY S with Gravel, an brown to dark includes glass pipes and nails <i>Soil dark gray</i> <i>feet</i>	lack, moist, de DPSOIL) AND (SM), fine Id Clay seams gray, moist to , brick, plastic,	bris include to medium , with debris wet, debris rubber, met inders d odor below	es glass i sand, s, dark tal w 3						Soil consiste approximate percent debi Water obser with 5.0 feet the ground v Water obser perched.	ly 5 to 10 ris ved at 2.0 feet of tooling in vhile drilling.
- · · · · · · · · · · · · · · · · · · ·				1							
-											
_					_						
- -											

The Science You Build On. Project Numb	er B190533	6				TEST PIT:			TP-5	n of abbreviations
Geotechnical 280 Trailer St Kasota Avenu	Evaluation orage		Entrand	o Rami	n		stimated	from Con	uses NAD83/L cept 4 plans, C	ITM Zone 15N. P-4, prepared
Saint Paul, M		200 3000	Lintrant			NORTHING:	NORTHING: 4980545 EAST			483811.0
EXCAVATOR:	Frattalone	LOGGED BY:		B. Pha		START DAT	START DATE: 05/30/19		END DATE:	05/30/19
SURFACE 886	.0 ft RIG: E	xcavator	METHOD:			SURFACING	6:	Grass	WEATHER:	Mostly cloudy
Elev./ Depth a ft A		escription of Ma 02488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Sample Blows Recovery	q _₽ tsf	MC %	Tests o	r Remarks
π > -	with Gravel, a gray, moist, d rubber, metal beams, and c Soil dark gra 1/2 feet	SAND (SM), fine and debris, dark ebris includes g , concrete, woo	to medium brown to c glass, brick, d chips, wo d odor belo	lark , plastic, ,oden 		Recovery			Soil consiste approximate percent debr Water not ob 5.0 feet of to ground while	ly 5 to 10 is oserved with oling in the
.										

The Science You Build On. Project Numbe	r B190533	6				TEST PIT:	Ierminol	logy sheet	tor explanation	n of abbreviations
Geotechnical E 280 Trailer Stor Kasota Avenue	Evaluation rage		Entranc	e Ramp)	LOCATION:	stimated	from Con	uses NAD83/l cept 4 plans, C	JTM Zone 15N. P-4, prepared
Saint Paul, Min				-		NORTHING:	49	980578	EASTING:	483810.0
EXCAVATOR: F	rattalone	LOGGED BY:		B. Pha		START DAT	Ξ:	05/30/19	END DATE:	05/30/19
SURFACE 887.0	ft RIG: Ex	cavator	METHOD:			SURFACING	6:	Grass	WEATHER:	Mostly cloudy
Elev./ Lev./ Depth and the ft		scription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC	CE EM	Sample	Sample Blows Recovery	q _p tsf	MC %	Tests o	r Remarks
ft > -1	feet	AND (SM), fine oots, and debris st, debris inclu , metal, concre	to medium s, dark brow des glass, b te, wood ch d odor below	vn to prick, nips, w 3		Recovery			Soil consiste approximate percent deb Water not of 5.0 feet of to ground while	by 5 to 10 ris oserved with poling in the
-				10	_					
-					-					
-					-					
_					-					
_					-					
_					-					

Geotechnical Evaluation LOCATION: Coordinate datum uses NAD83/UTM Zone 15N. 280 Trailer Storage LOCATION: Coordinate datum uses NAD83/UTM Zone 15N. Kasota Avenue and Hwy 280 South Entrance Ramp Elevations estimated from Concept 4 plans, CP-4, prepared by Sambatek. See attached sketch. NORTHING: 4980555 EASTING: 483833.0 EXCAVATOR: Frattalone LOGGED BY: B. Pha START DATE: 05/30/19 END DATE: 05/30/11	The Science You Build On. Project Number	er B190533	6					TEST PIT:			TP-7	n of abbreviations
Zeor Traiter Orage by Sambatek. See attached sketch. Saint Paul, Minnesota LOGGED BY: B. Pha START DATE: 05/30/19 END DATE: 05/30/19 EXCAVATOR: Frattalone LOGGED BY: B. Pha START DATE: 05/30/19 END CATE: 05/30/19			-					LOCATION:			uses NAD83/l	
Saint Paul, Minnesota NORTHING: 4980555 EASTING: 483833.0 EXCAVATOR: Frattalon LOGGED BY: B. Pha START DATE: 05/30/19 END DATE: 05/30/19 SUBPRACE: 887.0 ft RIG: Excavator METHOD: SURFACING: Grass WEATHER: Mostly cloud Elev./ 05 Coll-ASTM D2480 or 2487: Rock-USACE EM 05/0/19 MC Tests or Remarks 2.886.4 Caravel, and roots, black, moist (TOPSOIL) Soil consisted of approximately 5 to 10 percent debris, brown to dark gray, moist to wet, debris includes glass, brick, moist (TOPSOIL) Soil consisted of approximately 5 to 10 percent debris 0.6 Soil dark gray and contained odor below 3 feet Soil dark gray and contained odor below 3 feet Water observed at 1.5 feet 882.0 Soil dark gray and contained odor below 3 feet Water observed likely perched. Water observed likely perched.			280 South	Entranc	ce Ramı)						P-4, prepared
Summach B87.0 ft RIG: Excavator METHOD: SURFACING: Grass WEATHER: Mostly cloud Elev./ bppth ft bg g t (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908) g g t Sample Blows Recovery g ts MC ts Tests or Remarks 386.4					•	-		NORTHING:	4	980555	EASTING:	483833.0
ELEVION 05/01 RG: Exclusion METHOD: Sample Blows Recovery Grass WEHHER: Woshy doud Elev./ 05 Sample Blows Recovery grass MC Tests or Remarks 886.4 110-1-2908) 0 Sample Blows Recovery grass Soli consisted of approximately 5 to 10 percent debris 0.6 FILL: SILTY SAND (SM), fine to medium sand, with Gravel, and roots, black, moist (TOPSOIL) FILL: SILTY SAND (SM), fine to medium sand, with Gravel, and debris, brown to dark gray, moist to wet, debris includes glass, brick, plastic, rubber, metal, concrete, and wood chips Soli dark gray and contained odor below 3 feet Soli dark gray and contained odor below 3 feet Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips 5.0 END OF TEST PIT 5 Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips Here grad Water observed at 1.5 feet with 5.0 feet glass, brick, plastic, rubber, metal, concrete, and wood chips Here grad Water observed likely 6 END OF TEST PIT Fill Here grad	EXCAVATOR:	rattalone	LOGGED BY:		B. Pha			START DATE	E:	05/30/19	END DATE:	05/30/19
Elev./ Depth ft Description of Materials (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908)	SURFACE 887.0) ft RIG: Ex	cavator	METHOD:				SURFACING	i:	Grass	WEATHER:	Mostly cloudy
286.4 a.g. a.g. Gravel, and roots, black, moist (TOPSOIL) approximately 5 to 10 0.6 FILL: SILTY SAND (SM), fine to medium sand, with Gravel, and debris, brown to dark gray, moist to wet, debris includes glass, brick, plastic, rubber, metal, concrete, and wood chips approximately 5 to 10 	Elev./ Elev./ Depth a		2488 or 2487;	Rock-USA0	CE EM	Sample	F	Blows			Tests o	r Remarks
	- 886.4 0.6 	Gravel, and ro FILL: SILTY S with Gravel, a moist to wet, o plastic, rubber Soil dark gra feet	SM), fine to mosts, black, most AND (SM), fine and debris, brow lebris includes , metal, concre y and containe	edium sand ist (TOPSO e to medium vn to dark g glass, brick ete, and woo d odor belo	IL) n sand, yray, <, od chips w 3			<pre><covery< pre=""></covery<></pre>			approximate percent deb Water obser with 5.0 feet the ground v Water obser	ved at 1.5 feet of tooling in vhile drilling.

Geotechnical Evaluation LOCATION: Coordinate datum uses NAD83/UTM Zone 15N 280 Trailer Storage LOCATION: Coordinate datum uses NAD83/UTM Zone 15N Kasota Avenue and Hwy 280 South Entrance Ramp Locations estimated from Concept 4 plans, CP-4, prepared by Sambatek. See attached sketch. Saint Paul, Minnesota NORTHING: 4980539 EASTING: 483838 EXCAVATOR: Frattalone LOGGED BY: B. Pha START DATE: 05/30/19 END DATE: 05/30	The Science You Build On. Project Numb	er B190533	6					TEST PIT:			TP-8	n of abbreviation
Saint Paul, Minnesota NORTHING: 4980539 EASTING: 483838 EXCAVATOR: Frattalor LOGGED BY: B. Pha START DATE: 05/30/19 END DATE: 05/30/19 Supervises, excavator METHOD: SURFACING: Grass WEATHER: Mostly doc Elev.//Deptint B86.0 ft RG: Excavator METHOD: Surpervises Grass WEATHER: Mostly doc Elev./Deptint B SILTY SAND (SM), fine to medium sand, with 1110-1-2908) Description of Materials Sample g. MC Tests or Remarks 885.0 1.0 SILTY SAND (SM), fine to medium sand, with Gravel, and roots, black, moist (TOPSOIL) FILL: SILTY SAND (SM), with Gravel, and debris, contains seams of Poorly Graded Sand, dark brown to dark gray, moist to wet, debris includes glass, bricks, plastic, rubber, metal, concrete, and wood Soil dark gray and contained odor below 3 feet Water observed at 1.5 fe with 5.0 feet of tooling in the ground while drilling. 881.0 Soil dark gray and contained odor below 3 feet Soil dark gray and contained odor below 3 feet Water observed at 1.5 fe 881.0 END OF TEST PIT Fest pit then backfilled with spoils Hat backfilled with spoils Water observed likely perched. 881.0 END OF TEST PIT Hat backfilled	Geotechnical 280 Trailer Sto	Evaluation prage		Entranc	e Ram	p		Elevations es	timated	I from Con	uses NAD83/L cept 4 plans, C	
SUMPACE: BLEEN/ Depth 886.0 ft RIG: Eccavator METHOD: SURFACING: Grass WEATHER: Mostly cloc Elev./ t bg g (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908) bg g Sample Blows Recovery g d MC brows Recovery Tests or Remarks Sull TY SAND (SM), fine to medium sand, with 1110-1-2908) g Soil consisted of approximately 5 to 10 						-		NORTHING:	4	980539	EASTING:	483838.0
ELEVATION: 000.01 Itor: Tel: CLAURED: Description of Materials: Description of Materials: Sample grave MC Tests or Remarks 100 Tests or Remarks Sample grave MC Water observed at 1.5 fe 885.0 Tests pit then backfilled with spoils FILL: SILTY SAND (SM), with Gravel, and debris, contains seams of Poorly Graded Sand, debris, contains qray, moist to wet, debris Water observed at 1.5 fe 881.0 Soil dark gray and contained odor below 3 feet Water observed at 1.5 fe 881.0 END OF TEST PIT Soil dark gray moist Water observed at 1.5 fe Test pit then backfilled with spoils Water observed itikely perched. Water observed itikely	EXCAVATOR:	rattalone	LOGGED BY:		B. Pha			START DATE	:	05/30/19	END DATE:	05/30/19
Liev, b is (Soil-ASTM D2488 or 2487; Rock-USACE EM 1110-1-2908) is Soliconsisted Blows Recovery MC tsf MC % 10 SILTY SAND (SM), fine to medium sand, with Gravel, and roots, black, moist (TOPSOIL) Soli consisted of approximately 5 to 10 percent debris 1.0 Fill.1: SILTY SAND (SM), with Gravel, and derk brown to dark gray, moist to wet, debris includes glass, bricks, plastic, rubber, metal, concrete, and wood Soli dark gray and contained odor below 3 feet Water observed at 1.5 fe 5.0 END OF TEST PIT Soli dark gray and contained odor below 3 feet Water observed at 1.5 fe - END OF TEST PIT Test pit then backfilled with spoils Water observed likely perched.	SURFACE 886.0) ft RIG: Ex	cavator	METHOD:				SURFACING		Grass	WEATHER:	Mostly cloudy
885.0 Image: Cravel, and roots, black, moist (TOPSOIL) approximately 5 to 10 1.0 FILL: SILTY SAND (SM), with Gravel, and debris, contains seams of Poorly Graded Sand, dark brown to dark gray, moist to wet, debris includes glass, bricks, plastic, rubber, metal, concrete, and wood mointeend of the second	Depth 🙀 👌		2488 or 2487;	Rock-USAC	CE EM	-	sample	Blows	q _₽ tsf		Tests o	r Remarks
	885.0 1.0 	Gravel, and ro FILL: SILTY S debris, contair dark brown to includes glass concrete, and <i>Soil dark gray</i> <i>feet</i>	ND (SM), wit AND (SM), wit as seams of Po dark gray, moi , bricks, plastic wood y and containe	ist (TOPSO h Gravel, ar borly Graded st to wet, de c, rubber, m d odor belo	IL) nd d Sand, ebris etal, w 3						approximate percent debi Water obser with 5.0 feet the ground v Water obser	ly 5 to 10 ris ved at 1.5 feet of tooling in vhile drilling.
	_											

Northwest of Kasota Avenue & Minnesota Highway 280 St. Paul, Minnesota	ATE:	attached	I sketch. /95 SCALE: 1" WL Tests or Strong fuel odor.	= 4' Note:
Elev. Depth ASTM 98.2 0.0 Symbol Description of Materials FILL FILL FILL: Silty Sand mixed with glass, concrete, Gravel, brick, wood, cinders, paper and peat, bla		BPF V	WL. Tests or	
98.2 0.0 Symbol Description of Materials FILL FILL: Silty Sand mixed with glass, concrete, Gravel, brick, wood, cinders, paper and peat, bla		4		Note
FILL FILL: Silty Sand mixed with glass, concrete,	lack -	8	Strong fuel odor.	
84.2 14.0 FILL FILL: Organic Clay mixed with glass, black and gray, wet. 82.2 16.0 FILL FILL: Peat mixed with Organic Clay and Silt with trace of glass, black and gray, wet. - - 76.2 22.0 CL SANDY LEAN CLAY, with a trace of Gravel, brow, wet, medium to rather stiff. (Glacial Till) 72.7 25.5 END OF BORING. Water not observed with 24' of hollow-stem auge:	ith a	× 3 5 2 5 7 7 7 9	Elevation Reference: catch basin on north s Kasota Avenue east o southbound highway 2 entrance ramp. Eleva	side of of the 280
in the ground. Boring grouted to the surface.	-		assumed to be 100.0.	

2 N 34

PROJEC	T: B	ABX-95-84	49	BORING: ST-2						
	Pr	oposed M	ARY GEOTECHNICAL EVALUATION Canufacturing Building of Kasota Avenue & Minnesota Highway 280 innesota	LOCATI See		ed sketch				
DRILLE	R: M	. Niesen	METHOD: 3 1/4" HSA	DATE:	10/3	0/95	SCALE	1	" = 4'	
Elev. D 98.2	Depth 0.0	ASTM Symbol FILL	Description of Materials FILL: Silty Sand mixed with brick rubble, w metal, Organic Clay and glass, black and dar brown, moist to 10' then wet.	ood, 'k – –	BPF 9 14 6	WL	Tests	or	Note	
80.2	18.0				$ \begin{array}{c} $					
		CL	SANDY LEAN CLAY, with a trace of Grav seams and layers of Sand, brown, wet, rather very stiff. (Glacial Till)	el and r soft to 	× 4 × 6 × 5 × 17 × 12 × 17					
72.2	26.0		END OF BORING.		× 1/					
_			Water down 22 1/2' with 24' of hollow-stem in the ground. Water down 19 1/2' with cave-in at 21 1/2'.	auger -						
			Boring then grouted to surface.	-						

 $g = \infty - \frac{N_{H}}{2}$

PROJE	ECT: B	ABX-95-8	49	BORING	ł:	ST-2A				
	Pi N	roposed M	ARY GEOTECHNICAL EVALUATION lanufacturing Building of Kasota Avenue & Minnesota Highway 280 innesota	LUCATION:						
DRILI	LER: M	(. Niesen	METHOD: 3 1/4" HSA	DATE:	12/21/	95 SCALE: $1'' = 4'$				
Elev. 98.2	Depth 0.0		Description of Materials		BPF W	L Tests or Notes				
80.2	18.0	FILL	FILL: Silty Sand mixed with brick rubble, we metal, Organic Clay and glass, black and dar brown, moist to 10' then wet.	ood, k						
		CL	SANDY LEAN CLAY, with a trace of Grave seams and layers of Sand, brown, wet, rather very stiff. (Glacial Till)		20					
72.2	26.0	SC SC	CLAYEY SAND, with a trace of Gravel, brown, wet, medium. (Glacial Till) CLAYEY SAND, with a trace of Gravel, gravel, gravel, medium.	-	× 8					
66.2	32.0		Braun Intertec - 1/8/96			ST-2A page 1				

2 26 24

PROJE	PH Pr No	RELIMI oposed orthwest	849 NARY GEOTECHNICAL EVALUATION Manufacturing Building of Kasota Avenue & Minnesota Highway 280 Minnesota	BORING LOCATI Sam	ON:		ST-2A	(cor	<u>nt.)</u>
DRILLI	ER: M	. Niesen	METHOD: 3 1/4" HSA	DATE:	12/2	.1/95	SCALE	: 1	" = 4'
Elev.	Depth	ASTM Symbol			BPF	WL	Tests	٥r	Notes
60.2 50.2 39.2	<u>38.0</u> 48.0 59.0	SP SP SP SP	POORLY GRADED SAND, mostly medium-grained, brown, waterbearing, very (Glacial Outwash) POORLY GRADED SAND, fine- to coarse-grained, with fine to coarse Gravel, b waterbearing, medium dense. (Glacial Outwash) POORLY GRADED SAND, mostly fine- to medium-grained, with a trace of fine to coars Gravel, brown, waterbearing, medium dense (Glacial Outwash) CLAYEY SAND, with a trace of fine to coars Gravel, brown, wet, hard. (Glacial Till)	orown,	\times 3 \times 20 \times 24 \times 12 \times 14 \times 32				
	<i>,</i>		(Continued on next page)	_					
34.2 BX-95-84	64.0	//	Braun Intertec - 1/8/96		1			T-2A	page 2 (

 $p = m - 2\pi$

PROJE	ECT: BA	ABX-95	5-84	19			ILL TRONG	BORING	:	S	5T-2A		(cor	nt.)
	PI Pr	RELIM oposed	IIN. I M	ARY Glanufact	EOTECHNIC uring Buildin a Avenue & M	GAL EVAL	UATION	LOCATI	ON: e as Bo	oring S	ST-2 - rec	Irille	d.	
	Ne	orthwes . Paul,	st o Mi	f Kasot innesota	a Avenue & N	Ainnesota I	Highway 280	Jam	0 45 20					
DRILI	LER: M	. Niese	n		METHOD:	3 1/4" HS	A	DATE:	12/2	1/95	SCA	ALE:	: 1	" = 4'
Elev.	Depth	ASTN Symbo			Des	cription of	Materials		BPF	WL	Te	sts	or	Notes
		SC		(Contin	nued from pre			AND,	42					
				brown,	, wet, hard.	(Glacial Til	11)		×					
		XX	1					_						
-			1					-						
-			/					-						
27.7	70.5		1						× 58					
-				END (OF BORING.			-						
_				Boring	immediately	grouted to	the surface.							
-								-						
_								_						
								-						
-														
_														
_								-						
-								-						
-								-						
-								-						
_														
_								-						
-:								-						
-							-							
-								-						
								-						

PROJECT: B. PI	RELIMIN	ARY GEOTECHNICAL EVALUATION	BORING LOCATI			ST-3		
No St	orthwest of Paul, M	lanufacturing Building of Kasota Avenue & Minnesota Highway 280 innesota	See	attache	ed sko	etch.		
DRILLER: M	. Rowland	METHOD: 3 1/4" HSA	DATE:	10/3	1/95	SCALE:	1	" = 4'
Elev. Depth 97.2 0.0	Symbol	Description of Materials		BPF	WL	Tests	or	Note
77.2 20.0 75.2 22.0 771.7 25.5	FILL CL CL	FILL: Sandy Lean Clay mixed with Peat, Gra glass, concrete and brick debris, black, moist wet. LEAN CLAY, gray, wet, rather soft. (Alluvium) SANDY LEAN CLAY, with seams and layer Sand and a trace of Gravel, brown, wet, stiff. (Glacial Till) END OF BORING. Water not observed with 24' of hollow-stem a in the ground. Boring grouted to surface.	t to	2 x x x x x x x x x x x x x x x x x x x		OC = 9% MC = 40%		

7 × ×

PROJE	ECT: BA	ABX-95	-84	49	B	ORING	:	ļ	ST-3	A					
	Pr	oposed orthwes	M t o	ARY GEOTECHNICAL EVALUATION Canufacturing Building of Kasota Avenue & Minnesota Highway 280 innesota	acturing Building sota Avenue & Minnesota Highway 280 ota										
DRILI	LER: M	. Niesei	n	METHOD: 3 1/4" HSA	D	ATE:	12/2	21/95	S	CALE	: 1	" = 4'			
Elev.	Depth	ASTN Symbo		Description of Materials			BPF	WI		Tests	or	Notes			
97.2	0.0	FILL		FILL: Sandy Lean Clay mixed with Peat, Gr	ave	el,				10000					
				FILL: Sandy Lean Clay mixed with Peat, or glass, concrete and brick debris, black, moist wet. (Redrilled, augered to 25-foot depth.)	t to										
- 77.2	20.0					-									
11.2	20.0	CL		LEAN CLAY, gray, wet, rather soft.											
- 75.2	22.0			(Alluvium)		-									
-		CL		SANDY LEAN CLAY, with seams and laye Sand and a trace of Gravel, brown, wet, stiff (Glacial Till)	ers c f.	of	×								
72.2	25.0	CL		SANDY LEAN CLAY, with a trace of Grav	el a	and	9								
- - 	28.0	SC		layers of Sand, brown, wet, rather stiff. (Glacial Till) CLAYEY SAND, with a trace of fine to mee	liur	- - n									
- - 65.2	32.0		///////////////////////////////////////	Gravel, brown, wet, stiff. (Glacial Till) (Continued on next page)			16								

1 10 10

PROJE	ECT: B	ABX-95-8	49	RY GEOTECHNICAL EVALUATION nufacturing Building Kasota Avenue & Minnesota Highway 280 BORING: ST-3A (cont. LOCATION: Same as Boring ST-3 - redrilled.										
	PI	oposed M	lanufact of Kasot:	uring Buildin a Avenue & N	g				oring	ST-3 - redri	led.			
DRILI	LER: M	. Niesen		METHOD:	3 1/4" HSA		DATE:	E: 1	" = 4'					
Elev.	Depth	ASTM Symbol		Des	cription of N	laterials		BPF	WL	Tests	or	Notes		
64.2	33.0	SC CL	(Contine with a $stiff.$	ued from pre trace of fine to	vious page) (o medium G	CLAYEY SA ravel, brown	AND, n, wet, 7							
			SAND mediur	Y LEAN CLA n Gravel, brov	(Glacial Till) AY, with a tr wn, wet, me (Glacial Till)	ace of fine to dium to stiff		× 8 × 13						
 	44.0	SP	mediur	LY GRADED n-grained, bro ium dense. (Gl	SAND, mo own, waterbe acial Outwas	earing, very	loose	2						
- - - 44.2	53.0						-	16						
		SP	medium	LY GRADED n-grained, wit rey Sand, brov (Gl	h a trace of	Gravel and la tring, mediu	ayers – m –	25		×				
 	58.0	CL	to hard	CLAY, Shale	(Bedrock)	v, moist, ver	y stiff	× 17						
33.2	64.0										ST-34			

2 64 3

PROJECT: B	ABX-95-84	49		BORING		ST-3A	(cor	nt.)
PN		ARY GEOTECHNICAL EVA anufacturing Building f Kasota Avenue & Minnesot innesota		LOCATI(Sam	ON: e as Bori	ing ST-3 - redri	lled.	
DRILLER: N	1. Niesen	METHOD: 3 1/4" I	HSA	DATE:	12/21/	95 SCAL	.E: 1	" = 4'
Elev. Depth	Symbol	Description			BPF W	VL Tests	or	Notes
	CL	(Continued from previous pay Shale, bluish gray, moist, ver (Bedroo END OF BORING. Boring immediately grouted to		Y,	40 30 42 44			

g an Se

LOG OF BORING

97.4 0.0 Symbol Description of Materials BPF WL Tests or Note FILL FILL: Silty Sand mixed with Gravel, wood, paper, glass and metal debris, black and dark brown, moist to 14' then wet. - <th>PROJEC</th> <th></th> <th>ABX-95-84</th> <th></th> <th>BORING</th> <th>:</th> <th></th> <th>ST-4</th> <th></th> <th>_</th>	PROJEC		ABX-95-84		BORING	:		ST-4		_
Rev. Depth ASTM Description of Materials BPF WL Tests or Note 97.4 0.0 Symbol Description of Materials BPF WL Tests or Note 97.4 0.0 Symbol Description of Materials BPF WL Tests or Note 97.4 0.0 Symbol FILL: Sitrong fuel odor. Strong fuel odor. Strong fuel odor. 9 14' then wet. 15 5 15 5 15 9 0.4 17.0 CL SANDY LEAN CLAY, with a trace of Gravel, brown, wet, rather soft to rather stiff. (Glacial Till) 4 4 71.9 25.5 END OF BORING. 12 12 12 71.9 25.5 END OF BORING. 12 12 12 Water not observed with 24' of hollow-stem auger in the ground. Water not observed with 23'. 14 12	Proposed Manufacturing Building Northwest of Kasota Avenue & Minnesota Highway 280				Drilled 5' north of staked location. See					
97.4 0.0 Symbol Description of Materials BPF WL Tests or Note FILL FILL: Silty Sand mixed with Gravel, wood, paper. glass and metal debris, black and dark brown, moist to 14' then wet. If the wet. <th>ORILLE</th> <th>ER: M</th> <th>. Niesen</th> <th>METHOD: 3 1/4" HSA</th> <th>DATE:</th> <th>10/3</th> <th>80/95</th> <th>SCALE:</th> <th>1" =</th> <th>4'</th>	ORILLE	ER: M	. Niesen	METHOD: 3 1/4" HSA	DATE:	10/3	80/95	SCALE:	1" =	4'
80.4 17.0 CL SANDY LEAN CLAY, with a trace of Gravel, brown, wet, rather soft to rather stiff. (Glacial Till) 4 4 71.9 25.5 END OF BORING. Water not observed with 24' of hollow-stem auger in the ground. Water down 16' with cave-in at 23'. 12	Elev. [] 97.4					BPF	WL	Tests o	r N	ote
Water not observed with 24' of hollow-stem auger in the ground. Water down 16' with cave-in at 23'.	. 80.4	17.0	FILL	FILL: Silty Sand mixed with Gravel, wood, glass and metal debris, black and dark brown to 14' then wet.	n, moist	2 1××1 1××1 1××1 6	₩ a	Strong fuel odor.		
Water down 16' with cave-in at 23'.					- auger					
				in the ground.						
Boring then grouted to the surface.	-			Water down 16' with cave-in at 23'.						
				Boring then grouted to the surface.	-					

LOG OF BORING

PROJECT: BABX-95-849					BORING	 }:		ST-5
	PRELIMINARY GEOTECHNICAL EVALUATION Proposed Manufacturing Building Northwest of Kasota Avenue & Minnesota Highway 280 St. Paul, Minnesota					ON: attache	ed sk	etch.
DRIT	.ER: M		_	METHOD: 3 1/4" HSA	DATE:	10/3	0/94	5 SCALE: $1'' = 4'$
Elev.	Depth	AST		METHOD: 51/4 Horr	DITIL.	10/5		
96.5	0.0	Sym	bol	Description of Materials		BPF	WL	Tests or Notes
		FILL OL CL		FILL: Silty Sand mixed with Organic Clay, s concrete, Gravel, brick, wood, paper and a t coal, black and dark brown, moist to wet. ORGANIC CLAY, black, wet. (Swamp Deposit) SANDY LEAN CLAY, with a trace of Grav- seams and layers of Sand, wet, rather soft to stiff. (Glacial Till) END OF BORING. Water down 16 1/2' with 24' of hollow-stem in the ground. Water down 19' immediately after withdrawa	auger	x 5 8 8 6 7 9 16 27 30 11 7 5 5 1 2 x 5 1 2 3 6 4 2 1 5 4 2 1 5 4 7 14 29		
_				Water down 18' immediately after withdrawa auger with cave-in at 23'.*	-			Boring then grouted to the surface.

y na Si

LOG OF BORING

PROJECT: BABX-95-849 PRELIMINARY GEOTECHNICAL EVALUATION			BORING: ST-6						
	LOCATION: See attached sketch.								
DRILLER:		METHOD: 3 1/4" HSA	DATE:	10/3	1/95	SCALE:	1	" = 4'	
Elev. Dep 96.2 0	h ASTM 0 Symbol	Description of Materials		BPF	WL	Tests	or	Notes	
74.2 22.	0 ML SM	 FILL: Mixed Silty Sand, Clayey Sand, Orgat Clay, Peat, glass, concrete, Gravel, wood, n and brick rubble, black, moist to wet. SILT, with a trace of shells, gray, wet, very (Alluvium) SILTY SAND, mostly fine-grained, with a tr Gravel, gray, waterbearing, medium dense. (Glacial Till) END OF BORING. Water down 21.2' with 24' of hollow-stem authe ground. Boring grouted to the surface. 	loose.	x x x x x x x x x x x x x x x x x x x	Ř				

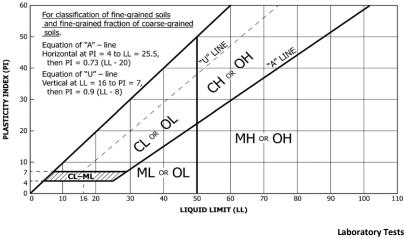
1 1 1

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A						Soil Classification
						Group Name ^B
ç	Gravels	Clean Gravels (Less than 5% fines ^C)		$C_u \ge 4$ and $1 \le C_c \le 3^D$	GW	Well-graded gravel ^E
ed o	(More than 50% of coarse fraction			$C_u < 4$ and/or $(C_c < 1 \text{ or } C_c > 3)^D$	GP	Poorly graded gravel ^E
ned Soi 6 retain sieve)	retained on No. 4	Gravels with Fines (More than 12% fines ^C)		Fines classify as ML or MH	GM	Silty gravel ^{EFG}
aineo)% re	sieve)			Fines Classify as CL or CH	GC	Clayey gravel ^{E F G}
Coarse-grained Soils (more than 50% retained on No. 200 sieve)	Sands	Clean Sa	ands	$C_u \ge 6$ and $1 \le C_c \le 3^D$	SW	Well-graded sand ¹
oarse e thar No.	(50% or more coarse	(Less than 5% fines ^H)		$C_u < 6$ and/or $(C_c < 1 \text{ or } C_c > 3)^D$	SP	Poorly graded sand
mor	fraction passes No. 4	Sands wit	h Fines	Fines classify as ML or MH	SM	Silty sand ^{FGI}
)	sieve)	(More than 12% fines ^H)		Fines classify as CL or CH	SC	Clayey sand ^{FGI}
		Inorganic	PI > 7 and	l plots on or above "A" line ^J	CL	Lean clay ^{KLM}
the	Silts and Clays (Liquid limit less than			olots below "A" line ^J	ML	Silt ^{KLM}
Fine-grained Soils (50% or more passes the No. 200 sieve)	50)			hit – oven dried hit – not dried <0.75	OL	Organic clay KLMN Organic silt KLMO
grain more 200		Inorganic	PI plots o	n or above "A" line	СН	Fat clay ^{KLM}
Fine-ε % or 1 No.	Silts and Clays (Liguid limit 50 or	morganic	PI plots b	elow "A" line	ΜΗ	Elastic silt ^{KLM}
(20	more)	Organic	Liquid Limit – oven dried Liquid Limit – not dried <0.75		ОН	Organic clay KLMP Organic silt KLMQ
Hig	hly Organic Soils	Primarily organic matter, dark in color, and organic odor			PT	Peat

A. Based on the material passing the 3-inch (75-mm) sieve.

If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, Β. or both" to group name.

- C. Gravels with 5 to 12% fines require dual symbols:
 - GW-GM well-graded gravel with silt


GW-GC well-graded gravel with clay

GP-GM poorly graded gravel with silt

GP-GC poorly graded gravel with clay

 $C_c = (D_{30})^2 / (D_{10} \times D_{60})$ D. $C_u = D_{60} / D_{10}$

- E. If soil contains ≥ 15% sand, add "with sand" to group name.
- If fines classify as CL-ML, use dual symbol GC-GM or SC-SM. F.
- If fines are organic, add "with organic fines" to group name. G
- Sands with 5 to 12% fines require dual symbols: Η.
 - SW-SM well-graded sand with silt
 - SW-SC well-graded sand with clay
 - SP-SM poorly graded sand with silt
 - poorly graded sand with clay SP-SC
- I. If soil contains \geq 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in hatched area, soil is CL-ML, silty clay. J.
- If soil contains 15 to < 30% plus No. 200, add "with sand" or "with gravel", whichever is К. predominant.
- 1 If soil contains ≥ 30% plus No. 200, predominantly sand, add "sandy" to group name.
- M. If soil contains ≥ 30% plus No. 200 predominantly gravel, add "gravelly" to group name.
- N. $PI \ge 4$ and plots on or above "A" line.
- O. PI < 4 or plots below "A" line.
- PI plots on or above "A" line. Ρ.
- Q. PI plots below "A" line.

Drv density, pcf

Wet density, pcf

% Passing #200 sieve

DD

WD

P200

Based on Standards ASTM D2487/2488 (Unified Soil Classification System)

Particle Size Identification
Boulders over 12"
Cobbles 3" to 12"
Gravel
Coarse
Fine No. 4 to 3/4" (4.75 mm to 19.00 mm)
Sand
Coarse No. 10 to No. 4 (2.00 mm to 4.75 mm)
Medium No. 40 to No. 10 (0.425 mm to 2.00 mm)
Fine No. 200 to No. 40 (0.075 mm to 0.425 mm)
Silt No. 200 (0.075 mm) to .005 mm
Clay< .005 mm
Relative Proportions ^{L, M}

trace	0 to 5%
little	6 to 14%
with	≥ 15%
	Inclusion Thicknesses

	inclusion mickness
lens	0 to 1/8"
seam	1/8" to 1"
layer	over 1"

Apparent Relative Density of Cohesionless Soils

Very loose	0 to 4 BPF
Loose	5 to 10 BPF
Medium dense	11 to 30 BPF
Dense	31 to 50 BPF
Very dense	over 50 BPF

Consistency of Cohesive Soils	Blows Per Foot	Approximate Unconfined Compressive Strength
	0 to 1 BPF	< 0.25 tsf
Soft	2 to 4 BPF	0.25 to 0.5 tsf
Medium	5 to 8 BPF	0.5 to 1 tsf
Stiff	9 to 15 BPF	1 to 2 tsf
Very Stiff	16 to 30 BPF	2 to 4 tsf
Hard	over 30 BPF.	> 4 tsf

Moisture Content:

Dry: Absence of moisture, dusty, dry to the touch. Moist: Damp but no visible water. Wet: Visible free water, usually soil is below water table.

Drilling Notes: Blows/N-value: Blows indicate the driving resistance recorded for each 6-inch interval. The reported N-value is the blows per foot recorded by summing the second and third interval in accordance with the Standard Penetration Test, ASTM D1586.

Partial Penetration: If the sampler could not be driven through a full 6-inch interval, the number of blows for that partial penetration is shown as #/x" (i.e. 50/2"). The N-value is reported as "REF" indicating refusal.

Recovery: Indicates the inches of sample recovered from the sampled interval. For a standard penetration test, full recovery is 18", and is 24" for a thinwall/shelby tube sample.

WOH: Indicates the sampler penetrated soil under weight of hammer and rods alone; driving not required.

WOR: Indicates the sampler penetrated soil under weight of rods alone; hammer weight and driving not required.

Water Level: Indicates the water level measured by the drillers either while drilling ($\underline{\bigtriangledown}$), at the end of drilling ($\underline{\blacktriangledown}$), or at some time after drilling (🔽).

aborat	ory I	ests

00

q, мс

qυ

- Organic content. %
- Pocket penetrometer strength, tsf
 - Moisture content, %
- Unconfined compression test, tsf

PL Ы

ш

Plasticity index

Appendix C

Photo Log Vacant Property, Highway 280 and Kasota Avenue St. Paul, Minnesota May 30, 2019

View facing east looking down at test trench location LTT-1.

View facing west/northwest looking down at the side wall of test trench location LTT-3.

View facing west looking down at the side wall of test trench location LTT-5.

View facing east looking down at test trench location LTT-2.

View facing southwest looking down at the side wall of test trench location LTT-4.

View facing south looking down at the side wall of test trench location LTT-6.

Photo Log Vacant Property, Highway 280 and Kasota Avenue St. Paul, Minnesota May 30, 2019

View facing northeast looking down at the side wall of test trench location LTT-7.

View facing southwest looking down at the side wall of test trench location LTT-8.

Appendix D

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	VPP-Kasota Ave 0 Kasota Avenue, St. Paul, MN
Excavation # <u>LTT-1</u>	Date:5/30/2019	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483893/N4980522
Length:15'	Width:5'	Depth: <u>5'</u>

View of south sidewall

0-1' – topsoil – brown to dark brown silty sand, fine to medium grained, some organics/roots

1-2' – fill – brown to dark brown silty sand, fine to medium grained, with debris:

- pieces of concrete, brick/clay tile, glass, plastic, wood

2-5' – fill – black to dark gray silty sand, fine to medium grained, with petroleum odor and debris:

- pieces of concrete, brick/clay tile, glass, plastic, wood

PID 1-2' 0.0 ppm 4-5' 50.0 ppm

Soil Samples

LTT-1/1-2' @ 8:15 – DRO, PAHs, RCRA Metals, PCBs, TCLP Lead, HOLD-VOCs LTT-1/4-5' @ 8:30 – HOLD- DRO, PAHs, RCRA Metals, PCBs, VOCs

Test Trench Sampling Log	Project Name:	VPP-Kasota Ave		
Landmark Environmental, LLC	Address:	0 Kasota Avenue, St. Paul, MN		
Excavation # <u>LTT-2</u>	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>		
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483869/N4980516		
Length:15'	Width: 5'	Depth:5.5'		

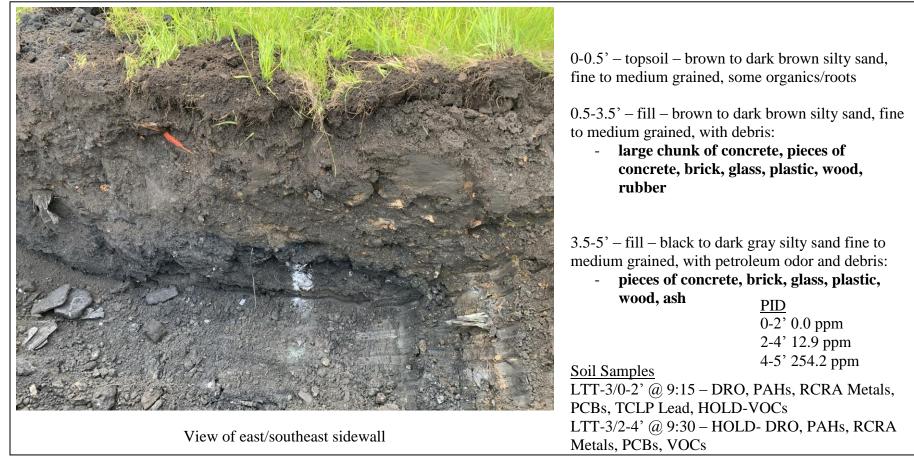
0-0.5' – topsoil – brown to dark brown silty sand, fine to medium grained, some organics/roots

0.5-4' – fill – brown to dark brown silty sand, fine to medium grained, with debris:

- pieces of concrete, brick, glass, plastic, wood, rubber

4-5.5' – fill – black to dark gray silty sand fine to medium grained, with petroleum odor and debris:

- pieces of concrete, brick, glass, plastic, wood, slag/coke


<u>PID</u> 1-2' 0.0 ppm 2-3' 1.2 ppm 4-5' 103.4 ppm

Soil Samples

LTT-2/2-3' @ 8:45 – DRO, PAHs, RCRA Metals, PCBs, TCLP Lead, HOLD-VOCs LTT-2/4-5' @ 9:00 – HOLD- DRO, PAHs, RCRA Metals, PCBs, VOCs

View of north sidewall

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	VPP-Kasota Ave 0 Kasota Avenue, St. Paul, MN
Excavation # <u>LTT-3</u>	Date:5/30/2019	Contractor: Frattalone
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483851/N4980511
Length:15'	Width:5'	Depth: <u>5'</u>

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	<u>VPP-Kasota Ave</u> 0 Kasota Avenue, St. Paul, MN
Excavation # <u>LTT-4</u>	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T 1</u>	E483828/N4980513
Length: <u>15'</u>	Width: 5'	Depth:5'

View of northeast sidewall

0-1' – topsoil – brown to dark brown silty sand, fine to medium grained, some organics/roots

1-3.5' – fill – brown to dark brown silty sand, fine to medium grained, with debris:

pieces of concrete, brick, glass, plastic, wood, rubber, metal PID

3' – water seeping in

0-2' 0.0 ppm 2-4' 3.8 ppm

4-5' 56.4 ppm

3.5-5' – fill – black to dark gray silty sand fine to medium grained, with petroleum odor and debris:

- pieces of concrete, brick, glass, plastic, wood, slag/coke, metal

Soil Samples

LTT-4/0-2' @ 9:45 – HOLD- DRO, PAHs, RCRA Metals, PCBs, VOCs LTT-4/2-4' @ 10:00 – DRO, PAHs, RCRA Metals, PCBs, TCLP Lead, VOCs

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	<u>VPP-Kasota Ave</u> 0 Kasota Avenue, St. Paul, MN
Excavation # <u>LTT-5</u>	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483812/N4980544
Length:15'	Width: 5'	Depth: <u>5'</u>

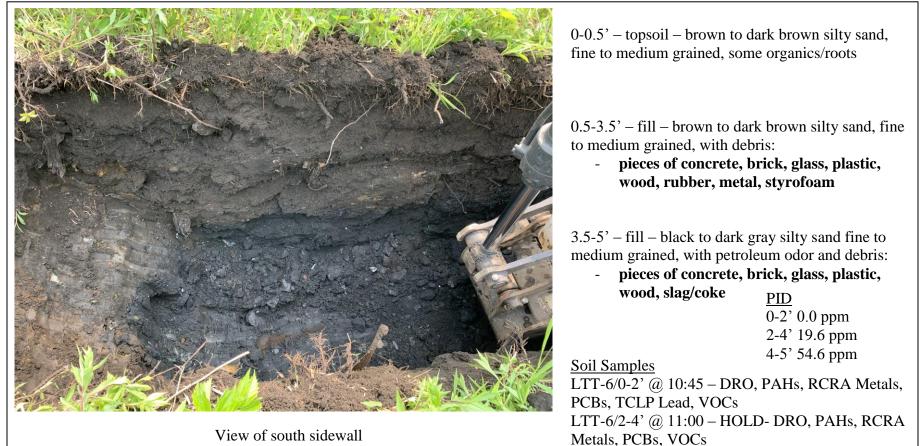
View of east sidewall

0-0.5' - topsoil - brown to dark brown silty sand, fine to medium grained, some organics/roots

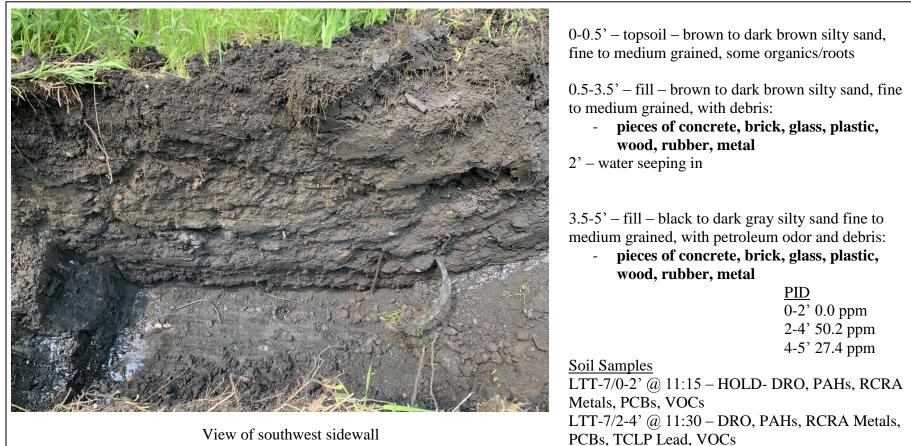
0.5-3' - fill - brown to dark brown silty sand, fineto medium grained, with debris:

pieces of concrete, brick, glass, plastic, wood, rubber, metal, slag/coke

3-5' - fill - black to dark gray silty sand fine to medium grained, with petroleum odor and debris:


pieces of concrete, brick, glass, plastic, wood, slag/coke PID

- 0-2' 0.0 ppm
- 2-4' 55.1 ppm


4-5' 58.1 ppm

LTT-5/0-2' @ 10:15 - DRO, PAHs, RCRA Metals, PCBs, TCLP Lead, HOLD-VOCs LTT-5/2-4' @ 10:30 - HOLD- DRO, PAHs, RCRA Metals, PCBs, VOCs

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	<u>VPP-Kasota Ave</u> <u>0 Kasota Avenue, St. Paul, MN</u>
Excavation # <u>LTT-6</u>	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483811/N4980577
Length:15'	Width:5'	Depth:5'

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	<u>VPP-Kasota Ave</u> <u>0 Kasota Avenue, St. Paul, MN</u>
Excavation # <u>LTT-7</u>	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483834/N4980554
Length:15'	Width:5'	Depth:5'

Test Trench Sampling Log Landmark Environmental, LLC	Project Name: Address:	<u>VPP-Kasota Ave</u> 0 Kasota Avenue, St. Paul, MN
Excavation # LTT-8	Date: <u>5/30/2019</u>	Contractor: <u>Frattalone</u>
Excavation Method: <u>Backhoe</u>	Coordinates: <u>NAD83 UTM 15T</u>	E483839/N4980538
Length: <u>15</u> '	Width:5'	Depth: <u>5'</u>

View of northeast sidewall

PID 0-2' 0.0 ppm 2-4' 38.5 ppm 4-5' 43.1 ppm

0-1' – topsoil – brown to dark brown silty sand, fine to medium grained, some organics/roots

1-3' – fill – brown to dark brown silty sand, fine to medium grained, with debris:

- pieces of concrete, brick, glass, plastic, wood, rubber, metal
- 1.5' water seeping in

3-5' – fill – black to dark gray silty sand fine to medium grained, with petroleum odor and debris:

- pieces of concrete, brick, glass, plastic, wood, rubber, metal

Soil Samples

LTT-8/0-2' @ 11:45 – DRO, PAHs, RCRA Metals, PCBs, TCLP Lead, HOLD-VOCs LTT-8/2-4' @ 12:00 – HOLD- DRO, PAHs, RCRA Metals, PCBs, VOCs

Appendix E

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

June 18, 2019

Shannon Russell Landmark Environmental 2042 West 98th Street Minneapolis, MN 55431

RE: Project: VPP-Kasota-Revised Report Pace Project No.: 10477057

Dear Shannon Russell:

Enclosed are the analytical results for sample(s) received by the laboratory on May 30, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This report was revised on June 18, 2019 to include results for TCLP lead on Pace samples 10477057 001 – 008.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ann Asp

Annika Asp annika.asp@pacelabs.com (612)607-1700 Project Manager

Enclosures

cc: Mr. Jerry Mullin, Landmark Environmental

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: VPP-Kasota-Revised Report Pace Project No.: 10477057

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10477057001	 LTT-1/1-2	Solid	05/30/19 08:15	05/30/19 12:35
10477057002	LTT-2/2-3	Solid	05/30/19 08:45	05/30/19 12:35
10477057003	LTT-3/0-2	Solid	05/30/19 09:15	05/30/19 12:35
10477057004	LTT-4/2-4	Solid	05/30/19 10:00	05/30/19 12:35
10477057005	LTT-5/0-2	Solid	05/30/19 10:15	05/30/19 12:35
10477057006	LTT-6/0-2	Solid	05/30/19 10:45	05/30/19 12:35
10477057007	LTT-7/2-4	Solid	05/30/19 11:30	05/30/19 12:35
10477057008	LTT-8/0-2	Solid	05/30/19 11:45	05/30/19 12:35
10477057009	LTT-1/4-5	Solid	05/30/19 08:30	05/30/19 12:35
10477057010	LTT-2/4-5	Solid	05/30/19 09:00	05/30/19 12:35
10477057011	LTT-3/2-4	Solid	05/30/19 09:30	05/30/19 12:35
10477057012	LTT-4/0-2	Solid	05/30/19 09:45	05/30/19 12:35
10477057013	LTT-5/2-4	Solid	05/30/19 10:30	05/30/19 12:35
10477057014	LTT-6/2-4	Solid	05/30/19 11:00	05/30/19 12:35
10477057015	LTT-7/0-2	Solid	05/30/19 11:15	05/30/19 12:35
10477057016	LTT-8/2-4	Solid	05/30/19 12:00	05/30/19 12:35

SAMPLE ANALYTE COUNT

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10477057001	 LTT-1/1-2	EPA 8082A	RAG		PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
0477057002	LTT-2/2-3	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
0477057003	LTT-3/0-2	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
0477057004	LTT-4/2-4	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
		EPA 8260B	CD2	70	PASI-M
0477057005	LTT-5/0-2	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
0477057006	LTT-6/0-2	EPA 8082A	RAG	11	PASI-M

SAMPLE ANALYTE COUNT

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
		EPA 8260B	CD2	70	PASI-M
10477057007	LTT-7/2-4	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M
		EPA 8260B	CD2	70	PASI-M
10477057008	LTT-8/0-2	EPA 8082A	RAG	11	PASI-M
		WI MOD DRO	EC2	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 7471B	BTS	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	SNG	19	PASI-M

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Date: June 18, 2019

On the evening of Thursday, May 30, 2019 around 10:30 pm Pace Analytical Services, Minneapolis experienced a power outage. On Friday, May 31, 2019 around 8:30 am the continuous temperature monitoring system went into alarm; lab staff followed our Standard Operating Procedure and took a representative reading of samples in the unit (C-16) and documented it in the system. The samples in the cooler were in temp at this time, there was no additional follow up.

The power outage created an unknown mechanical error with the unit and it never regained proper functionality. A manual temperature reading was taken June 3, 2019 at 7:40 am, which was out of compliance around 13 degrees Celsius which prompted all samples to be moved to a functioning unit.

For samples to be in compliance with requirements, they need to be maintained between $0 - 6^{\circ}$ C.

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:EPA 8082ADescription:8082A GCS PCBClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

8 samples were analyzed for EPA 8082A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3550 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 609973

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- BLANK (Lab ID: 3296468)
- Decachlorobiphenyl (S)
- LCS (Lab ID: 3296469)
 - Decachlorobiphenyl (S)
- MS (Lab ID: 3296646)
 - Decachlorobiphenyl (S)
- MSD (Lab ID: 3296647)
 - Decachlorobiphenyl (S)

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 609401

S0: Surrogate recovery outside laboratory control limits.

- MS (Lab ID: 3293237)
 - Decachlorobiphenyl (S)
 - Tetrachloro-m-xylene (S)
- MSD (Lab ID: 3293238)
 - Tetrachloro-m-xylene (S)

QC Batch: 609973

S0: Surrogate recovery outside laboratory control limits.

- LTT-1/1-2 (Lab ID: 10477057001)
 - Decachlorobiphenyl (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:EPA 8082ADescription:8082A GCS PCBClient:Landmark EnvironmentalDate:June 18, 2019

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 609401

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10475343014

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3293237)
 - PCB-1016 (Aroclor 1016)

Additional Comments:

Analyte Comments:

QC Batch: 609973

D4: Sample was diluted due to the presence of high levels of target analytes.

- LTT-1/1-2 (Lab ID: 10477057001)
 - Tetrachloro-m-xylene (S)
- LTT-2/2-3 (Lab ID: 10477057002)
 - Tetrachloro-m-xylene (S)
- LTT-5/0-2 (Lab ID: 10477057005)
 - Tetrachloro-m-xylene (S)

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:WI MOD DRODescription:WIDRO GCS Silica GelClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

8 samples were analyzed for WI MOD DRO. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with WI MOD DRO with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 609985

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- LTT-1/1-2 (Lab ID: 10477057001)
- n-Triacontane (S)
- LTT-5/0-2 (Lab ID: 10477057005)
 - n-Triacontane (S)
- LTT-7/2-4 (Lab ID: 10477057007)
 n-Triacontane (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Pace Project No.: 10477057
Method:WI MOD DRODescription:WIDRO GCS Silica GelClient:Landmark EnvironmentalDate:June 18, 2019
Analyte Comments:
QC Batch: 609985
MC batch. 00995 1M: Samples requiring thermal preservation exceeded method recommended temperature limits after receipt but before extraction or digestion was conducted. Results are estimated •LTT-1/1-2 (Lab ID: 10477057001) •n-Triacontane (S) •LTT-2/2-3 (Lab ID: 10477057002) •n-Triacontane (S) •LTT-3/0-2 (Lab ID: 10477057003) •n-Triacontane (S) •LTT-4/2-4 (Lab ID: 10477057004) •n-Triacontane (S) •LTT-5/0-2 (Lab ID: 10477057005) •n-Triacontane (S) •LTT-6/0-2 (Lab ID: 10477057006) •n-Triacontane (S) •LTT-7/2-4 (Lab ID: 10477057007) •n-Triacontane (S) •LTT-7/2-4 (Lab ID: 10477057007) •n-Triacontane (S) •LTT-7/2-4 (Lab ID: 10477057007) •n-Triacontane (S) •LTT-6/0-2 (Lab ID: 10477057007) •n-Triacontane (S) •LTT-7/2-4 (Lab ID: 10477057007) •n-Triacontane (S) 2M: Samples requiring thermal preservation exceeded method recommended temperature limits after receipt but before extraction or digestion was conducted. Results are estimated. •LTT-8/0-2 (Lab ID: 10477057008)
• n-Triacontane (S)
T6: High boiling point hydrocarbons are present in the sample. • LTT-1/1-2 (Lab ID: 10477057001) • WDRO C10-C28 • LTT-2/2-3 (Lab ID: 10477057002) • WDRO C10-C28 • LTT-3/0-2 (Lab ID: 10477057003) • WDRO C10-C28 • LTT-4/2-4 (Lab ID: 10477057004) • WDRO C10-C28 • LTT-5/0-2 (Lab ID: 10477057005) • WDRO C10-C28 • LTT-6/0-2 (Lab ID: 10477057006) • WDRO C10-C28 • LTT-7/2-4 (Lab ID: 10477057007) • WDRO C10-C28 • LTT-7/2-4 (Lab ID: 10477057008) • WDRO C10-C28 • LTT-8/0-2 (Lab ID: 10477057008) • WDRO C10-C28
T7: Low boiling point hydrocarbons are present in the sample. • LTT-2/2-3 (Lab ID: 10477057002) • WDRO C10-C28 • LTT-3/0-2 (Lab ID: 10477057003) • WDRO C10-C28

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:WI MOD DRODescription:WIDRO GCS Silica GelClient:Landmark EnvironmentalDate:June 18, 2019

Analyte Comments:

QC Batch: 609985

T7: Low boiling point hydrocarbons are present in the sample.

- LTT-4/2-4 (Lab ID: 10477057004)
- WDRO C10-C28 • LTT-5/0-2 (Lab ID: 10477057005)
- WDRO C10-C28
- LTT-6/0-2 (Lab ID: 10477057006)
 WDRO C10-C28
- LTT-7/2-4 (Lab ID: 10477057007)
 WDRO C10-C28
- LTT-8/0-2 (Lab ID: 10477057008)
 - WDRO C10-C28

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:EPA 6010DDescription:6010D MET ICP, TCLPClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

8 samples were analyzed for EPA 6010D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method: EPA 6010D

Description:6010D MET ICPClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

8 samples were analyzed for EPA 6010D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 609891

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10476849001

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 3296195)

Lead

Additional Comments:

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:EPA 7471BDescription:7471B MercuryClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

8 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:	EPA 8270D by SIM
Description:	8270D MSSV PAH by SIM
Client:	Landmark Environmental
Date:	June 18, 2019

General Information:

8 samples were analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3550 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 609600

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10476509005

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3294380)
 - Fluoranthene
 - Phenanthrene
 - Pyrene
 - MSD (Lab ID: 3294381)
 - Chrysene
 - Pyrene

Additional Comments:

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method:EPA 8270D by SIMDescription:8270D MSSV PAH by SIMClient:Landmark EnvironmentalDate:June 18, 2019

Analyte Comments:

QC Batch: 609600

D4: Sample was diluted due to the presence of high levels of target analytes.

• LTT-6/0-2 (Lab ID: 10477057006)

• 2-Fluorobiphenyl (S)

• LTT-8/0-2 (Lab ID: 10477057008)

• 2-Fluorobiphenyl (S)

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method: EPA 8260B

Description:8260B MSV 5030 Med LevelClient:Landmark EnvironmentalDate:June 18, 2019

General Information:

3 samples were analyzed for EPA 8260B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 610910

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- LCS (Lab ID: 3300778)
 - Trichlorofluoromethane

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Method: Description Client: Date:	EPA 8260B : 8260B MSV 5030 Med Level Landmark Environmental June 18, 2019						
Analyte Corr	iments:						
QC Batch: 6	10910						
list c	The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete f accreditations/certifications is available upon request. BLANK (Lab ID: 3300777) • Dichlorofluoromethane LCS (Lab ID: 3300778) • Dichlorofluoromethane ITT-4/2-4 (Lab ID: 10477057004) • Dichlorofluoromethane ITT-6/0-2 (Lab ID: 10477057006) • Dichlorofluoromethane ITT-7/2-4 (Lab ID: 10477057007) • Dichlorofluoromethane MS (Lab ID: 3300779) • Dichlorofluoromethane MSD (Lab ID: 3300780)						
This data pa	Dichlorofluoromethane						
mis data pa	This data package has been reviewed for quality and completeness and is approved for release.						

ANALYTICAL RESULTS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-1/1-2	Lab ID:	10477057001	Collecte	d: 05/30/19	08:15	6 Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	-	oisture, sar	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA 8	082A Prep	paration Met	hod: E	PA 3550			
PCB-1016 (Aroclor 1016)	<0.19	mg/kg	0.19	0.054	5	06/03/19 14:00	06/06/19 09:58	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.19	mg/kg	0.19	0.068	5	06/03/19 14:00	06/06/19 09:58	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.19	mg/kg	0.19	0.077	5	06/03/19 14:00	06/06/19 09:58	11141-16-5	
PCB-1242 (Aroclor 1242)	<0.19	mg/kg	0.19	0.065	5	06/03/19 14:00	06/06/19 09:58	53469-21-9	
PCB-1248 (Aroclor 1248)	<0.19	mg/kg	0.19	0.058	5	06/03/19 14:00	06/06/19 09:58	12672-29-6	
PCB-1254 (Aroclor 1254)	4.0	mg/kg	0.19	0.057	5	06/03/19 14:00	06/06/19 09:58	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.19	mg/kg	0.19	0.046	5	06/03/19 14:00	06/06/19 09:58	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.19	mg/kg	0.19	0.067	5	06/03/19 14:00	06/06/19 09:58	37324-23-5	
PCB-1268 (Aroclor 1268)	<0.19	mg/kg	0.19	0.063	5	06/03/19 14:00	06/06/19 09:58	11100-14-4	
Surrogates	101	0/	57 405		-	00/00/40 44.00	00/00/40 00 50	077 00 0	D4
Tetrachloro-m-xylene (S)	104	%.	57-125		5	06/03/19 14:00	06/06/19 09:58		D4
Decachlorobiphenyl (S)	127	%.	49-125		5	06/03/19 14:00	06/06/19 09:58	2051-24-3	S0
WIDRO GCS Silica Gel	Analytical	Method: WI Mo	OD DRO P	reparation N	/lethoc	I: WI MOD DRO			
WDRO C10-C28 Surrogates	151	mg/kg	66.9	25.9	10	06/03/19 09:17	06/04/19 20:41		Т6
n-Triacontane (S)	0	%.	44-143		10	06/03/19 09:17	06/04/19 20:41	638-68-6	1M, S4
6010D MET ICP, TCLP		Analytical Method: EPA 6010D Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 06/12/19 17:11 Initial pH: 8.08; Final pH: 1.74							
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 11:44	7439-92-1	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: E	PA 3050			
Arsenic	4.5	mg/kg	1.1	0.22	1	06/04/19 07:04	06/04/19 14:45	7440-38-2	
Barium	119	mg/kg	0.54	0.085	1	06/04/19 07:04	06/04/19 14:45	7440-39-3	
Cadmium	0.95	mg/kg	0.16	0.032	1	06/04/19 07:04	06/04/19 14:45	7440-43-9	
Chromium	43.9	mg/kg	0.54	0.11	1	06/04/19 07:04	06/04/19 14:45	7440-47-3	
Lead	579	mg/kg	0.54	0.12	1	06/04/19 07:04		7439-92-1	
Selenium	<1.1	mg/kg	1.1	0.35	1	06/04/19 07:04	06/04/19 14:45	7782-49-2	
Silver	0.62	mg/kg	0.54	0.039	1	06/04/19 07:04	06/05/19 11:08	7440-22-4	
7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B									
Mercury	0.19	mg/kg	0.021	0.0093	1	06/04/19 07:27	06/04/19 15:10	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	14.7	%	0.10	0.10	1		06/05/19 17:35		
8270D MSSV PAH by SIM	Analytical	Method: EPA 8	270D by S	IM Preparat	ion Me	ethod: EPA 3550			
Acenaphthene	0.027	mg/kg	0.012	0.00048	1	05/31/19 09:40	06/06/19 02:51	83-32-9	
Acenaphthylene	0.018	mg/kg	0.012	0.00058	1	05/31/19 09:40	06/06/19 02:51	208-96-8	
Anthracene	0.078	mg/kg	0.012	0.00055	1	05/31/19 09:40	06/06/19 02:51	120-12-7	
Benzo(a)anthracene	0.33	mg/kg	0.012	0.0013	1	05/31/19 09:40	06/06/19 02:51	56-55-3	
Benzo(a)pyrene	0.39	mg/kg	0.012	0.00080	1	05/31/19 09:40	06/06/19 02:51	50-32-8	
Benzo(b)fluoranthene	0.63	mg/kg	0.058	0.0022	5	05/31/19 09:40	06/06/19 11:54	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-1/1-2	Lab ID: 10477057001	Collected: 05/30/19 08:15	Received: 05/30/19 12:35	Matrix: Solid							
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.											
		Report									

			кероп						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by S	IM Prepara	tion Me	ethod: EPA 3550			
Benzo(g,h,i)perylene	0.34	mg/kg	0.012	0.00074	1	05/31/19 09:40	06/06/19 02:51	191-24-2	
Benzo(k)fluoranthene	0.24	mg/kg	0.012	0.00099	1	05/31/19 09:40	06/06/19 02:51	207-08-9	
Chrysene	0.47	mg/kg	0.058	0.0080	5	05/31/19 09:40	06/06/19 11:54	218-01-9	
Dibenz(a,h)anthracene	0.097	mg/kg	0.012	0.00054	1	05/31/19 09:40	06/06/19 02:51	53-70-3	
Fluoranthene	0.59	mg/kg	0.058	0.0025	5	05/31/19 09:40	06/06/19 11:54	206-44-0	
Fluorene	0.026	mg/kg	0.012	0.00037	1	05/31/19 09:40	06/06/19 02:51	86-73-7	
Indeno(1,2,3-cd)pyrene	0.26	mg/kg	0.012	0.00078	1	05/31/19 09:40	06/06/19 02:51	193-39-5	
Naphthalene	0.14	mg/kg	0.012	0.00090	1	05/31/19 09:40	06/06/19 02:51	91-20-3	
Phenanthrene	0.33	mg/kg	0.012	0.0022	1	05/31/19 09:40	06/06/19 02:51	85-01-8	
Pyrene	0.57	mg/kg	0.058	0.0089	5	05/31/19 09:40	06/06/19 11:54	129-00-0	
Total BaP Eq. MN 2006sh. ND=0	0.59	mg/kg	0.058	0.058	5	05/31/19 09:40	06/06/19 11:54		
Surrogates									
2-Fluorobiphenyl (S)	72	%.	30-125		1	05/31/19 09:40	06/06/19 02:51	321-60-8	
p-Terphenyl-d14 (S)	74	%.	30-125		1	05/31/19 09:40	06/06/19 02:51	1718-51-0	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-2/2-3		10477057002				5 Received: 05/		atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	-	oisture, san	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Apolytical	Mathad: EDA 6			had. T				
8082A GCS PCB	Analytical	Method: EPA 8	buoza Piep		100. E	PA 3000			
PCB-1016 (Aroclor 1016)	<0.20	mg/kg	0.20	0.055	5	06/03/19 14:00	06/06/19 10:14		
PCB-1221 (Aroclor 1221)	<0.20	mg/kg	0.20	0.069	5	06/03/19 14:00			
PCB-1232 (Aroclor 1232)	<0.20	mg/kg	0.20	0.078	5	06/03/19 14:00			
PCB-1242 (Aroclor 1242)	<0.20	mg/kg	0.20	0.067	5	06/03/19 14:00			
PCB-1248 (Aroclor 1248)	<0.20	mg/kg	0.20	0.059	5	06/03/19 14:00			
PCB-1254 (Aroclor 1254)	5.5	mg/kg	0.20	0.058	5	06/03/19 14:00		11097-69-1	
PCB-1260 (Aroclor 1260)	<0.20	mg/kg	0.20	0.047	5	06/03/19 14:00			
PCB-1262 (Aroclor 1262)	<0.20	mg/kg	0.20	0.068	5	06/03/19 14:00			
PCB-1268 (Aroclor 1268)	<0.20	mg/kg	0.20	0.064	5	06/03/19 14:00	06/06/19 10:14	11100-14-4	
Surrogates									_
Tetrachloro-m-xylene (S)	101	%.	57-125		5	06/03/19 14:00	06/06/19 10:14		D4
Decachlorobiphenyl (S)	120	%.	49-125		5	06/03/19 14:00	06/06/19 10:14	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI M	OD DRO P	reparation N	/lethoo	I: WI MOD DRO			
WDRO C10-C28	171	mg/kg	28.8	11.2	5	06/03/19 09:17	06/04/19 20:48		T6,T7
Surrogates n-Triacontane (S)	80	%.	44-143		5	06/03/19 09:17	06/04/19 20:48	638-68-6	1M
6010D MET ICP, TCLP	Analytical	Method: EPA 6	SO10D Prer	paration Met	hod [.] F	PA 3010			
	-					ial pH: 8.56; Final	pH: 1.81		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 11:58	7439-92-1	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: E	PA 3050			
Arsenic	4.6	mg/kg	1.1	0.23	1	06/04/19 07:04	06/04/19 14:48	7440-38-2	
Barium	123	mg/kg	0.56	0.089	1	06/04/19 07:04			
Cadmium	1.0	mg/kg	0.17	0.034	1	06/04/19 07:04			
Chromium	43.3	mg/kg	0.56	0.11	1	06/04/19 07:04			
Lead	260	mg/kg	0.56	0.13	1	06/04/19 07:04			
Selenium	<1.1	mg/kg	1.1	0.37	1	06/04/19 07:04			
Silver	0.58	mg/kg	0.56	0.041	1		06/05/19 11:11		
7471B Mercury		Method: EPA 7							
Mercury	0.28	mg/kg	0.023	0.010	1 1 1 1		06/04/19 15:12	7439-07-6	
Dry Weight / %M by ASTM D2974		Method: ASTM		0.010	I	00/04/19 07.21	00/04/19 13.12	7433-37-0	
Percent Moisture	16.1	%	0.10	0.10	1		06/05/19 17:35		
							00/03/19 17:55		
8270D MSSV PAH by SIM	-		-			ethod: EPA 3550			
Acenaphthene	0.028	mg/kg	0.012	0.00049	1	05/31/19 09:40	06/06/19 03:12		
Acenaphthylene	0.022	mg/kg	0.012	0.00059	1	05/31/19 09:40			
Anthracene	0.076	mg/kg	0.012	0.00056	1	05/31/19 09:40			
Benzo(a)anthracene	0.24	mg/kg	0.012	0.0013	1	05/31/19 09:40	06/06/19 03:12	56-55-3	
Benzo(a)pyrene	0.31	mg/kg	0.012	0.00082	1	05/31/19 09:40	06/06/19 03:12	50-32-8	
Benzo(b)fluoranthene	0.46	mg/kg	0.060	0.0022	5	05/31/19 09:40	06/06/19 12:15	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-2/2-3	Lab ID: 10477057002	Collected: 05/30/19 08:45	Received: 05/30/19 12:35	Matrix: Solid							
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.											
		Report									

			кероп						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by S	IM Prepara	tion Me	ethod: EPA 3550			
Benzo(g,h,i)perylene	0.28	mg/kg	0.012	0.00075	1	05/31/19 09:40	06/06/19 03:12	191-24-2	
Benzo(k)fluoranthene	0.17	mg/kg	0.012	0.0010	1	05/31/19 09:40	06/06/19 03:12	207-08-9	
Chrysene	0.31	mg/kg	0.012	0.0016	1	05/31/19 09:40	06/06/19 03:12	218-01-9	
Dibenz(a,h)anthracene	0.075	mg/kg	0.012	0.00055	1	05/31/19 09:40	06/06/19 03:12	53-70-3	
Fluoranthene	0.44	mg/kg	0.060	0.0025	5	05/31/19 09:40	06/06/19 12:15	206-44-0	
Fluorene	0.032	mg/kg	0.012	0.00037	1	05/31/19 09:40	06/06/19 03:12	86-73-7	
Indeno(1,2,3-cd)pyrene	0.21	mg/kg	0.012	0.00080	1	05/31/19 09:40	06/06/19 03:12	193-39-5	
Naphthalene	0.13	mg/kg	0.012	0.00092	1	05/31/19 09:40	06/06/19 03:12	91-20-3	
Phenanthrene	0.30	mg/kg	0.012	0.0023	1	05/31/19 09:40	06/06/19 03:12	85-01-8	
Pyrene	0.39	mg/kg	0.012	0.0018	1	05/31/19 09:40	06/06/19 03:12	129-00-0	
Total BaP Eq. MN 2006sh. ND=0	0.47	mg/kg	0.060	0.060	5	05/31/19 09:40	06/06/19 12:15		
Surrogates									
2-Fluorobiphenyl (S)	78	%.	30-125		1	05/31/19 09:40	06/06/19 03:12	321-60-8	
p-Terphenyl-d14 (S)	77	%.	30-125		1	05/31/19 09:40	06/06/19 03:12	1718-51-0	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-3/0-2	Lab ID:	10477057003	3 Collecte	d: 05/30/19	9 09:15	Received: 05/	/30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	r percent m	oisture, san	nple s	ize and any dilut	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prep	aration Met	hod: El	PA 3550			
PCB-1016 (Aroclor 1016)	<0.039	mg/kg	0.039	0.011	1	05/30/19 18:52	06/01/19 04:53	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.039	mg/kg	0.039	0.014	1	05/30/19 18:52	06/01/19 04:53	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.039	mg/kg	0.039	0.016	1	05/30/19 18:52	06/01/19 04:53	11141-16-5	
PCB-1242 (Aroclor 1242)	<0.039	mg/kg	0.039	0.013	1	05/30/19 18:52	06/01/19 04:53	53469-21-9	
PCB-1248 (Aroclor 1248)	0.21	mg/kg	0.039	0.012	1	05/30/19 18:52	06/01/19 04:53	12672-29-6	
PCB-1254 (Aroclor 1254)	0.16	mg/kg	0.039	0.011	1	05/30/19 18:52	06/01/19 04:53	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.039	mg/kg	0.039	0.0093	1	05/30/19 18:52	06/01/19 04:53	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.039	mg/kg	0.039	0.013	1	05/30/19 18:52	06/01/19 04:53	37324-23-5	
PCB-1268 (Aroclor 1268) Surrogates	<0.039	mg/kg	0.039	0.013	1	05/30/19 18:52	06/01/19 04:53	11100-14-4	
Tetrachloro-m-xylene (S)	69	%.	57-125		1	05/30/19 18:52	06/01/19 04:53	877-09-8	
Decachlorobiphenyl (S)	60	%.	49-125		1	05/30/19 18:52	06/01/19 04:53	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI M	10D DRO P	reparation N	/lethod	: WI MOD DRO			
WDRO C10-C28 Surrogates	128	mg/kg	30.7	11.9	5	06/03/19 09:17	06/04/19 20:55		T6,T7
n-Triacontane (S)	57	%.	44-143		5	06/03/19 09:17	06/04/19 20:55	638-68-6	1M
6010D MET ICP, TCLP	Analytical	Method: EPA	6010D Prep	paration Met	hod: E	PA 3010			
	Leachate	Method/Date:	EPA 1311; 0	6/12/19 17:	11 Initi	ial pH: 9; Final pH	: 1.68		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 12:01	7439-92-1	
6010D MET ICP	Analytical	Method: EPA	6010D Prep	paration Met	hod: E	PA 3050			
Arsenic	3.8	mg/kg	1.1	0.23	1	06/04/19 07:04	06/04/19 14:51	7440-38-2	
Barium	62.7	mg/kg	0.55	0.088	1	06/04/19 07:04	06/04/19 14:51	7440-39-3	
Cadmium	0.55	mg/kg	0.17	0.033	1	06/04/19 07:04	06/04/19 14:51	7440-43-9	
Chromium	30.5	mg/kg	0.55	0.11	1	06/04/19 07:04	06/04/19 14:51	7440-47-3	
Lead	154	mg/kg	0.55	0.12	1	06/04/19 07:04	06/04/19 14:51	7439-92-1	
Selenium	<1.1	mg/kg	1.1	0.36	1	06/04/19 07:04	06/04/19 14:51	7782-49-2	
Silver	0.59	mg/kg	0.55	0.040	1	06/04/19 07:04	06/05/19 11:14	7440-22-4	
7471B Mercury	Analytical	Method: EPA	7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.12	mg/kg	0.022	0.0097	1	06/04/19 07:27	06/04/19 15:19	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTI	M D2974						
Percent Moisture	15.5	%	0.10	0.10	1		06/05/19 17:36		
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by SI	M Preparat	tion Me	ethod: EPA 3550			
Acenaphthene	0.041	mg/kg	0.012	0.00048	1	05/31/19 09:40	06/06/19 03:33	83-32-9	
Acenaphthylene	0.014	mg/kg	0.012	0.00058	1	05/31/19 09:40	06/06/19 03:33	208-96-8	
Anthracene	0.070	mg/kg	0.012	0.00055	1	05/31/19 09:40	06/06/19 03:33	120-12-7	
Benzo(a)anthracene	0.41	mg/kg	0.059	0.0064	5	05/31/19 09:40	06/06/19 12:36	56-55-3	
Benzo(a)pyrene	0.65	mg/kg	0.059	0.0041	5	05/31/19 09:40	06/06/19 12:36	50-32-8	
Benzo(b)fluoranthene	0.90	mg/kg	0.059	0.0022	5	05/31/19 09:40	06/06/19 12:36	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-3/0-2	Lab ID: 10477057003	Collected: 05/30/19 09:15	Received: 05/30/19 12:35	Matrix: Solid
Sample: Ltab ID: 10477057003 Collected: 05/30/19 09:15 Received: 05/30/19 12:35 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report Report				
		Report		

		Report						
Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA	8270D by SI	IM Preparat	ion Me	ethod: EPA 3550			
0.51	mg/kg	0.059	0.0037	5	05/31/19 09:40	06/06/19 12:36	191-24-2	
0.37	mg/kg	0.012	0.0010	1	05/31/19 09:40	06/06/19 03:33	207-08-9	
0.58	mg/kg	0.059	0.0080	5	05/31/19 09:40	06/06/19 12:36	218-01-9	
0.12	mg/kg	0.012	0.00054	1	05/31/19 09:40	06/06/19 03:33	53-70-3	
0.58	mg/kg	0.059	0.0025	5	05/31/19 09:40	06/06/19 12:36	206-44-0	
0.039	mg/kg	0.012	0.00037	1	05/31/19 09:40	06/06/19 03:33	86-73-7	
0.42	mg/kg	0.059	0.0040	5	05/31/19 09:40	06/06/19 12:36	193-39-5	
0.30	mg/kg	0.012	0.00091	1	05/31/19 09:40	06/06/19 03:33	91-20-3	
0.37	mg/kg	0.012	0.0023	1	05/31/19 09:40	06/06/19 03:33	85-01-8	
0.59	mg/kg	0.059	0.0090	5	05/31/19 09:40	06/06/19 12:36	129-00-0	
0.94	mg/kg	0.059	0.059	5	05/31/19 09:40	06/06/19 12:36		
76	%.	30-125		1	05/31/19 09:40	06/06/19 03:33	321-60-8	
78	%.	30-125		1	05/31/19 09:40	06/06/19 03:33	1718-51-0	
	Analytical 0.51 0.37 0.58 0.12 0.58 0.039 0.42 0.30 0.37 0.59 0.94 76	Analytical Method: EPA 0.51 mg/kg 0.37 mg/kg 0.58 mg/kg 0.58 mg/kg 0.58 mg/kg 0.58 mg/kg 0.39 mg/kg 0.42 mg/kg 0.30 mg/kg 0.37 mg/kg 0.59 mg/kg 0.59 mg/kg 0.94 mg/kg	Results Units Limit Analytical Method: EPA 8270D by Si 0.51 mg/kg 0.059 0.51 mg/kg 0.059 0.12 0.58 mg/kg 0.059 0.12 mg/kg 0.012 0.58 mg/kg 0.059 0.039 mg/kg 0.012 0.42 mg/kg 0.059 0.30 mg/kg 0.012 0.37 mg/kg 0.012 0.42 mg/kg 0.059 0.30 mg/kg 0.012 0.37 mg/kg 0.059 0.30 mg/kg 0.059 0.30 mg/kg 0.059 0.37 mg/kg 0.059 0.59 mg/kg 0.059 0.94 mg/kg 0.059 76 %. 30-125	Results Units Limit MDL Analytical Method: EPA 8270D by SIM Preparat 0.51 mg/kg 0.059 0.0037 0.37 mg/kg 0.012 0.0010 0.58 mg/kg 0.059 0.0080 0.12 mg/kg 0.012 0.00054 0.58 mg/kg 0.012 0.00054 0.58 mg/kg 0.012 0.00037 0.42 mg/kg 0.012 0.00037 0.42 mg/kg 0.012 0.00091 0.30 mg/kg 0.012 0.0023 0.59 mg/kg 0.059 0.0090 0.59 mg/kg 0.059 0.059 76 % 30-125 0.059	Results Units Limit MDL DF Analytical Method: EPA 8270D by SIM Preparation Method: MDL DF 0.51 mg/kg 0.059 0.0037 5 0.37 mg/kg 0.012 0.0010 1 0.58 mg/kg 0.059 0.0080 5 0.12 mg/kg 0.012 0.00054 1 0.58 mg/kg 0.059 0.0025 5 0.039 mg/kg 0.012 0.00037 1 0.42 mg/kg 0.059 0.0040 5 0.30 mg/kg 0.012 0.00091 1 0.37 mg/kg 0.012 0.0023 1 0.37 mg/kg 0.059 0.0090 5 0.30 mg/kg 0.059 0.0090 5 0.94 mg/kg 0.059 0.059 5 76 %. 30-125 1	ResultsUnitsLimitMDLDFPreparedAnalytical Method: EPA 8270D by SIMPreparation Method: EPA 35500.51mg/kg0.0590.0037505/31/19 09:400.37mg/kg0.0120.0010105/31/19 09:400.58mg/kg0.0590.0080505/31/19 09:400.12mg/kg0.0120.00054105/31/19 09:400.58mg/kg0.0120.00054105/31/19 09:400.58mg/kg0.0590.0025505/31/19 09:400.39mg/kg0.0120.00037105/31/19 09:400.42mg/kg0.0590.0040505/31/19 09:400.30mg/kg0.0120.0023105/31/19 09:400.37mg/kg0.0120.0023105/31/19 09:400.59mg/kg0.0590.0090505/31/19 09:400.59mg/kg0.0590.0090505/31/19 09:400.94mg/kg0.0590.059505/31/19 09:4076%30-125105/31/19 09:40	ResultsUnitsLimitMDLDFPreparedAnalyzedAnalytical Method: EPA 8270D by SIMPreparation Method: EPA 35500.51mg/kg0.0590.0037505/31/19 09:4006/06/19 12:360.37mg/kg0.0120.0010105/31/19 09:4006/06/19 03:330.58mg/kg0.0590.0080505/31/19 09:4006/06/19 12:360.12mg/kg0.0120.00054105/31/19 09:4006/06/19 03:330.58mg/kg0.0590.0025505/31/19 09:4006/06/19 12:360.039mg/kg0.0120.00037105/31/19 09:4006/06/19 03:330.42mg/kg0.0590.0040505/31/19 09:4006/06/19 03:330.30mg/kg0.0120.00091105/31/19 09:4006/06/19 03:330.37mg/kg0.0120.0023105/31/19 09:4006/06/19 03:330.59mg/kg0.0590.0090505/31/19 09:4006/06/19 12:360.94mg/kg0.0590.059505/31/19 09:4006/06/19 12:3676%30-125105/31/19 09:4006/06/19 03:33	Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3550 0.51 mg/kg 0.059 0.0037 5 05/31/19 09:40 06/06/19 12:36 191-24-2 0.37 mg/kg 0.012 0.0010 1 05/31/19 09:40 06/06/19 03:33 207-08-9 0.58 mg/kg 0.059 0.0080 5 05/31/19 09:40 06/06/19 12:36 218-01-9 0.12 mg/kg 0.012 0.00054 1 05/31/19 09:40 06/06/19 03:33 53-70-3 0.58 mg/kg 0.059 0.0025 5 05/31/19 09:40 06/06/19 12:36 206-44-0 0.039 mg/kg 0.012 0.00037 1 05/31/19 09:40 06/06/19 03:33 86-73-7 0.42 mg/kg 0.059 0.0040 5 05/31/19 09:40 06/06/19 12:36 193-39-5 0.30 mg/kg 0.012 0.00091 1 05/31/19 09:40 06/06/19 03:33 91-20-3 0.37 mg/kg 0.012 0.00091 1 05/31/19 09:40

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-4/2-4	Lab ID:	10477057004	Collecte	d: 05/30/19	9 10:00	Received: 05/	/30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight									
, i i i i i i i i i i i i i i i i i i i			Report	,					
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prep	aration Met	hod: El	PA 3550			
PCB-1016 (Aroclor 1016)	<0.040	mg/kg	0.040	0.011	1	05/30/19 18:52	06/01/19 05:08	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.040	mg/kg	0.040	0.014	1	05/30/19 18:52	06/01/19 05:08	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.040	mg/kg	0.040	0.016	1	05/30/19 18:52	06/01/19 05:08	11141-16-5	
PCB-1242 (Aroclor 1242)	2.9	mg/kg	0.20	0.068	5	05/30/19 18:52	06/03/19 12:33	53469-21-9	
PCB-1248 (Aroclor 1248)	<0.040	mg/kg	0.040	0.012	1	05/30/19 18:52	06/01/19 05:08	12672-29-6	
PCB-1254 (Aroclor 1254)	0.40	mg/kg	0.040	0.012	1	05/30/19 18:52	06/01/19 05:08	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.040	mg/kg	0.040	0.0096	1	05/30/19 18:52	06/01/19 05:08	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.040	mg/kg	0.040	0.014	1	05/30/19 18:52	06/01/19 05:08	37324-23-5	
PCB-1268 (Aroclor 1268)	<0.040	mg/kg	0.040	0.013	1	05/30/19 18:52	06/01/19 05:08	11100-14-4	
Surrogates		5 5							
Tetrachloro-m-xylene (S)	68	%.	57-125		1	05/30/19 18:52	06/01/19 05:08	877-09-8	
Decachlorobiphenyl (S)	57	%.	49-125		1	05/30/19 18:52	06/01/19 05:08	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI M	IOD DRO P	reparation N	/lethod	: WI MOD DRO			
WDRO C10-C28	159	mg/kg	10.7	4.2	2	06/03/19 09:17	06/04/19 21:01		T6,T7
Surrogates	155	iiig/kg	10.7	4.2	2	00/03/19 09.17	00/04/19 21.01		10,17
n-Triacontane (S)	90	%.	44-143		2	06/03/19 09:17	06/04/19 21:01	638-68-6	1M
6010D MET ICP, TCLP	Analytical	Method: EPA	6010D Prer	paration Met	hod: E	PA 3010			
						ial pH: 8.51; Final	pH: 1.87		
Lead	<0.10	mg/L	0.10	0.0020	1		06/14/19 12:04	7439-92-1	
6010D MET ICP	Analytical	Method: EPA	6010D Prep	paration Met	hod: E	PA 3050			
Arsenic	4.5	mg/kg	1.1	0.23	1	06/04/19 07:04	06/04/19 14:54	7440-38-2	
Barium	110	mg/kg	0.57	0.091	1	06/04/19 07:04	06/04/19 14:54	7440-39-3	
Cadmium	0.84	mg/kg	0.17	0.034	1	06/04/19 07:04			
Chromium	23.5	mg/kg	0.57	0.11	1	06/04/19 07:04			
Lead	208	mg/kg	0.57	0.13	1	06/04/19 07:04	06/04/19 14:54	7439-92-1	
Selenium	<1.1	mg/kg	1.1	0.38	1	06/04/19 07:04			
Silver	<0.57	mg/kg	0.57	0.042	1	06/04/19 07:04			
7471B Mercury		Method: EPA							
Mercury	0.23	mg/kg	0.022	0.0099	1 1	06/04/19 07:27	06/04/19 15:21	7439-97-6	
Dry Weight / %M by ASTM D2974		Method: ASTI		0.0000		00/04/10 07.21	00/04/10 10.21	1400 01 0	
Percent Moisture	17.6	%	0.10	0.10	1		06/05/19 17:36		
							00/03/19 17.30		
8270D MSSV PAH by SIM						ethod: EPA 3550			
Acenaphthene	0.019	mg/kg	0.012	0.00050	1	05/31/19 09:40	06/06/19 03:54		
Acenaphthylene	<0.012	mg/kg	0.012	0.00060	1	05/31/19 09:40	06/06/19 03:54		
Anthracene	0.052	mg/kg	0.012	0.00057	1	05/31/19 09:40			
Benzo(a)anthracene	0.19	mg/kg	0.012	0.0013	1	05/31/19 09:40			
Benzo(a)pyrene	0.20	mg/kg	0.012	0.00083	1	05/31/19 09:40			
Benzo(b)fluoranthene	0.30	mg/kg	0.012	0.00045	1	05/31/19 09:40	06/06/19 03:54	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-4/2-4	Lab ID:	10477057004	Collecte	d: 05/30/1	9 10:00	Received: 05/	/30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and are	adjusted for	percent m	oisture, sa	nple si	ze and any diluti	ions.		
			Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA 8	270D by S	IM Prepara	tion Me	thod: EPA 3550			
Benzo(g,h,i)perylene	0.17	mg/kg	0.012	0.00077	1	05/31/19 09:40	06/06/19 03:54	191-24-2	
Benzo(k)fluoranthene	0.11	mg/kg	0.012	0.0010	1	05/31/19 09:40	06/06/19 03:54	207-08-9	
Chrysene	0.24	mg/kg	0.012	0.0016	1	05/31/19 09:40	06/06/19 03:54	218-01-9	
Dibenz(a,h)anthracene	0.051	mg/kg	0.012	0.00056	1	05/31/19 09:40	06/06/19 03:54	53-70-3	
Fluoranthene	0.31	mg/kg	0.012	0.00052	1	05/31/19 09:40	06/06/19 03:54	206-44-0	
Fluorene	0.029	mg/kg	0.012	0.00038	1	05/31/19 09:40	06/06/19 03:54	86-73-7	
Indeno(1,2,3-cd)pyrene	0.13	mg/kg	0.012	0.00081	1	05/31/19 09:40	06/06/19 03:54	193-39-5	
Naphthalene	0.077	mg/kg	0.012	0.00093	1	05/31/19 09:40	06/06/19 03:54	91-20-3	
Phenanthrene	0.22	mg/kg	0.012	0.0023	1	05/31/19 09:40	06/06/19 03:54	85-01-8	
Pyrene	0.28	mg/kg	0.012	0.0019	1	05/31/19 09:40	06/06/19 03:54	129-00-0	
Total BaP Eq. MN 2006sh. ND=0	0.30	mg/kg	0.012	0.012	1	05/31/19 09:40	06/06/19 03:54		
Surrogates									
2-Fluorobiphenyl (S)	76	%.	30-125		1	05/31/19 09:40	06/06/19 03:54	321-60-8	
p-Terphenyl-d14 (S)	78	%.	30-125		1	05/31/19 09:40	06/06/19 03:54	1718-51-0	
8260B MSV 5030 Med Level	Analytical	Method: EPA 8	260B Prep	paration Met	hod: El	PA 5035/5030B			
Acetone	<1.3	mg/kg	1.3	0.39	1	06/06/19 10:16	06/06/19 14:33	67-64-1	
Allyl chloride	<0.25	mg/kg	0.25	0.053	1	06/06/19 10:16	06/06/19 14:33	107-05-1	
Benzene	<0.025	mg/kg	0.025	0.0035	1	06/06/19 10:16			
Bromobenzene	<0.063	mg/kg	0.063	0.0039	1	06/06/19 10:16	06/06/19 14:33		
Bromochloromethane	<0.063	mg/kg	0.063	0.022	1	06/06/19 10:16			
Bromodichloromethane	<0.063	mg/kg	0.063	0.022	1	06/06/19 10:16			
Bromoform	<0.25	mg/kg	0.25	0.095	1	06/06/19 10:16	06/06/19 14:33		
Bromomethane	<0.63	mg/kg	0.63	0.074	1	06/06/19 10:16	06/06/19 14:33		
2-Butanone (MEK)	<0.31	mg/kg	0.31	0.033	1	06/06/19 10:16	06/06/19 14:33		
n-Butylbenzene	<0.063	mg/kg	0.063	0.030	1	06/06/19 10:16	06/06/19 14:33		
sec-Butylbenzene	<0.063	mg/kg	0.063	0.012	1	06/06/19 10:16			
tert-Butylbenzene	<0.063	mg/kg	0.063	0.012	1	06/06/19 10:16	06/06/19 14:33		
Carbon tetrachloride	<0.063	mg/kg	0.063	0.030	1	06/06/19 10:16			
Chlorobenzene	<0.063	mg/kg	0.063	0.0035	1	06/06/19 10:16			
Chloroethane	<0.63	mg/kg	0.63	0.033	1	06/06/19 10:16			
Chloroform	<0.063	mg/kg	0.063	0.031	1	06/06/19 10:16			
Chloromethane	<0.25	mg/kg	0.25	0.015	1	06/06/19 10:16	06/06/19 14:33		
2-Chlorotoluene	<0.063	mg/kg	0.063	0.0031	1		06/06/19 14:33		
4-Chlorotoluene	<0.063	mg/kg	0.063	0.0032	1	06/06/19 10:16	06/06/19 14:33		
1,2-Dibromo-3-chloropropane	<0.63	mg/kg	0.63	0.0032	1	06/06/19 10:16	06/06/19 14:33		
Dibromochloromethane	<0.25	mg/kg	0.25	0.0073	1	06/06/19 10:16	06/06/19 14:33		
1.2-Dibromoethane (EDB)	<0.063	mg/kg	0.063	0.0066	1	06/06/19 10:16	06/06/19 14:33		
Dibromomethane	<0.063	mg/kg	0.063	0.0000	1	06/06/19 10:16			
1,2-Dichlorobenzene	<0.063	mg/kg	0.063	0.0025	1				
1,3-Dichlorobenzene	<0.063	mg/kg	0.063	0.0023	1	06/06/19 10:16			
1,4-Dichlorobenzene	<0.063	mg/kg	0.063	0.0023	1	06/06/19 10:16	06/06/19 14:33		
Dichlorodifluoromethane	<0.003	mg/kg	0.003	0.0039	1	06/06/19 10:16	06/06/19 14:33		
1.1-Dichloroethane	<0.25	mg/kg	0.23	0.020	1	06/06/19 10:16	06/06/19 14:33		
1,2-Dichloroethane	<0.063	mg/kg	0.063	0.0069	1	06/06/19 10:16			
	NU.003	iiig/kg	0.003	0.0009	1	00/00/19 10.10	00/00/13 14.00	107-00-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057									
Sample: LTT-4/2-4	Lab ID:	10477057004	Collecte	d: 05/30/19	9 10:00	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weig	ht" basis and ar	e adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV 5030 Med Level	Analytical	Method: EPA 8	260B Prep	aration Met	hod: El	PA 5035/5030B			
1,1-Dichloroethene	<0.063	mg/kg	0.063	0.019	1	06/06/19 10:16	06/06/19 14:33	75-35-4	
cis-1,2-Dichloroethene	<0.063	mg/kg	0.063	0.010	1	06/06/19 10:16	06/06/19 14:33	156-59-2	
trans-1,2-Dichloroethene	<0.063	mg/kg	0.063	0.029	1	06/06/19 10:16	06/06/19 14:33	156-60-5	
Dichlorofluoromethane	<0.63	mg/kg	0.63	0.087	1	06/06/19 10:16	06/06/19 14:33	75-43-4	N2
1,2-Dichloropropane	<0.063	mg/kg	0.063	0.011	1	06/06/19 10:16	06/06/19 14:33	78-87-5	
1,3-Dichloropropane	<0.063	mg/kg	0.063	0.0087	1	06/06/19 10:16	06/06/19 14:33	142-28-9	
2,2-Dichloropropane	<0.25	mg/kg	0.25	0.0078	1	06/06/19 10:16	06/06/19 14:33	594-20-7	
1,1-Dichloropropene	<0.063	mg/kg	0.063	0.029	1	06/06/19 10:16	06/06/19 14:33	563-58-6	
cis-1,3-Dichloropropene	<0.063	mg/kg	0.063	0.0090	1	06/06/19 10:16	06/06/19 14:33	10061-01-5	
trans-1,3-Dichloropropene	<0.063	mg/kg	0.063	0.0087	1	06/06/19 10:16	06/06/19 14:33	10061-02-6	
Diethyl ether (Ethyl ether)	<0.25	mg/kg	0.25	0.038	1	06/06/19 10:16	06/06/19 14:33	60-29-7	
Ethylbenzene	0.64	mg/kg	0.063	0.0034	1	06/06/19 10:16	06/06/19 14:33	100-41-4	
Hexachloro-1,3-butadiene	<0.31	mg/kg	0.31	0.015	1	06/06/19 10:16	06/06/19 14:33	87-68-3	
Isopropylbenzene (Cumene)	<0.063	mg/kg	0.063	0.0028	1	06/06/19 10:16	06/06/19 14:33	98-82-8	
p-Isopropyltoluene	<0.063	mg/kg	0.063	0.019	1	06/06/19 10:16	06/06/19 14:33	99-87-6	
Methylene Chloride	<0.25	mg/kg	0.25	0.12	1	06/06/19 10:16	06/06/19 14:33	75-09-2	
4-Methyl-2-pentanone (MIBK)	<0.31	mg/kg	0.31	0.013	1	06/06/19 10:16	06/06/19 14:33	108-10-1	
Methyl-tert-butyl ether	<0.063	mg/kg	0.063	0.0075	1	06/06/19 10:16	06/06/19 14:33	1634-04-4	
Naphthalene	<0.25	mg/kg	0.25	0.059	1	06/06/19 10:16	06/06/19 14:33	91-20-3	
n-Propylbenzene	<0.063	mg/kg	0.063	0.0034	1	06/06/19 10:16	06/06/19 14:33	103-65-1	
Styrene	<0.063	mg/kg	0.063	0.0029	1	06/06/19 10:16	06/06/19 14:33	100-42-5	
1,1,1,2-Tetrachloroethane	<0.063	mg/kg	0.063	0.020	1	06/06/19 10:16	06/06/19 14:33	630-20-6	
1,1,2,2-Tetrachloroethane	<0.063	mg/kg	0.063	0.011	1	06/06/19 10:16	06/06/19 14:33	79-34-5	
Tetrachloroethene	<0.063	mg/kg	0.063	0.022	1	06/06/19 10:16	06/06/19 14:33	127-18-4	
Tetrahydrofuran	<2.5	mg/kg	2.5	0.091	1	06/06/19 10:16	06/06/19 14:33	109-99-9	
Toluene	0.19	mg/kg	0.063	0.015	1	06/06/19 10:16	06/06/19 14:33	108-88-3	
1,2,3-Trichlorobenzene	<0.063	mg/kg	0.063	0.010	1	06/06/19 10:16	06/06/19 14:33	87-61-6	
1,2,4-Trichlorobenzene	<0.063	mg/kg	0.063	0.014	1	06/06/19 10:16	06/06/19 14:33		
1,1,1-Trichloroethane	<0.063	mg/kg	0.063	0.029	1	06/06/19 10:16	06/06/19 14:33	71-55-6	
1,1,2-Trichloroethane	<0.063	mg/kg	0.063	0.0075	1	06/06/19 10:16	06/06/19 14:33	79-00-5	
Trichloroethene	0.099	mg/kg	0.063	0.0097	1	06/06/19 10:16	06/06/19 14:33	79-01-6	
Trichlorofluoromethane	<0.25	mg/kg	0.25	0.11	1	06/06/19 10:16	06/06/19 14:33	75-69-4	
1,2,3-Trichloropropane	<0.25	mg/kg	0.25	0.016	1	06/06/19 10:16	06/06/19 14:33	96-18-4	
1,1,2-Trichlorotrifluoroethane	<0.25	mg/kg	0.25	0.073	1	06/06/19 10:16	06/06/19 14:33	76-13-1	
1,2,4-Trimethylbenzene	0.12	mg/kg	0.063	0.013	1	06/06/19 10:16	06/06/19 14:33		
1,3,5-Trimethylbenzene	<0.063	mg/kg	0.063	0.010	1	06/06/19 10:16	06/06/19 14:33		
Vinyl chloride	<0.025	mg/kg	0.025	0.012	1	06/06/19 10:16	06/06/19 14:33		
Xylene (Total)	0.52	mg/kg	0.19	0.015	1		06/06/19 14:33		
Surrogates		5 5						-	
1,2-Dichloroethane-d4 (S)	102	%.	75-125		1	06/06/19 10:16	06/06/19 14:33	17060-07-0	
Toluene-d8 (S)	99	%.	75-125		1	06/06/19 10:16	06/06/19 14:33	2037-26-5	
4-Bromofluorobenzene (S)	95	%.	75-125		1		06/06/19 14:33		

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-5/0-2		10477057005				5 Received: 05/		atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	-	oisture, sar	nple s	ize and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
				·					
8082A GCS PCB	Analytical	Method: EPA 8	3082A Prep	aration Met	nod: E	PA 3550			
PCB-1016 (Aroclor 1016)	<0.083	mg/kg	0.083	0.023	2	06/03/19 14:00	06/06/19 10:30	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.083	mg/kg	0.083	0.029	2	06/03/19 14:00	06/06/19 10:30	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.083	mg/kg	0.083	0.033	2	06/03/19 14:00	06/06/19 10:30	11141-16-5	
PCB-1242 (Aroclor 1242)	<0.083	mg/kg	0.083	0.028	2	06/03/19 14:00	06/06/19 10:30	53469-21-9	
PCB-1248 (Aroclor 1248)	<0.083	mg/kg	0.083	0.025	2	06/03/19 14:00			
PCB-1254 (Aroclor 1254)	2.6	mg/kg	0.083	0.024	2	06/03/19 14:00	06/06/19 10:30		
PCB-1260 (Aroclor 1260)	<0.083	mg/kg	0.083	0.020	2	06/03/19 14:00	06/06/19 10:30	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.083	mg/kg	0.083	0.029	2	06/03/19 14:00			
PCB-1268 (Aroclor 1268)	<0.083	mg/kg	0.083	0.027	2	06/03/19 14:00	06/06/19 10:30	11100-14-4	
Surrogates									
Tetrachloro-m-xylene (S)	89	%.	57-125		2	06/03/19 14:00	06/06/19 10:30		D4
Decachlorobiphenyl (S)	104	%.	49-125		2	06/03/19 14:00	06/06/19 10:30	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI M	OD DRO P	reparation N	lethoo	I: WI MOD DRO			
WDRO C10-C28	163	mg/kg	76.7	29.8	10	06/03/19 09:17	06/04/19 21:08		T6,T7
Surrogates	0	0/	44.440		40	00/00/40 00 47	00/04/40 04 00		414.04
n-Triacontane (S)	0	%.	44-143		10	06/03/19 09:17	06/04/19 21:08	638-68-6	1M,S4
6010D MET ICP, TCLP	Analytical	Method: EPA 6	6010D Prep	paration Met	hod: E	PA 3010			
	Leachate	Method/Date: I	EPA 1311; C	6/12/19 17:	11 Init	ial pH: 8.75; Final	pH: 1.81		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 12:07	7439-92-1	
6010D MET ICP	Analytical	Method: EPA 6	6010D Prep	paration Met	hod: E	PA 3050			
Arsenic	10.3	mg/kg	1.2	0.24	1	06/04/19 07:04	06/04/19 14:57	7440-38-2	
Barium	242	mg/kg	0.58	0.092	1	06/04/19 07:04	06/04/19 14:57	7440-39-3	
Cadmium	6.8	mg/kg	0.17	0.035	1	06/04/19 07:04	06/04/19 14:57	7440-43-9	
Chromium	59.5	mg/kg	0.58	0.12	1	06/04/19 07:04			
Lead	1430	mg/kg	2.9	0.65	5	06/04/19 07:04	06/05/19 12:23	7439-92-1	
Selenium	<1.2	mg/kg	1.2	0.38	1	06/04/19 07:04	06/04/19 14:57		
Silver	0.69	mg/kg	0.58	0.042	1	06/04/19 07:04			
7471B Mercury	Analytical	Method: EPA 7	7471B Prec	paration Met	hod: E	PA 7471B			
Mercury	0.51	mg/kg	0.024	0.011	1		06/04/19 15:23	7439-97-6	
Dry Weight / %M by ASTM D2974		Method: ASTM		0.011		00,01,1001.21	00/01/10 10:20		
				0.40	4		00/05/40 47:00		
Percent Moisture	20.8	%	0.10	0.10	1		06/05/19 17:36		
8270D MSSV PAH by SIM	Analytical	Method: EPA 8	3270D by S	IM Preparat	ion Me	ethod: EPA 3550			
Acenaphthene	0.040	mg/kg	0.013	0.00051	1	05/31/19 09:40	06/06/19 04:15		
Acenaphthylene	0.022	mg/kg	0.013	0.00062	1	05/31/19 09:40	06/06/19 04:15	208-96-8	
Anthracene	0.16	mg/kg	0.013	0.00059	1	05/31/19 09:40	06/06/19 04:15	120-12-7	
Benzo(a)anthracene	0.92	mg/kg	0.063	0.0068	5	05/31/19 09:40			
Benzo(a)pyrene	0.88	mg/kg	0.063	0.0043	5	05/31/19 09:40	06/06/19 12:58	50-32-8	
Benzo(b)fluoranthene	1.3	mg/kg	0.063	0.0023	5	05/31/19 09:40	06/06/19 12:58	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-5/0-2	Lab ID: 10477057005	Collected: 05/30/19 10:15	Received: 05/30/19 12:35	Matrix: Solid								
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.												
		Report										

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA	A 8270D by SI	IM Prepara	tion Me	ethod: EPA 3550			
Benzo(g,h,i)perylene	0.63	mg/kg	0.063	0.0040	5	05/31/19 09:40	06/06/19 12:58	191-24-2	
Benzo(k)fluoranthene	0.48	mg/kg	0.063	0.0053	5	05/31/19 09:40	06/06/19 12:58	207-08-9	
Chrysene	0.94	mg/kg	0.063	0.0086	5	05/31/19 09:40	06/06/19 12:58	218-01-9	
Dibenz(a,h)anthracene	0.19	mg/kg	0.013	0.00058	1	05/31/19 09:40	06/06/19 04:15	53-70-3	
Fluoranthene	1.3	mg/kg	0.063	0.0027	5	05/31/19 09:40	06/06/19 12:58	206-44-0	
Fluorene	0.039	mg/kg	0.013	0.00039	1	05/31/19 09:40	06/06/19 04:15	86-73-7	
Indeno(1,2,3-cd)pyrene	0.52	mg/kg	0.063	0.0042	5	05/31/19 09:40	06/06/19 12:58	193-39-5	
Naphthalene	0.18	mg/kg	0.013	0.00097	1	05/31/19 09:40	06/06/19 04:15	91-20-3	
Phenanthrene	0.63	mg/kg	0.063	0.012	5	05/31/19 09:40	06/06/19 12:58	85-01-8	
Pyrene	1.2	mg/kg	0.063	0.0096	5	05/31/19 09:40	06/06/19 12:58	129-00-0	
Total BaP Eq. MN 2006sh. ND=0	1.3	mg/kg	0.063	0.063	5	05/31/19 09:40	06/06/19 12:58		
Surrogates									
2-Fluorobiphenyl (S)	80	%.	30-125		1	05/31/19 09:40	06/06/19 04:15	321-60-8	
p-Terphenyl-d14 (S)	82	%.	30-125		1	05/31/19 09:40	06/06/19 04:15	1718-51-0	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-6/0-2	Lab ID:	10477057006	6 Collected	d: 05/30/19	9 10:45	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	r percent mo	oisture, sar	nple si	ize and any dilut	ions.		
		•	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	hod: El	PA 3550			
PCB-1016 (Aroclor 1016)	<0.041	mg/kg	0.041	0.011	1	05/30/19 18:52	06/01/19 05:54	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.041	mg/kg	0.041	0.014	1	05/30/19 18:52	06/01/19 05:54	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.041	mg/kg	0.041	0.016	1	05/30/19 18:52	06/01/19 05:54	11141-16-5	
PCB-1242 (Aroclor 1242)	<0.041	mg/kg	0.041	0.014	1	05/30/19 18:52	06/01/19 05:54	53469-21-9	
PCB-1248 (Aroclor 1248)	0.22	mg/kg	0.041	0.012	1	05/30/19 18:52	06/01/19 05:54	12672-29-6	
PCB-1254 (Aroclor 1254)	0.18	mg/kg	0.041	0.012	1	05/30/19 18:52	06/01/19 05:54	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.041	mg/kg	0.041	0.0098	1	05/30/19 18:52	06/01/19 05:54	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.041	mg/kg	0.041	0.014	1	05/30/19 18:52	06/01/19 05:54	37324-23-5	
PCB-1268 (Aroclor 1268) Surrogates	<0.041	mg/kg	0.041	0.013	1	05/30/19 18:52	06/01/19 05:54	11100-14-4	
Tetrachloro-m-xylene (S)	67	%.	57-125		1	05/30/19 18:52	06/01/19 05:54	877-09-8	
Decachlorobiphenyl (S)	57	%.	49-125		1	05/30/19 18:52	06/01/19 05:54	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI N	IOD DRO PI	eparation N	/lethod	: WI MOD DRO			
WDRO C10-C28 Surrogates	106	mg/kg	35.4	13.8	5	06/03/19 09:17	06/04/19 21:14		T6,T7
n-Triacontane (S)	88	%.	44-143		5	06/03/19 09:17	06/04/19 21:14	638-68-6	1M
6010D MET ICP, TCLP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3010			
	Leachate	Method/Date:	EPA 1311; 0	6/12/19 17:	11 Initi	ial pH: 8.79; Final	pH: 1.75		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 12:10	7439-92-1	
6010D MET ICP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3050			
Arsenic	5.9	mg/kg	1.2	0.24	1	06/04/19 07:04	06/04/19 15:00	7440-38-2	
Barium	138	mg/kg	0.59	0.094	1	06/04/19 07:04	06/04/19 15:00	7440-39-3	
Cadmium	5.4	mg/kg	0.18	0.036	1	06/04/19 07:04	06/04/19 15:00	7440-43-9	
Chromium	43.9	mg/kg	0.59	0.12	1	06/04/19 07:04	06/04/19 15:00	7440-47-3	
Lead	261	mg/kg	0.59	0.13	1	06/04/19 07:04	06/04/19 15:00	7439-92-1	
Selenium	<1.2	mg/kg	1.2	0.39	1	06/04/19 07:04	06/04/19 15:00	7782-49-2	
Silver	0.82	mg/kg	0.59	0.043	1	06/04/19 07:04	06/05/19 11:24	7440-22-4	
7471B Mercury	Analytical	Method: EPA	7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.25	mg/kg	0.023	0.010	1	06/04/19 07:27	06/04/19 15:25	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AST	M D2974						
Percent Moisture	19.7	%	0.10	0.10	1		06/05/19 17:36		
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by SI	M Preparat	tion Me	ethod: EPA 3550			
Acenaphthene	<0.062	mg/kg	0.062	0.0025	5	05/31/19 09:40	06/06/19 13:19	83-32-9	
Acenaphthylene	0.080	mg/kg	0.062	0.0031	5	05/31/19 09:40	06/06/19 13:19	208-96-8	
Anthracene	0.098	mg/kg	0.062	0.0029	5	05/31/19 09:40	06/06/19 13:19	120-12-7	
Benzo(a)anthracene	0.44	mg/kg	0.062	0.0067	5	05/31/19 09:40	06/06/19 13:19	56-55-3	
Benzo(a)pyrene	0.47	mg/kg	0.062	0.0043	5	05/31/19 09:40	06/06/19 13:19	50-32-8	
Benzo(b)fluoranthene	0.75	mg/kg	0.062	0.0023	5	05/31/19 09:40	06/06/19 13:19	205-99-2	

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-6/0-2	Lab ID:	10477057006	Collected	d: 05/30/1	9 10:45	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight	t" basis and are	adjusted for	percent mo	oisture, sa	nple si	ze and any diluti	ions.		
		-	Report			-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA 8	270D by Sll	M Prepara	tion Me	thod: EPA 3550			
Benzo(g,h,i)perylene	0.43	mg/kg	0.062	0.0039	5	05/31/19 09:40	06/06/19 13:19	191-24-2	
Benzo(k)fluoranthene	0.26	mg/kg	0.062	0.0053	5	05/31/19 09:40	06/06/19 13:19	207-08-9	
Chrysene	0.51	mg/kg	0.062	0.0085	5	05/31/19 09:40	06/06/19 13:19	218-01-9	
Dibenz(a,h)anthracene	0.15	mg/kg	0.062	0.0029	5	05/31/19 09:40	06/06/19 13:19	53-70-3	
Fluoranthene	0.70	mg/kg	0.062	0.0027	5	05/31/19 09:40	06/06/19 13:19	206-44-0	
Fluorene	<0.062	mg/kg	0.062	0.0019	5	05/31/19 09:40	06/06/19 13:19	86-73-7	
Indeno(1,2,3-cd)pyrene	0.34	mg/kg	0.062	0.0042	5	05/31/19 09:40	06/06/19 13:19	193-39-5	
Naphthalene	0.14	mg/kg	0.062	0.0048	5	05/31/19 09:40	06/06/19 13:19		
Phenanthrene	0.39	mg/kg	0.062	0.012	5	05/31/19 09:40	06/06/19 13:19		
Pyrene	0.67	mg/kg	0.062	0.0095	5	05/31/19 09:40	06/06/19 13:19		
Total BaP Eq. MN 2006sh. ND=0	0.74	mg/kg	0.062	0.062	5	05/31/19 09:40	06/06/19 13:19		
Surrogates	07		0.002	0.002	-		20,00,10 10.10		
2-Fluorobiphenyl (S)	78	%.	30-125		5	05/31/19 09:40	06/06/19 13:19	321-60-8	D4
p-Terphenyl-d14 (S)	82	%.	30-125		5	05/31/19 09:40	06/06/19 13:19		
8260B MSV 5030 Med Level	Analytical	Method: EPA 8	260B Prepa	aration Me	hod: EF	PA 5035/5030B			
Acetone	<1.7	mg/kg	1.7	0.53	1	06/06/19 10:16	06/06/19 14:51	67-64-1	
Allyl chloride	<0.34	mg/kg	0.34	0.071	1	06/06/19 10:16	06/06/19 14:51		
Benzene	< 0.034	mg/kg	0.034	0.0048	1	06/06/19 10:16	06/06/19 14:51		
Bromobenzene	<0.085	mg/kg	0.085	0.0052	1	06/06/19 10:16	06/06/19 14:51		
Bromochloromethane	<0.085	mg/kg	0.085	0.0002	1	06/06/19 10:16	06/06/19 14:51		
Bromodichloromethane	<0.005	mg/kg	0.085	0.029	1	06/06/19 10:16			
Bromoform	<0.085	mg/kg	0.085	0.029	1	06/06/19 10:16	06/06/19 14:51		
Bromomethane	<0.34 <0.85	mg/kg	0.34	0.13	1	06/06/19 10:16	06/06/19 14:51		
	<0.43		0.03	0.10	1	06/06/19 10:16	06/06/19 14:51		
2-Butanone (MEK)		mg/kg			1				
n-Butylbenzene	<0.085	mg/kg	0.085	0.041		06/06/19 10:16	06/06/19 14:51		
sec-Butylbenzene	<0.085	mg/kg	0.085	0.016	1	06/06/19 10:16	06/06/19 14:51		
tert-Butylbenzene	<0.085	mg/kg	0.085	0.016	1	06/06/19 10:16	06/06/19 14:51		
Carbon tetrachloride	<0.085	mg/kg	0.085	0.041	1	06/06/19 10:16	06/06/19 14:51		
Chlorobenzene	<0.085	mg/kg	0.085	0.0048	1	06/06/19 10:16	06/06/19 14:51		
Chloroethane	<0.85	mg/kg	0.85	0.044	1	06/06/19 10:16	06/06/19 14:51		
Chloroform	<0.085	mg/kg	0.085	0.043	1	06/06/19 10:16	06/06/19 14:51		
Chloromethane	<0.34	mg/kg	0.34	0.020	1	06/06/19 10:16	06/06/19 14:51		
2-Chlorotoluene	<0.085	mg/kg	0.085	0.0042	1		06/06/19 14:51		
4-Chlorotoluene	<0.085	mg/kg	0.085	0.0044	1	06/06/19 10:16	06/06/19 14:51		
1,2-Dibromo-3-chloropropane	<0.85	mg/kg	0.85	0.30	1	06/06/19 10:16	06/06/19 14:51		
Dibromochloromethane	<0.34	mg/kg	0.34	0.0099	1	06/06/19 10:16	06/06/19 14:51		
1,2-Dibromoethane (EDB)	<0.085	mg/kg	0.085	0.0090	1	06/06/19 10:16	06/06/19 14:51		
Dibromomethane	<0.085	mg/kg	0.085	0.016	1	06/06/19 10:16	06/06/19 14:51		
1,2-Dichlorobenzene	<0.085	mg/kg	0.085	0.0034	1	06/06/19 10:16	06/06/19 14:51		
1,3-Dichlorobenzene	<0.085	mg/kg	0.085	0.0031	1	06/06/19 10:16	06/06/19 14:51		
				0.0050		00/00/40 40 40	00/00/40 44.54	400 40 7	
1,4-Dichlorobenzene	<0.085	mg/kg	0.085	0.0053	1	06/06/19 10:16	06/06/19 14:51	106-46-7	
1,4-Dichlorobenzene Dichlorodifluoromethane		mg/kg mg/kg	0.085 0.34	0.0053	1 1	06/06/19 10:16 06/06/19 10:16	06/06/19 14:51 06/06/19 14:51		
,	<0.085							75-71-8	

Project: VPP-Kasota-Revised Report

Sample: LTT-6/0-2		10477057006		d: 05/30/19				atrix: Solid	
Results reported on a "dry weig	ht" basis and are	e adjusted for	percent mo	oisture, san	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV 5030 Med Level	Analytical	Method: EPA	3260B Prep	aration Met	hod: El	PA 5035/5030B			
1,1-Dichloroethene	<0.085	mg/kg	0.085	0.026	1	06/06/19 10:16	06/06/19 14:51	75-35-4	
cis-1,2-Dichloroethene	<0.085	mg/kg	0.085	0.014	1	06/06/19 10:16	06/06/19 14:51	156-59-2	
trans-1,2-Dichloroethene	<0.085	mg/kg	0.085	0.040	1	06/06/19 10:16	06/06/19 14:51	156-60-5	
Dichlorofluoromethane	<0.85	mg/kg	0.85	0.12	1	06/06/19 10:16	06/06/19 14:51	75-43-4	N2
1,2-Dichloropropane	<0.085	mg/kg	0.085	0.015	1	06/06/19 10:16	06/06/19 14:51	78-87-5	
1,3-Dichloropropane	<0.085	mg/kg	0.085	0.012	1	06/06/19 10:16	06/06/19 14:51	142-28-9	
2,2-Dichloropropane	<0.34	mg/kg	0.34	0.011	1	06/06/19 10:16	06/06/19 14:51	594-20-7	
1,1-Dichloropropene	<0.085	mg/kg	0.085	0.039	1	06/06/19 10:16	06/06/19 14:51	563-58-6	
cis-1,3-Dichloropropene	<0.085	mg/kg	0.085	0.012	1	06/06/19 10:16	06/06/19 14:51	10061-01-5	
trans-1,3-Dichloropropene	<0.085	mg/kg	0.085	0.012	1	06/06/19 10:16	06/06/19 14:51	10061-02-6	
Diethyl ether (Ethyl ether)	<0.34	mg/kg	0.34	0.052	1	06/06/19 10:16	06/06/19 14:51	60-29-7	
Ethylbenzene	0.39	mg/kg	0.085	0.0046	1	06/06/19 10:16	06/06/19 14:51	100-41-4	
Hexachloro-1,3-butadiene	<0.43	mg/kg	0.43	0.021	1	06/06/19 10:16	06/06/19 14:51	87-68-3	
Isopropylbenzene (Cumene)	<0.085	mg/kg	0.085	0.0038	1	06/06/19 10:16	06/06/19 14:51	98-82-8	
p-Isopropyltoluene	<0.085	mg/kg	0.085	0.026	1	06/06/19 10:16	06/06/19 14:51	99-87-6	
Methylene Chloride	<0.34	mg/kg	0.34	0.16	1	06/06/19 10:16	06/06/19 14:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	<0.43	mg/kg	0.43	0.018	1	06/06/19 10:16	06/06/19 14:51	108-10-1	
Methyl-tert-butyl ether	<0.085	mg/kg	0.085	0.010	1	06/06/19 10:16	06/06/19 14:51	1634-04-4	
Naphthalene	<0.34	mg/kg	0.34	0.080	1	06/06/19 10:16	06/06/19 14:51	91-20-3	
n-Propylbenzene	<0.085	mg/kg	0.085	0.0045	1	06/06/19 10:16	06/06/19 14:51	103-65-1	
Styrene	<0.085	mg/kg	0.085	0.0039	1	06/06/19 10:16	06/06/19 14:51	100-42-5	
1,1,1,2-Tetrachloroethane	<0.085	mg/kg	0.085	0.027	1	06/06/19 10:16	06/06/19 14:51	630-20-6	
1,1,2,2-Tetrachloroethane	<0.085	mg/kg	0.085	0.015	1	06/06/19 10:16	06/06/19 14:51	79-34-5	
Tetrachloroethene	<0.085	mg/kg	0.085	0.030	1	06/06/19 10:16	06/06/19 14:51	127-18-4	
Tetrahydrofuran	<3.4	mg/kg	3.4	0.12	1	06/06/19 10:16	06/06/19 14:51	109-99-9	
Toluene	0.59	mg/kg	0.085	0.021	1	06/06/19 10:16	06/06/19 14:51	108-88-3	
1,2,3-Trichlorobenzene	<0.085	mg/kg	0.085	0.014	1	06/06/19 10:16	06/06/19 14:51	87-61-6	
1,2,4-Trichlorobenzene	<0.085	mg/kg	0.085	0.019	1	06/06/19 10:16	06/06/19 14:51	120-82-1	
1,1,1-Trichloroethane	<0.085	mg/kg	0.085	0.040	1	06/06/19 10:16	06/06/19 14:51	71-55-6	
1,1,2-Trichloroethane	<0.085	mg/kg	0.085	0.010	1	06/06/19 10:16	06/06/19 14:51	79-00-5	
Trichloroethene	0.090	mg/kg	0.085	0.013	1	06/06/19 10:16	06/06/19 14:51	79-01-6	
Trichlorofluoromethane	<0.34	mg/kg	0.34	0.15	1	06/06/19 10:16	06/06/19 14:51	75-69-4	
1,2,3-Trichloropropane	<0.34	mg/kg	0.34	0.022	1	06/06/19 10:16	06/06/19 14:51	96-18-4	
1,1,2-Trichlorotrifluoroethane	<0.34	mg/kg	0.34	0.099	1	06/06/19 10:16	06/06/19 14:51	76-13-1	
1,2,4-Trimethylbenzene	0.18	mg/kg	0.085	0.017	1	06/06/19 10:16	06/06/19 14:51	95-63-6	
1,3,5-Trimethylbenzene	0.085	mg/kg	0.085	0.014	1	06/06/19 10:16	06/06/19 14:51	108-67-8	
Vinyl chloride	<0.034	mg/kg	0.034	0.017	1	06/06/19 10:16	06/06/19 14:51	75-01-4	
Xylene (Total)	1.3	mg/kg	0.26	0.020	1	06/06/19 10:16			
Surrogates									
1,2-Dichloroethane-d4 (S)	99	%.	75-125		1	06/06/19 10:16	06/06/19 14:51	17060-07-0	
Toluene-d8 (S)	100	%.	75-125		1	06/06/19 10:16	06/06/19 14:51	2037-26-5	
4-Bromofluorobenzene (S)	100	%.	75-125		1	06/06/19 10:16	06/06/19 14:51	460-00-4	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-7/2-4	Lab ID:	10477057007	Collecte	d: 05/30/19	9 11:30	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted for	percent m	oisture, san	nple s	ize and any diluti	ions.		
-			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA 8	082A Prep	aration Meth	hod: E	PA 3550			
PCB-1016 (Aroclor 1016)	<0.047	mg/kg	0.047	0.013	1	05/30/19 18:52	06/01/19 05:23	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.047	mg/kg	0.047	0.017	1	05/30/19 18:52	06/01/19 05:23	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.047	mg/kg	0.047	0.019	1	05/30/19 18:52	06/01/19 05:23	11141-16-5	
PCB-1242 (Aroclor 1242)	2.9	mg/kg	0.094	0.032	2	05/30/19 18:52	06/03/19 12:48	53469-21-9	
PCB-1248 (Aroclor 1248)	<0.047	mg/kg	0.047	0.014	1	05/30/19 18:52	06/01/19 05:23	12672-29-6	
PCB-1254 (Aroclor 1254)	0.57	mg/kg	0.047	0.014	1	05/30/19 18:52	06/01/19 05:23	11097-69-1	
PCB-1260 (Aroclor 1260)	<0.047	mg/kg	0.047	0.011	1	05/30/19 18:52	06/01/19 05:23	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.047	mg/kg	0.047	0.016	1	05/30/19 18:52	06/01/19 05:23	37324-23-5	
PCB-1268 (Aroclor 1268)	<0.047	mg/kg	0.047	0.015	1	05/30/19 18:52	06/01/19 05:23	11100-14-4	
Surrogates									
Tetrachloro-m-xylene (S)	66	%.	57-125		1	05/30/19 18:52	06/01/19 05:23	877-09-8	
Decachlorobiphenyl (S)	63	%.	49-125		1	05/30/19 18:52	06/01/19 05:23	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI MC	DD DRO P	reparation N	/lethod	I: WI MOD DRO			
WDRO C10-C28	1660	mg/kg	410	159	50	06/03/19 09:17	06/05/19 09:30		T6,T7
Surrogates		0 0							
n-Triacontane (S)	0	%.	44-143		50	06/03/19 09:17	06/05/19 09:30	638-68-6	1M,S4
6010D MET ICP, TCLP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: E	PA 3010			
	Leachate	Method/Date: E	EPA 1311; C)6/12/19 17: [,]	11 Init	ial pH: 8.81; Final	pH: 2.21		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 12:19	7439-92-1	
6010D MET ICP	Analytical	Method: EPA 6	010D Prep	paration Met	hod: E	PA 3050			
Arsenic	7.1	mg/kg	1.3	0.27	1	06/04/19 07:04	06/04/19 15:03	7440-38-2	
Barium	191	mg/kg	0.67	0.11	1	06/04/19 07:04	06/04/19 15:03	7440-39-3	
Cadmium	2.1	mg/kg	0.20	0.040	1	06/04/19 07:04	06/04/19 15:03	7440-43-9	
Chromium	61.2	mg/kg	0.67	0.13	1	06/04/19 07:04	06/04/19 15:03	7440-47-3	
Lead	268	mg/kg	0.67	0.15	1	06/04/19 07:04	06/04/19 15:03	7439-92-1	
Selenium	<1.3	mg/kg	1.3	0.44	1	06/04/19 07:04	06/04/19 15:03	7782-49-2	
Silver	2.0	mg/kg	0.67	0.049	1	06/04/19 07:04	06/05/19 11:27	7440-22-4	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	paration Met	hod: E	PA 7471B			
Mercury	0.16	mg/kg	0.027	0.012	1	06/04/19 07:27	06/04/19 15:27	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: ASTM	D2974						
Percent Moisture	30.3	%	0.10	0.10	1		06/05/19 17:36		
8270D MSSV PAH by SIM	Analytical	Method: EPA 8	270D by S	IM Preparat	ion Me	ethod: EPA 3550			
Acenaphthene	0.081	mg/kg	0.014	0.00059	1	05/31/19 09:40	06/06/19 13:40	83-32-9	
Acenaphthylene	0.027	mg/kg	0.014	0.00071	1	05/31/19 09:40	06/06/19 13:40	208-96-8	
Anthracene	0.055	mg/kg	0.014	0.00067	1	05/31/19 09:40			
Benzo(a)anthracene	0.17	mg/kg	0.014	0.0015	1	05/31/19 09:40			
Benzo(a)pyrene	0.22	mg/kg	0.014	0.00098	1	05/31/19 09:40			
Benzo(b)fluoranthene	0.32	mg/kg	0.014	0.00053	1	05/31/19 09:40			

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-7/2-4	Lab ID:	1047705700	7 Collecte	d: 05/30/19	9 11:30	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and are	e adjusted fo	r percent m	oisture, sai	nple s	ize and any diluti	ions.		
		-	Report	-	-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by S	IM Prepara	tion Me	ethod: EPA 3550			
Benzo(g,h,i)perylene	0.21	mg/kg	0.014	0.00091	1	05/31/19 09:40	06/06/19 13:40	191-24-2	
Benzo(k)fluoranthene	0.11	mg/kg	0.014	0.0012	1	05/31/19 09:40	06/06/19 13:40	207-08-9	
Chrysene	0.26	mg/kg	0.014	0.0019	1	05/31/19 09:40	06/06/19 13:40	218-01-9	
Dibenz(a,h)anthracene	0.058	mg/kg	0.014	0.00066	1	05/31/19 09:40	06/06/19 13:40	53-70-3	
Fluoranthene	0.29	mg/kg	0.014	0.00061	1	05/31/19 09:40	06/06/19 13:40	206-44-0	
Fluorene	0.11	mg/kg	0.014	0.00045	1	05/31/19 09:40	06/06/19 13:40	86-73-7	
Indeno(1,2,3-cd)pyrene	0.16	mg/kg	0.014	0.00096	1	05/31/19 09:40	06/06/19 13:40	193-39-5	
Naphthalene	0.44	mg/kg	0.014	0.0011	1	05/31/19 09:40	06/06/19 13:40	91-20-3	
Phenanthrene	0.38	mg/kg	0.014	0.0027	1	05/31/19 09:40	06/06/19 13:40	85-01-8	
Pyrene	0.35	mg/kg	0.014	0.0022	1	05/31/19 09:40	06/06/19 13:40	129-00-0	
Total BaP Eq. MN 2006sh. ND=0	0.33	mg/kg	0.014	0.014	1	05/31/19 09:40	06/06/19 13:40		
Surrogates									
2-Fluorobiphenyl (S)	77	%.	30-125		1	05/31/19 09:40	06/06/19 13:40	321-60-8	
p-Terphenyl-d14 (S)	73	%.	30-125		1	05/31/19 09:40	06/06/19 13:40	1718-51-0	
8260B MSV 5030 Med Level	Analytical	Method: EPA	8260B Prep	paration Met	hod: E	PA 5035/5030B			
Acetone	<1.7	mg/kg	1.7	0.54	1	06/06/19 10:16	06/06/19 19:22	67-64-1	
Allyl chloride	<0.35	mg/kg	0.35	0.073	1	06/06/19 10:16	06/06/19 19:22	107-05-1	
Benzene	0.14	mg/kg	0.035	0.0049	1	06/06/19 10:16	06/06/19 19:22	71-43-2	
Bromobenzene	<0.087	mg/kg	0.087	0.0054	1	06/06/19 10:16	06/06/19 19:22	108-86-1	
Bromochloromethane	<0.087	mg/kg	0.087	0.030	1	06/06/19 10:16	06/06/19 19:22	74-97-5	
Bromodichloromethane	<0.087	mg/kg	0.087	0.030	1	06/06/19 10:16	06/06/19 19:22	75-27-4	
Bromoform	<0.35	mg/kg	0.35	0.13	1	06/06/19 10:16	06/06/19 19:22	75-25-2	
Bromomethane	<0.87	mg/kg	0.87	0.10	1	06/06/19 10:16	06/06/19 19:22	74-83-9	
2-Butanone (MEK)	<0.44	mg/kg	0.44	0.046	1	06/06/19 10:16	06/06/19 19:22	78-93-3	
n-Butylbenzene	0.43	mg/kg	0.087	0.042	1	06/06/19 10:16	06/06/19 19:22	104-51-8	
sec-Butylbenzene	0.29	mg/kg	0.087	0.017	1	06/06/19 10:16	06/06/19 19:22	135-98-8	
tert-Butylbenzene	<0.087	mg/kg	0.087	0.017	1	06/06/19 10:16	06/06/19 19:22	98-06-6	
Carbon tetrachloride	<0.087	mg/kg	0.087	0.042	1	06/06/19 10:16	06/06/19 19:22	56-23-5	
Chlorobenzene	<0.087	mg/kg	0.087	0.0049	1	06/06/19 10:16	06/06/19 19:22	108-90-7	
Chloroethane	<0.87	mg/kg	0.87	0.045	1	06/06/19 10:16	06/06/19 19:22	75-00-3	
Chloroform	<0.087	mg/kg	0.087	0.044	1	06/06/19 10:16	06/06/19 19:22	67-66-3	
Chloromethane	<0.35	mg/kg	0.35	0.021	1	06/06/19 10:16	06/06/19 19:22	74-87-3	
2-Chlorotoluene	<0.087	mg/kg	0.087	0.0043	1	06/06/19 10:16	06/06/19 19:22	95-49-8	
4-Chlorotoluene	<0.087	mg/kg	0.087	0.0045	1	06/06/19 10:16	06/06/19 19:22	106-43-4	
1,2-Dibromo-3-chloropropane	<0.87	mg/kg	0.87	0.30	1	06/06/19 10:16	06/06/19 19:22		
Dibromochloromethane	<0.35	mg/kg	0.35	0.010	1	06/06/19 10:16	06/06/19 19:22	124-48-1	
1,2-Dibromoethane (EDB)	<0.087	mg/kg	0.087	0.0092	1	06/06/19 10:16	06/06/19 19:22	106-93-4	
Dibromomethane	<0.087	mg/kg	0.087	0.016	1	06/06/19 10:16	06/06/19 19:22	74-95-3	
1,2-Dichlorobenzene	0.090	mg/kg	0.087	0.0035	1	06/06/19 10:16			
1,3-Dichlorobenzene	<0.087	mg/kg	0.087	0.0032	1	06/06/19 10:16	06/06/19 19:22		
1,4-Dichlorobenzene	<0.087	mg/kg	0.087	0.0054	1	06/06/19 10:16	06/06/19 19:22		
Dichlorodifluoromethane	<0.35	mg/kg	0.35	0.028	1	06/06/19 10:16	06/06/19 19:22		
1,1-Dichloroethane	<0.087	mg/kg	0.087	0.0098	1	06/06/19 10:16	06/06/19 19:22		
1,2-Dichloroethane	<0.087	mg/kg	0.087	0.0096	1	06/06/19 10:16	06/06/19 19:22		
· · · · · · · · · ·		55							

Project: VPP-Kasota-Revised Report

Sample: LTT-7/2-4	Lab ID:	10477057007	Collecte	d: 05/30/19	9 11:30	Received: 05/	30/19 12:35 M	atrix: Solid	
Results reported on a "dry weig	ht" basis and ar	e adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV 5030 Med Level	Analytical	Method: EPA	8260B Prep	aration Met	hod: El	PA 5035/5030B			
1,1-Dichloroethene	<0.087	mg/kg	0.087	0.026	1	06/06/19 10:16	06/06/19 19:22	75-35-4	
cis-1,2-Dichloroethene	<0.087	mg/kg	0.087	0.014	1	06/06/19 10:16	06/06/19 19:22	156-59-2	
trans-1,2-Dichloroethene	<0.087	mg/kg	0.087	0.041	1	06/06/19 10:16	06/06/19 19:22	156-60-5	
Dichlorofluoromethane	<0.87	mg/kg	0.87	0.12	1	06/06/19 10:16	06/06/19 19:22	75-43-4	N2
1,2-Dichloropropane	<0.087	mg/kg	0.087	0.015	1	06/06/19 10:16	06/06/19 19:22	78-87-5	
1,3-Dichloropropane	<0.087	mg/kg	0.087	0.012	1	06/06/19 10:16	06/06/19 19:22	142-28-9	
2,2-Dichloropropane	<0.35	mg/kg	0.35	0.011	1	06/06/19 10:16	06/06/19 19:22	594-20-7	
1,1-Dichloropropene	<0.087	mg/kg	0.087	0.040	1	06/06/19 10:16	06/06/19 19:22	563-58-6	
cis-1,3-Dichloropropene	<0.087	mg/kg	0.087	0.013	1	06/06/19 10:16	06/06/19 19:22	10061-01-5	
trans-1,3-Dichloropropene	<0.087	mg/kg	0.087	0.012	1	06/06/19 10:16	06/06/19 19:22	10061-02-6	
Diethyl ether (Ethyl ether)	<0.35	mg/kg	0.35	0.053	1	06/06/19 10:16	06/06/19 19:22	60-29-7	
Ethylbenzene	2.6	mg/kg	0.087	0.0048	1	06/06/19 10:16	06/06/19 19:22	100-41-4	
Hexachloro-1,3-butadiene	<0.44	mg/kg	0.44	0.021	1	06/06/19 10:16	06/06/19 19:22	87-68-3	
lsopropylbenzene (Cumene)	0.16	mg/kg	0.087	0.0039	1	06/06/19 10:16	06/06/19 19:22	98-82-8	
p-Isopropyltoluene	0.17	mg/kg	0.087	0.027	1	06/06/19 10:16	06/06/19 19:22		
Methylene Chloride	< 0.35	mg/kg	0.35	0.16	1	06/06/19 10:16	06/06/19 19:22		
4-Methyl-2-pentanone (MIBK)	<0.44	mg/kg	0.44	0.018	1	06/06/19 10:16	06/06/19 19:22		
Methyl-tert-butyl ether	<0.087	mg/kg	0.087	0.010	1	06/06/19 10:16	06/06/19 19:22		
Naphthalene	0.61	mg/kg	0.35	0.082	1	06/06/19 10:16	06/06/19 19:22		
n-Propylbenzene	0.51	mg/kg	0.087	0.0047	1	06/06/19 10:16	06/06/19 19:22		
Styrene	<0.087	mg/kg	0.087	0.0040	1	06/06/19 10:16	06/06/19 19:22		
1,1,1,2-Tetrachloroethane	<0.087	mg/kg	0.087	0.027	1	06/06/19 10:16	06/06/19 19:22		
1,1,2,2-Tetrachloroethane	<0.087	mg/kg	0.087	0.015	1	06/06/19 10:16	06/06/19 19:22		
Tetrachloroethene	<0.087	mg/kg	0.087	0.031	1	06/06/19 10:16	06/06/19 19:22		
Tetrahydrofuran	<3.5	mg/kg	3.5	0.13	1	06/06/19 10:16	06/06/19 19:22		
Toluene	0.73	mg/kg	0.087	0.021	1	06/06/19 10:16	06/06/19 19:22		
1,2,3-Trichlorobenzene	<0.087	mg/kg	0.087	0.021	1	06/06/19 10:16	06/06/19 19:22		
1,2,4-Trichlorobenzene	<0.087	mg/kg	0.087	0.019	1	06/06/19 10:16	06/06/19 19:22		
1,1,1-Trichloroethane	<0.087	mg/kg	0.087	0.013	1	06/06/19 10:16	06/06/19 19:22		
1,1,2-Trichloroethane	<0.087	mg/kg	0.087	0.041	1	06/06/19 10:16	06/06/19 19:22		
Trichloroethene	0.10	mg/kg	0.087	0.010	1	06/06/19 10:16	06/06/19 19:22		
Trichlorofluoromethane	<0.10		0.087	0.013	1	06/06/19 10:16	06/06/19 19:22		
	<0.35 <0.35	mg/kg	0.35	0.15	1	06/06/19 10:16	06/06/19 19:22		
1,2,3-Trichloropropane		mg/kg							
1,1,2-Trichlorotrifluoroethane	<0.35	mg/kg	0.35	0.10	1		06/06/19 19:22		
1,2,4-Trimethylbenzene	1.6	mg/kg	0.087	0.017	1	06/06/19 10:16	06/06/19 19:22		
1,3,5-Trimethylbenzene	0.36	mg/kg	0.087	0.014	1	06/06/19 10:16	06/06/19 19:22		
Vinyl chloride	<0.035	mg/kg	0.035	0.017	1		06/06/19 19:22		
Xylene (Total)	3.4	mg/kg	0.26	0.020	1	06/06/19 10:16	06/06/19 19:22	1330-20-7	
Surrogates	07	0/	75 405			06/06/40 40-40	06/06/40 40.00	17060 07 0	
1,2-Dichloroethane-d4 (S)	97	%.	75-125		1		06/06/19 19:22		
Toluene-d8 (S)	99	%.	75-125		1	06/06/19 10:16	06/06/19 19:22		
4-Bromofluorobenzene (S)	100	%.	75-125		1	06/06/19 10:16	06/06/19 19:22	460-00-4	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Sample: LTT-8/0-2	Lab ID:	10477057008	B Collected	d: 05/30/19	9 11:45	Received: 05/	30/19 12:35 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	r percent mo	oisture, san	nple si	ize and any dilut	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	hod: El	PA 3550			
PCB-1016 (Aroclor 1016)	<0.044	mg/kg	0.044	0.012	1	05/30/19 18:52	06/01/19 06:09	12674-11-2	
PCB-1221 (Aroclor 1221)	<0.044	mg/kg	0.044	0.015	1	05/30/19 18:52	06/01/19 06:09	11104-28-2	
PCB-1232 (Aroclor 1232)	<0.044	mg/kg	0.044	0.018	1	05/30/19 18:52	06/01/19 06:09	11141-16-5	
PCB-1242 (Aroclor 1242)	<0.044	mg/kg	0.044	0.015	1	05/30/19 18:52	06/01/19 06:09	53469-21-9	
PCB-1248 (Aroclor 1248)	0.28	mg/kg	0.044	0.013	1	05/30/19 18:52	06/01/19 06:09	12672-29-6	
PCB-1254 (Aroclor 1254)	<0.044	mg/kg	0.044	0.013	1	05/30/19 18:52	06/01/19 06:09	11097-69-1	
PCB-1260 (Aroclor 1260)	0.39	mg/kg	0.044	0.011	1	05/30/19 18:52	06/01/19 06:09	11096-82-5	
PCB-1262 (Aroclor 1262)	<0.044	mg/kg	0.044	0.015	1	05/30/19 18:52	06/01/19 06:09	37324-23-5	
PCB-1268 (Aroclor 1268) Surrogates	<0.044	mg/kg	0.044	0.014	1	05/30/19 18:52	06/01/19 06:09	11100-14-4	
Tetrachloro-m-xylene (S)	75	%.	57-125		1	05/30/19 18:52	06/01/19 06:09	877-09-8	
Decachlorobiphenyl (S)	65	%.	49-125		1	05/30/19 18:52	06/01/19 06:09	2051-24-3	
WIDRO GCS Silica Gel	Analytical	Method: WI M	IOD DRO Pi	eparation N	/lethod	: WI MOD DRO			
WDRO C10-C28	89.2	mg/kg	6.9	2.7	1	06/03/19 09:17	06/05/19 08:31		T6,T7
<i>Surrogates</i> n-Triacontane (S)	73	%.	44-143		1	06/03/19 09:17	06/05/19 08:31	638-68-6	2M
6010D MET ICP, TCLP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3010			
						ial pH: 6.5; Final p	H: 1.79		
Lead	<0.10	mg/L	0.10	0.0020	1	06/13/19 11:50	06/14/19 12:22	7439-92-1	
6010D MET ICP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3050			
Arsenic	5.4	mg/kg	1.3	0.26	1	06/04/19 07:04	06/04/19 15:06	7440-38-2	
Barium	98.5	mg/kg	0.63	0.099	1	06/04/19 07:04	06/04/19 15:06	7440-39-3	
Cadmium	1.1	mg/kg	0.19	0.038	1	06/04/19 07:04	06/04/19 15:06	7440-43-9	
Chromium	75.1	mg/kg	0.63	0.13	1	06/04/19 07:04	06/04/19 15:06	7440-47-3	
Lead	173	mg/kg	0.63	0.14	1	06/04/19 07:04	06/04/19 15:06	7439-92-1	
Selenium	<1.3	mg/kg	1.3	0.41	1	06/04/19 07:04	06/04/19 15:06	7782-49-2	
Silver	0.66	mg/kg	0.63	0.045	1	06/04/19 07:04	06/05/19 11:30	7440-22-4	
7471B Mercury	Analytical	Method: EPA	7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.20	mg/kg	0.027	0.012	1	06/04/19 07:27	06/04/19 15:29	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AST	M D2974						
Percent Moisture	25.4	%	0.10	0.10	1		06/05/19 17:36		
8270D MSSV PAH by SIM	Analytical	Method: EPA	8270D by SI	M Preparat	tion Me	ethod: EPA 3550			
Acenaphthene	<0.027	mg/kg	0.027	0.0011	2	05/31/19 09:40	06/06/19 14:01	83-32-9	
Acenaphthylene	<0.027	mg/kg	0.027	0.0013	2	05/31/19 09:40	06/06/19 14:01	208-96-8	
Anthracene	0.073	mg/kg	0.027	0.0013	2	05/31/19 09:40	06/06/19 14:01	120-12-7	
Benzo(a)anthracene	0.29	mg/kg	0.027	0.0029	2	05/31/19 09:40	06/06/19 14:01	56-55-3	
Benzo(a)pyrene	0.35	mg/kg	0.027	0.0018	2	05/31/19 09:40	06/06/19 14:01	50-32-8	
Benzo(b)fluoranthene	0.47	mg/kg	0.027	0.0010	2	05/31/19 09:40	06/06/19 14:01	205-99-2	

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

 Sample:
 LTT-8/0-2
 Lab ID:
 10477057008
 Collected:
 05/30/19
 11:45
 Received:
 05/30/19
 12:35
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

		Report						
Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA	8270D by Sl	IM Prepara	tion Me	ethod: EPA 3550			
0.30	mg/kg	0.027	0.0017	2	05/31/19 09:40	06/06/19 14:01	191-24-2	
0.20	mg/kg	0.027	0.0023	2	05/31/19 09:40	06/06/19 14:01	207-08-9	
0.35	mg/kg	0.027	0.0036	2	05/31/19 09:40	06/06/19 14:01	218-01-9	
0.090	mg/kg	0.027	0.0012	2	05/31/19 09:40	06/06/19 14:01	53-70-3	
0.43	mg/kg	0.027	0.0011	2	05/31/19 09:40	06/06/19 14:01	206-44-0	
<0.027	mg/kg	0.027	0.00084	2	05/31/19 09:40	06/06/19 14:01	86-73-7	
0.23	mg/kg	0.027	0.0018	2	05/31/19 09:40	06/06/19 14:01	193-39-5	
0.14	mg/kg	0.027	0.0021	2	05/31/19 09:40	06/06/19 14:01	91-20-3	
0.36	mg/kg	0.027	0.0051	2	05/31/19 09:40	06/06/19 14:01	85-01-8	
0.40	mg/kg	0.027	0.0041	2	05/31/19 09:40	06/06/19 14:01	129-00-0	
0.52	mg/kg	0.027	0.027	2	05/31/19 09:40	06/06/19 14:01		
79	%.	30-125		2	05/31/19 09:40	06/06/19 14:01	321-60-8	D4
84	%.	30-125		2	05/31/19 09:40	06/06/19 14:01	1718-51-0	
	Analytical 0.30 0.20 0.35 0.090 0.43 <0.027 0.23 0.14 0.36 0.40 0.52 79	Analytical Method: EPA 0.30 mg/kg 0.20 mg/kg 0.35 mg/kg 0.43 mg/kg 0.43 mg/kg 0.43 mg/kg 0.23 mg/kg 0.14 mg/kg 0.36 mg/kg 0.40 mg/kg 0.52 mg/kg 79 %.	Results Units Limit Analytical Method: EPA 8270D by SI 0.027 0.027 0.30 mg/kg 0.027 0.20 mg/kg 0.027 0.35 mg/kg 0.027 0.35 mg/kg 0.027 0.43 mg/kg 0.027 0.43 mg/kg 0.027 0.23 mg/kg 0.027 0.14 mg/kg 0.027 0.36 mg/kg 0.027 0.40 mg/kg 0.027 0.40 mg/kg 0.027 0.52 mg/kg 0.027 79 %. 30-125	Results Units Limit MDL Analytical Method: EPA 8270D by SIM Preparate 0.30 mg/kg 0.027 0.0017 0.20 mg/kg 0.027 0.0023 0.35 mg/kg 0.027 0.0036 0.090 mg/kg 0.027 0.0012 0.43 mg/kg 0.027 0.0014 <0.027	Results Units Limit MDL DF Analytical Method: EPA 8270D by SIM Preparation Method: EPA 8270D by SIM Preparation Method: 2 0.30 mg/kg 0.027 0.0017 2 0.20 mg/kg 0.027 0.0023 2 0.35 mg/kg 0.027 0.0012 2 0.43 mg/kg 0.027 0.0014 2 0.23 mg/kg 0.027 0.0018 2 0.14 mg/kg 0.027 0.0021 2 0.36 mg/kg 0.027 0.0041 2 0.52 mg/kg 0.027 0.027 2 79 %. 30-125 2	ResultsUnitsLimitMDLDFPreparedAnalytical Method: EPA 8270D by SIMPreparation Method: EPA 35500.30mg/kg0.0270.0017205/31/19 09:400.20mg/kg0.0270.0023205/31/19 09:400.35mg/kg0.0270.0036205/31/19 09:400.43mg/kg0.0270.0012205/31/19 09:400.43mg/kg0.0270.0011205/31/19 09:400.43mg/kg0.0270.0018205/31/19 09:400.23mg/kg0.0270.0018205/31/19 09:400.14mg/kg0.0270.0021205/31/19 09:400.36mg/kg0.0270.0051205/31/19 09:400.40mg/kg0.0270.0041205/31/19 09:400.52mg/kg0.0270.027205/31/19 09:4079%.30-125205/31/19 09:40	ResultsUnitsLimitMDLDFPreparedAnalyzedAnalytical Method: EPA 8270D by SIMPreparation Method: EPA 35500.30mg/kg0.0270.0017205/31/19 09:4006/06/19 14:010.20mg/kg0.0270.0023205/31/19 09:4006/06/19 14:010.35mg/kg0.0270.0036205/31/19 09:4006/06/19 14:010.43mg/kg0.0270.0012205/31/19 09:4006/06/19 14:01<0.027	ResultsUnitsLimitMDLDFPreparedAnalyzedCAS No.Analytical Method: EPA 8270D by SIMPreparation Method: EPA 35500.30mg/kg0.0270.0017205/31/19 09:4006/06/19 14:01191-24-20.20mg/kg0.0270.0023205/31/19 09:4006/06/19 14:01207-08-90.35mg/kg0.0270.0012205/31/19 09:4006/06/19 14:01218-01-90.090mg/kg0.0270.0012205/31/19 09:4006/06/19 14:0153-70-30.43mg/kg0.0270.0011205/31/19 09:4006/06/19 14:01206-44-0<0.027

Project: Pace Project No.:	VPP-Ka 104770	asota-Revised 157	d Report										
QC Batch:	60993	30		Anal	vsis Metho	d:	EPA 7471B						
QC Batch Method:	EPA 7	-			vsis Descri		7471B Mer						
Associated Lab Sar			1, 1047705700 8		, ,	•				47705700	7,		
METHOD BLANK:	329634	.9			Matrix: S	olid							
Associated Lab Sar	mples:	1047705700 1047705700	1, 1047705700 8	2, 1047705	57003, 104	77057004,	104770570	05, 10477	057006, 10	47705700	7,		
				Bla	nk	Reporting							
Paran	neter		Units	Res	ult	Limit	MD	L	Analyzed	Q	ualifiers		
Mercury			mg/kg		<0.019	0.01	19 (0.0084 0	6/04/19 14	:35			
LABORATORY COI	NTROLS	SAMPLE: 3	296350										
				Spike	LC	s	LCS	% F	Rec				
Paran	neter		Units	Conc.	Re	sult	% Rec	Lim	iits	Qualifiers			
Mercury			mg/kg	0	.5	0.52	10	3	80-120				
MATRIX SPIKE & M	/ATRIX \$	SPIKE DUPLI	CATE: 3296			329635	2						
				MS	MSD		MOD		MOD	0/ D			
Parameter	r	Units	10476849001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	VPP-Ka 104770	asota-Revise)57	ed Report										
QC Batch:	61263	35		Anal	ysis Meth	od:	EPA 6010D						
QC Batch Method:	EPA 3	3010		Anal	ysis Desc	ription:	6010D TCL	P					
Associated Lab San	nples:	104770570 104770570	01, 1047705700 08	2, 104770	57003, 10	477057004,	104770570	05, 104 ⁻	77057006, 104	477057007	7,		
METHOD BLANK:	331004	18			Matrix:	Water							
Associated Lab San	nples:	104770570 104770570	01, 1047705700 08	2, 104770	57003, 10	477057004,	104770570	05, 104	77057006, 104	477057007	7,		
				Bla	nk	Reporting							
Paran	neter		Units	Res	sult	Limit	MD	L	Analyzed	Qı	ualifiers	6	
Lead			mg/L		<0.10	0.1	0	0.0020	06/14/19 11:	29			
METHOD BLANK:	330832	26			Matrix:	Water							
Associated Lab San	nples:	104770570 104770570	01, 1047705700 08	2, 104770	57003, 10	477057004,	104770570	05, 104 ⁻	77057006, 104	477057007	7,		
				Bla	nk	Reporting							
Paran	neter		Units	Res	sult	Limit	MD	L	Analyzed	Qı	ualifiers	3	
Lead			mg/L		<0.10	0.1	0	0.0020	06/14/19 11:	32			
LABORATORY COM	NTROLS	SAMPLE:	3310049										
_				Spike		.CS	LCS		Rec				
Paran	neter		Units	Conc.	R	esult	% Rec		imits (Qualifiers	_		
Lead			mg/L		1	0.98	9	8	80-120				
MATRIX SPIKE & M	IATRIX S	SPIKE DUPI	ICATE: 3310	050 MS	MSD	331005	1						
			10477057001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Red	c % Rec	Limits	RPD	RPD	Qual
Lead		mg/L	<0.10	1		1 1.0	1.0		95 96	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 6098	391		Analy	sis Metho	d: I	EPA 6010D						
QC Batch Method: EPA	3050		Analy	sis Descri	ption: 6	6010D Solid	ds					
Associated Lab Samples:	104770570 104770570	01, 1047705700 08	2, 1047705	7003, 104	77057004,	104770570	05, 1047	77057006, 1	0477057007	7,		
METHOD BLANK: 32961	92			Matrix: So	olid							
Associated Lab Samples:	104770570 104770570	01, 1047705700 08	2, 1047705	7003, 104	77057004,	104770570	05, 1047	77057006, 1	0477057007	7,		
			Blar	nk	Reporting							
Parameter		Units	Res	ult	Limit	MD	L	Analyze	d Qu	ualifiers		
Arsenic		mg/kg		<0.99	0.9	9	0.20	06/04/19 1	3:41			
Barium		mg/kg		<0.50	0.5		0.078	06/04/19 1	3:41			
Cadmium		mg/kg		<0.15	0.1	5	0.030	06/04/19 1	3:41			
Chromium		mg/kg		<0.50	0.5		0.099	06/04/19 1				
₋ead		mg/kg		<0.50	0.5		0.11	06/04/19 1				
Selenium		mg/kg		<0.99	0.9		0.32	06/04/19 1				
Silver		mg/kg		<0.50	0.5	0	0.036	06/04/19 1	3:41			
LABORATORY CONTROL	SAMPLE:	3296193										
			Spike	LC	S	LCS	%	Rec				
Parameter		Units	Conc.	Res	sult	% Rec	L	imits	Qualifiers			
Arsenic		mg/kg	46.	3	41.8	9	0	80-120				
Barium		mg/kg	46.	3	44.6	9	6	80-120				
Cadmium		mg/kg	46.	3	42.3	9	1	80-120				
Chromium		mg/kg	46.		44.4	9		80-120				
Lead		mg/kg	46.		42.5	9		80-120				
Selenium		mg/kg	46.		41.1	8		80-120				
Silver		mg/kg	23.	1	20.7	8	9	80-120				
MATRIX SPIKE & MATRIX		_ICATE: 3296	194		3296195							
			MS	MSD								
		10476849001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	c % Rec	Limits	RPD	RPD	Qua
Arsenic	mg/kg	3.6	56.3	59.1	51.2	54.6	1	84 8	6 75-125	6	20	
Barium	mg/kg	85.5	56.3	59.1	131	140	1	80 9	3 75-125	7	20	
Cadmium	mg/kg		56.3	59.1	45.2	49.8			84 75-125	10		
Chromium	mg/kg		56.3	59.1	58.2	61.7			0 75-125			
	mg/kg	43.4	56.3	59.1	86.9	108			9 75-125			R1
₋ead Selenium	mg/kg	<1.2	56.3	59.1	46.8	49.5		83 8	84 75-125	6	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	VPP-Kasota-Revis	ed Report							
Pace Project No.:	10477057								
QC Batch:	610597		Analysis Meth	iod:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Description:		Dry Weight / %	M by AS	STM D297	' 4	
Associated Lab Sar	mples: 10477057(10477057(,	02, 10477057003, 10	477057004,	10477057005,	104770	57006, 10	0477057007,	
SAMPLE DUPLICA	TE: 3299590								
			10477015001	Dup			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	15.5	14.	3	8	3	30	
SAMPLE DUPLICA	TE: 3300167								
			10477065001	Dup			Max		
Dava	meter	Units	Result	Result	RPD		RPD	Qualifiers	
Para	ineter								

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

QC Batch:	610910
QC Batch Method:	EPA 5035/5030B

Analysis Method: E Analysis Description: 8

d: EPA 8260B ption: 8260B MSV 5030 Med Level

Associated Lab Samples: 10477057004, 10477057006, 10477057007

METHOD BLANK: 3300777		Matrix:	Solid			
Associated Lab Samples: 104770 Parameter	57004, 10477057006 Units	6, 10477057007 Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	mg/kg	<0.050	0.050	0.016	06/06/19 13:03	
1,1,1-Trichloroethane	mg/kg	<0.050	0.050	0.023	06/06/19 13:03	
1,1,2,2-Tetrachloroethane	mg/kg	<0.050	0.050	0.0088	06/06/19 13:03	
1,1,2-Trichloroethane	mg/kg	<0.050	0.050	0.0060	06/06/19 13:03	
1,1,2-Trichlorotrifluoroethane	mg/kg	<0.20	0.20	0.058	06/06/19 13:03	
1,1-Dichloroethane	mg/kg	<0.050	0.050	0.0056	06/06/19 13:03	
1,1-Dichloroethene	mg/kg	<0.050	0.050	0.015	06/06/19 13:03	
1,1-Dichloropropene	mg/kg	<0.050	0.050	0.023	06/06/19 13:03	
1,2,3-Trichlorobenzene	mg/kg	<0.050	0.050	0.0080	06/06/19 13:03	
1,2,3-Trichloropropane	mg/kg	<0.20	0.20	0.013	06/06/19 13:03	
1,2,4-Trichlorobenzene	mg/kg	< 0.050	0.050	0.011	06/06/19 13:03	
1,2,4-Trimethylbenzene	mg/kg	< 0.050	0.050	0.010	06/06/19 13:03	
1,2-Dibromo-3-chloropropane	mg/kg	<0.50	0.50	0.17	06/06/19 13:03	
1,2-Dibromoethane (EDB)	mg/kg	< 0.050	0.050	0.0053	06/06/19 13:03	
1,2-Dichlorobenzene	mg/kg	< 0.050	0.050	0.0020	06/06/19 13:03	
1,2-Dichloroethane	mg/kg	<0.050	0.050	0.0020	06/06/19 13:03	
1,2-Dichloropropane	mg/kg	<0.050	0.050	0.0086	06/06/19 13:03	
1,3,5-Trimethylbenzene	mg/kg	<0.050	0.050	0.0080	06/06/19 13:03	
1,3-Dichlorobenzene	mg/kg	<0.050	0.050	0.0000	06/06/19 13:03	
1,3-Dichloropropane		<0.050	0.050	0.0018	06/06/19 13:03	
	mg/kg					
1,4-Dichlorobenzene	mg/kg	<0.050	0.050 0.20	0.0031 0.0062	06/06/19 13:03	
2,2-Dichloropropane	mg/kg	<0.20			06/06/19 13:03	
2-Butanone (MEK)	mg/kg	< 0.25	0.25	0.027	06/06/19 13:03	
2-Chlorotoluene	mg/kg	< 0.050	0.050	0.0025	06/06/19 13:03	
4-Chlorotoluene	mg/kg	<0.050	0.050	0.0026	06/06/19 13:03	
4-Methyl-2-pentanone (MIBK)	mg/kg	<0.25	0.25	0.010	06/06/19 13:03	
Acetone	mg/kg	<1.0	1.0	0.31	06/06/19 13:03	
Allyl chloride	mg/kg	<0.20	0.20	0.042	06/06/19 13:03	
Benzene	mg/kg	< 0.020	0.020	0.0028	06/06/19 13:03	
Bromobenzene	mg/kg	<0.050	0.050	0.0031	06/06/19 13:03	
Bromochloromethane	mg/kg	< 0.050	0.050	0.017	06/06/19 13:03	
Bromodichloromethane	mg/kg	<0.050	0.050	0.017	06/06/19 13:03	
Bromoform	mg/kg	<0.20	0.20	0.076	06/06/19 13:03	
Bromomethane	mg/kg	<0.50	0.50	0.058	06/06/19 13:03	
Carbon tetrachloride	mg/kg	<0.050	0.050	0.024	06/06/19 13:03	
Chlorobenzene	mg/kg	<0.050	0.050	0.0028	06/06/19 13:03	
Chloroethane	mg/kg	<0.50	0.50	0.026	06/06/19 13:03	
Chloroform	mg/kg	<0.050	0.050	0.025	06/06/19 13:03	
Chloromethane	mg/kg	<0.20	0.20	0.012	06/06/19 13:03	
cis-1,2-Dichloroethene	mg/kg	<0.050	0.050	0.0083	06/06/19 13:03	
cis-1,3-Dichloropropene	mg/kg	<0.050	0.050	0.0072	06/06/19 13:03	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

Associated Lab Samples: 10477057004, 10477057006, 10477057007	
Blank Reporting Parameter Units Result Limit MDL Analyzed	Qualifiers
Dibromochloromethane mg/kg <0.20 0.20 0.0058 06/06/19 13:0	3
Dibromomethane mg/kg <0.050 0.050 0.0092 06/06/19 13:0	3
Dichlorodifluoromethane mg/kg <0.20 0.20 0.016 06/06/19 13:0	3
Dichlorofluoromethane mg/kg <0.50 0.50 0.069 06/06/19 13:0	3 N2
Diethyl ether (Ethyl ether) mg/kg <0.20 0.20 0.031 06/06/19 13:0	3
Ethylbenzene mg/kg <0.050 0.0027 06/06/19 13:0	3
Hexachloro-1,3-butadiene mg/kg <0.25 0.25 0.012 06/06/19 13:0	3
Isopropylbenzene (Cumene) mg/kg <0.050 0.050 0.0022 06/06/19 13:0	3
Methyl-tert-butyl ether mg/kg <0.050 0.0060 06/06/19 13:0	3
Methylene Chloride mg/kg <0.20 0.20 0.094 06/06/19 13:0	3
n-Butylbenzene mg/kg <0.050 0.024 06/06/19 13:0	3
n-Propylbenzene mg/kg <0.050 0.0027 06/06/19 13:0	3
Naphthalene mg/kg <0.20 0.20 0.047 06/06/19 13:0	3
p-Isopropyltoluene mg/kg <0.050 0.050 0.015 06/06/19 13:0	3
sec-Butylbenzene mg/kg <0.050 0.0096 06/06/19 13:0	3
Styrene mg/kg <0.050 0.0023 06/06/19 13:0	3
tert-Butylbenzene mg/kg <0.050 0.0096 06/06/19 13:0	3
Tetrachloroethene mg/kg <0.050 0.050 0.018 06/06/19 13:0	3
Tetrahydrofuran mg/kg <2.0 2.0 0.073 06/06/19 13:0	3
Toluene mg/kg <0.050 0.050 0.012 06/06/19 13:0	3
trans-1,2-Dichloroethene mg/kg <0.050 0.023 06/06/19 13:0	3
trans-1,3-Dichloropropene mg/kg <0.050 0.050 0.0070 06/06/19 13:0	3
Trichloroethene mg/kg <0.050 0.0077 06/06/19 13:0	3
Trichlorofluoromethane mg/kg <0.20 0.20 0.087 06/06/19 13:0	3
Vinyl chloride mg/kg <0.020 0.020 0.0098 06/06/19 13:0	3
Xylene (Total) mg/kg <0.15 0.012 06/06/19 13:00	3
1,2-Dichloroethane-d4 (S) %. 108 75-125 06/06/19 13:0	3
4-Bromofluorobenzene (S) %. 101 75-125 06/06/19 13:0	3
Toluene-d8 (S) %. 102 75-125 06/06/19 13:0	3

LABORATORY CONTROL SAMPLE: 3300778

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	mg/kg	1	1.0	103	53-125	
1,1,1-Trichloroethane	mg/kg	1	1.0	105	53-146	
1,1,2,2-Tetrachloroethane	mg/kg	1	1.1	107	51-125	
1,1,2-Trichloroethane	mg/kg	1	1.0	103	55-125	
1,1,2-Trichlorotrifluoroethane	mg/kg	1	0.95	95	49-150	
1,1-Dichloroethane	mg/kg	1	0.96	96	56-125	
1,1-Dichloroethene	mg/kg	1	0.81	81	48-148	
1,1-Dichloropropene	mg/kg	1	0.92	92	55-142	
1,2,3-Trichlorobenzene	mg/kg	1	1.0	103	47-125	
1,2,3-Trichloropropane	mg/kg	1	1.0	105	52-125	
1,2,4-Trichlorobenzene	mg/kg	1	1.1	107	48-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

LABORATORY CONTROL SAMPLE: 3300778

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2,4-Trimethylbenzene	mg/kg		0.97	97	51-126	
1,2-Dibromo-3-chloropropane	mg/kg	2.5	2.5	98	50-125	
1,2-Dibromoethane (EDB)	mg/kg	1	0.96	96	52-125	
1,2-Dichlorobenzene	mg/kg	1	1.1	106	50-125	
1,2-Dichloroethane	mg/kg	1	0.85	85	51-125	
,2-Dichloropropane	mg/kg	1	0.94	94	57-125	
,3,5-Trimethylbenzene	mg/kg	1	1.0	100	52-127	
,3-Dichlorobenzene	mg/kg	1	1.0	100	50-128	
,3-Dichloropropane	mg/kg	1	0.97	97	55-125	
,4-Dichlorobenzene	mg/kg	1	0.98	98	51-125	
2-Dichloropropane	mg/kg	1	1.0	101	41-136	
Butanone (MEK)	mg/kg	5	4.2	83	43-125	
Chlorotoluene		1	1.1	114	52-126	
Chlorotoluene	mg/kg		1.1	107	53-126	
	mg/kg	1	5.2	107	39-125	
Methyl-2-pentanone (MIBK) cetone	mg/kg	5			46-136	
	mg/kg	5	4.5	91	46-136 48-130	
lyl chloride	mg/kg	1	0.83	83		
enzene	mg/kg	1	0.83	83	48-125	
omobenzene	mg/kg	1	1.0	102	51-125	
omochloromethane	mg/kg	1	0.87	87	52-125	
omodichloromethane	mg/kg	1	0.98	98	51-131	
omoform	mg/kg	1	1.0	102	52-125	
pmomethane	mg/kg	1	1.0	100	30-150	
rbon tetrachloride	mg/kg	1	1.0	104	59-129	
lorobenzene	mg/kg	1	0.96	96	54-125	
loroethane	mg/kg	1	1.2	118	61-132	
loroform	mg/kg	1	0.88	88	52-125	
oromethane	mg/kg	1	0.87	87	46-125	
-1,2-Dichloroethene	mg/kg	1	0.89	89	54-127	
-1,3-Dichloropropene	mg/kg	1	0.92	92	50-134	
promochloromethane	mg/kg	1	0.99	99	54-125	
promomethane	mg/kg	1	0.87	87	51-125	
chlorodifluoromethane	mg/kg	1	0.81	81	42-125	
chlorofluoromethane	mg/kg	1	1.0	103	30-150 I	N2
ethyl ether (Ethyl ether)	mg/kg	1	0.87	87	50-127	
hylbenzene	mg/kg	1	0.99	99	51-125	
exachloro-1,3-butadiene	mg/kg	1	1.3	126	41-133	
propylbenzene (Cumene)	mg/kg	1	1.0	100	54-134	
thyl-tert-butyl ether	mg/kg	1	0.91	91	53-125	
ethylene Chloride	mg/kg	1	0.82	82	48-125	
Butylbenzene	mg/kg	1	1.1	113	49-135	
Propylbenzene	mg/kg	1	1.0	101	55-129	
aphthalene	mg/kg	1	0.89	89	51-125	
Isopropyltoluene	mg/kg	1	1.1	107	53-134	
ec-Butylbenzene	mg/kg	1	1.0	103	52-134	
tyrene	mg/kg	1	0.99	99	53-128	
cyrono -	ing/ng					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

LABORATORY CONTROL SAMPLE: 3300778

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	mg/kg	1	0.97	97	54-131	
Tetrahydrofuran	mg/kg	10	8.3	83	42-145	
Toluene	mg/kg	1	0.91	91	51-125	
rans-1,2-Dichloroethene	mg/kg	1	0.77	77	50-130	
rans-1,3-Dichloropropene	mg/kg	1	1.0	100	52-125	
Frichloroethene	mg/kg	1	0.92	92	55-131	
richlorofluoromethane	mg/kg	1	1.2	125	30-150 \$	SS
inyl chloride	mg/kg	1	0.96	96	58-125	
ylene (Total)	mg/kg	3	3.0	99	52-125	
,2-Dichloroethane-d4 (S)	%.			103	75-125	
-Bromofluorobenzene (S)	%.			98	75-125	
ōluene-d8 (S)	%.			104	75-125	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3300	779 MS	MSD	3300780							
Parameter	Units	10477218004 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1,2-Tetrachloroethane	 mg/kg	ND	1.2	1.1	1.2	1.1	105	99	68-150	12	30	
1,1,1-Trichloroethane	mg/kg	ND	1.2	1.1	1.2	1.0	105	92	63-150	19	30	
1,1,2,2-Tetrachloroethane	mg/kg	ND	1.2	1.1	1.1	0.97	96	86	60-146	16	30	
1,1,2-Trichloroethane	mg/kg	ND	1.2	1.1	1.2	1.0	99	92	63-143	12	30	
1,1,2- Trichlorotrifluoroethane	mg/kg	ND	1.2	1.1	1.0	0.93	87	83	30-150	9	30	
1,1-Dichloroethane	mg/kg	ND	1.2	1.1	1.2	1.0	99	89	63-144	16	30	
1,1-Dichloroethene	mg/kg	ND	1.2	1.1	0.95	0.85	81	76	30-150	11	30	
1,1-Dichloropropene	mg/kg	ND	1.2	1.1	1.1	0.92	93	82	54-150	18	30	
1,2,3-Trichlorobenzene	mg/kg	ND	1.2	1.1	1.2	1.0	101	90	63-142	16	30	
1,2,3-Trichloropropane	mg/kg	ND	1.2	1.1	1.2	1.1	101	95	59-147	12	30	
1,2,4-Trichlorobenzene	mg/kg	ND	1.2	1.1	1.3	1.0	108	91	66-142	23	30	
1,2,4-Trimethylbenzene	mg/kg	ND	1.2	1.1	1.2	1.0	99	93	65-145	12	30	
1,2-Dibromo-3- chloropropane	mg/kg	ND	3	2.8	3.0	2.3	101	83	60-142	25	30	
1,2-Dibromoethane (EDB)	mg/kg	ND	1.2	1.1	1.2	1.0	99	90	67-135	14	30	
1,2-Dichlorobenzene	mg/kg	ND	1.2	1.1	1.2	1.0	100	93	68-141	13	30	
1,2-Dichloroethane	mg/kg	ND	1.2	1.1	1.0	0.86	87	77	56-132	18	30	
1,2-Dichloropropane	mg/kg	ND	1.2	1.1	1.2	0.99	99	89	58-150	16	30	
1,3,5-Trimethylbenzene	mg/kg	ND	1.2	1.1	1.2	1.1	97	94	66-148	9	30	
1,3-Dichlorobenzene	mg/kg	ND	1.2	1.1	1.2	1.0	102	92	63-148	16	30	
1,3-Dichloropropane	mg/kg	ND	1.2	1.1	1.2	0.96	98	86	63-142	19	30	
1,4-Dichlorobenzene	mg/kg	ND	1.2	1.1	1.2	1.0	101	93	68-140	13	30	
2,2-Dichloropropane	mg/kg	ND	1.2	1.1	1.2	1.0	102	93	62-143	14	30	
2-Butanone (MEK)	mg/kg	ND	5.9	5.6	4.5	3.7	76	66	53-138	20	30	
2-Chlorotoluene	mg/kg	ND	1.2	1.1	1.1	1.0	96	92	64-145	10	30	
4-Chlorotoluene	mg/kg	ND	1.2	1.1	1.1	1.0	95	91	63-149	10	30	
4-Methyl-2-pentanone (MIBK)	mg/kg	ND	5.9	5.6	5.5	4.8	94	87	47-150	13	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

MATRIX SPIKE & MATRIX S	PIKE DUPI	ICATE: 3300			3300780							
		10477218004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Мах	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acetone	mg/kg	ND	5.9	5.6	4.9	4.0	82	71	64-150	20	30	
Allyl chloride	mg/kg	ND	1.2	1.1	0.97	0.88	82	78	49-146	10	30	
Benzene	mg/kg	ND	1.2	1.1	1.1	0.91	91	81	63-136	17	30	
Bromobenzene	mg/kg	ND	1.2	1.1	1.1	0.98	94	87	63-142	13	30	
Bromochloromethane	mg/kg	ND	1.2	1.1	1.1	0.89	94	80	61-139	21	30	
Bromodichloromethane	mg/kg	ND	1.2	1.1	1.1	1.0	97	90	63-150	12	30	
Bromoform	mg/kg	ND	1.2	1.1	1.2	1.1	104	99	64-140	10	30	
Bromomethane	mg/kg	ND	1.2	1.1	1.0	1.0	85	90	56-148	1	30	
Carbon tetrachloride	mg/kg	ND	1.2	1.1	1.1	0.99	97	89	75-148	15	30	
Chlorobenzene	mg/kg	ND	1.2	1.1	1.1	0.98	95	88	62-147	14	30	
Chloroethane	mg/kg	ND	1.2	1.1	1.1	1.2	90	105	37-150	9	30	
Chloroform	mg/kg	ND	1.2	1.1	1.2	0.95	99	85	66-130	21	30	
Chloromethane	mg/kg	ND	1.2	1.1	0.98	1.0	83	89	35-131	2	30	
cis-1,2-Dichloroethene	mg/kg	ND	1.2	1.1	1.1	0.98	94	88	63-143	13	30	
cis-1,3-Dichloropropene	mg/kg	ND	1.2	1.1	1.1	0.95	93	85	60-150	14	30	
Dibromochloromethane	mg/kg	ND	1.2	1.1	1.2	1.1	105	95	64-144	16	30	
Dibromomethane	mg/kg	ND	1.2	1.1	1.1	0.98	95	88	59-148	13	30	
Dichlorodifluoromethane	mg/kg	ND	1.2	1.1	0.69	0.76	58	68	30-125	10		
Dichlorofluoromethane	mg/kg	ND	1.2	1.1	1.0	1.1	87	97	39-150	5		N2
Diethyl ether (Ethyl ether)	mg/kg	ND	1.2	1.1	0.90	0.79	76	71	59-149	13		
Ethylbenzene	mg/kg	ND	1.2	1.1	1.1	0.98	96	88	64-142	15		
Hexachloro-1,3-butadiene	mg/kg	ND	1.2	1.1	1.3	1.1	111	96	58-150	20		
Isopropylbenzene (Cumene)	mg/kg	ND	1.2	1.1	1.2	1.2	105	105	67-150	5		
Methyl-tert-butyl ether	mg/kg	ND	1.2	1.1	1.1	0.95	93	85	69-134	15	30	
Methylene Chloride	mg/kg	ND	1.2	1.1	1.0	0.91	88	82	56-134	13	30	
n-Butylbenzene	mg/kg	ND	1.2	1.1	1.2	1.1	105	100	64-150	11	30	
n-Propylbenzene	mg/kg	ND	1.2	1.1	1.2	1.0	103	93	65-150	16	30	
Naphthalene	mg/kg	ND	1.2	1.1	1.2	0.95	104	85	63-148	26	30	
p-Isopropyltoluene	mg/kg	ND	1.2	1.1	1.2	1.1	103	94	69-150	15		
sec-Butylbenzene	mg/kg	ND	1.2	1.1	1.2	1.0	100	94	69-150	13		
Styrene	mg/kg	ND	1.2	1.1	1.1	1.1	97	95	63-150	8		
tert-Butylbenzene	mg/kg	ND	1.2	1.1	1.2	1.1	106	99	67-150	12		
Tetrachloroethene	mg/kg	ND	1.2	1.1	1.1	1.0	93	91	62-150	7		
Tetrahydrofuran	mg/kg	ND	11.8	11.1	11.3	9.2	96	82	53-150	21	30	
Toluene	mg/kg	ND	1.2	1.1	1.1	1.1	93	94	61-141	4	30	
trans-1,2-Dichloroethene	mg/kg	ND	1.2	1.1	0.98	0.88	83	79	52-148	11	30	
trans-1,3-Dichloropropene	mg/kg	ND	1.2	1.1	1.1	1.0	96	94	62-142	8		
Trichloroethene	mg/kg	ND	1.2	1.1	1.1	0.95	94	85	59-150	16		
Trichlorofluoromethane	mg/kg	ND	1.2	1.1	1.1	1.2	94 97	105	30-150	3		
Vinyl chloride	mg/kg	ND	1.2	1.1	1.1	1.2	97 90	99	44-144	4		
Xylene (Total)	mg/kg	ND	3.5	3.3	3.4	3.1	90 97	99 92	67-145	4	30 30	
1,2-Dichloroethane-d4 (S)	тіу/ку %.	IND	5.5	5.5	5.4	5.1	97 99	92 98		11	30	
4-Bromofluorobenzene (S)	%. %.								75-125			
()							101	98	75-125			
Toluene-d8 (S)	%.						106	115	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

QC Batch:	609401	Analysis Method:	EPA 8082A
QC Batch Method:	EPA 3550	Analysis Description:	8082A GCS PCB
Associated Lab Samp	oles: 10477057003, 1	0477057004, 10477057006, 10477057007,	10477057008

METHOD BLANK:	3293235
---------------	---------

Matrix: Solid

Associated Lab Samples: 10477057003, 10477057004, 10477057006, 10477057007, 10477057008	Associated Lab Samples:	10477057003, 1047705700	4, 10477057006	, 10477057007, 10477057008
---	-------------------------	-------------------------	----------------	----------------------------

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	<0.033	0.033	0.0092	06/01/19 01:37	
PCB-1221 (Aroclor 1221)	mg/kg	< 0.033	0.033	0.012	06/01/19 01:37	
PCB-1232 (Aroclor 1232)	mg/kg	< 0.033	0.033	0.013	06/01/19 01:37	
PCB-1242 (Aroclor 1242)	mg/kg	< 0.033	0.033	0.011	06/01/19 01:37	
PCB-1248 (Aroclor 1248)	mg/kg	< 0.033	0.033	0.0099	06/01/19 01:37	
PCB-1254 (Aroclor 1254)	mg/kg	< 0.033	0.033	0.0097	06/01/19 01:37	
PCB-1260 (Aroclor 1260)	mg/kg	< 0.033	0.033	0.0079	06/01/19 01:37	
PCB-1262 (Aroclor 1262)	mg/kg	< 0.033	0.033	0.011	06/01/19 01:37	
PCB-1268 (Aroclor 1268)	mg/kg	< 0.033	0.033	0.011	06/01/19 01:37	
Decachlorobiphenyl (S)	%.	74	49-125		06/01/19 01:37	
Tetrachloro-m-xylene (S)	%.	66	57-125		06/01/19 01:37	

LABORATORY CONTROL SAMPLE:	3293236	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	0.67	0.76	114	69-125	
PCB-1260 (Aroclor 1260)	mg/kg	0.67	0.78	116	63-125	
Decachlorobiphenyl (S)	%.			102	49-125	
Tetrachloro-m-xylene (S)	%.			93	57-125	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3293			3293238							
		10475343014	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	mg/kg		0.73	0.73	0.39	0.44	55	61	56-125	10	30	M1
PCB-1260 (Aroclor 1260)	mg/kg	<35.6 ug/kg	0.73	0.73	0.38	0.39	53	55	45-125	4	30	
Decachlorobiphenyl (S)	%.						48	57	49-125			S0
Tetrachloro-m-xylene (S)	%.						39	42	57-125			S0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8082A

8082A GCS PCB

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

QC Batch:	609973	Analysis Method:

QC Batch Method:EPA 3550Analysis Description:Associated Lab Samples:10477057001, 10477057002, 10477057005

METHOD BLANK: 32964	68	Matrix:	Solid			
Associated Lab Samples:	10477057001, 10477057002	, 10477057005				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	<0.033	0.033	0.0092	06/05/19 16:39	
PCB-1221 (Aroclor 1221)	mg/kg	<0.033	0.033	0.012	06/05/19 16:39	
PCB-1232 (Aroclor 1232)	mg/kg	<0.033	0.033	0.013	06/05/19 16:39	
PCB-1242 (Aroclor 1242)	mg/kg	<0.033	0.033	0.011	06/05/19 16:39	
PCB-1248 (Aroclor 1248)	mg/kg	<0.033	0.033	0.0099	06/05/19 16:39	
PCB-1254 (Aroclor 1254)	mg/kg	<0.033	0.033	0.0097	06/05/19 16:39	
PCB-1260 (Aroclor 1260)	mg/kg	<0.033	0.033	0.0079	06/05/19 16:39	
PCB-1262 (Aroclor 1262)	mg/kg	< 0.033	0.033	0.011	06/05/19 16:39	
PCB-1268 (Aroclor 1268)	mg/kg	< 0.033	0.033	0.011	06/05/19 16:39	
Decachlorobiphenyl (S)	%.	116	49-125		06/05/19 16:39	СН
Tetrachloro-m-xylene (S)	%.	89	57-125		06/05/19 16:39	

LABORATORY CONTROL SAMPLE:	3296469					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	0.67	0.59	88	69-125	
PCB-1260 (Aroclor 1260)	mg/kg	0.67	0.60	90	63-125	
Decachlorobiphenyl (S)	%.			118	49-125 (СН
Tetrachloro-m-xylene (S)	%.			89	57-125	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 3296	646 MS	MSD	3296647							
	1	0477037001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	mg/kg	<pre></pre>	0.79	0.77	0.53	0.63	68	81	56-125	16	30	
PCB-1260 (Aroclor 1260)	mg/kg	<38.4 ug/kg	0.79	0.77	0.44	0.56	57	73	45-125	24	30	
Decachlorobiphenyl (S) Tetrachloro-m-xylene (S)	%. %.						75 72	98 84	49-125 57-125			СН

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:		asota-Revised Report					
Pace Project No.:	10477	057					
QC Batch:	6096	00	Analysis Meth	od:	EPA 8270D by SIM		
QC Batch Method:	EPA	3550	Analysis Desc	ription:	y SIM MSSV		
Associated Lab Sar	mples:	10477057001, 10477057002, 10477057008	10477057003, 10	477057004,	10477057005, 104	77057006, 104770	57007,
METHOD BLANK:	32943	78	Matrix:	Solid			
Associated Lab Sar	mples:	10477057001, 10477057002, 10477057008	10477057003, 10	477057004,	10477057005, 104	77057006, 104770	57007,
			Blank	Reporting			
Parar	meter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Acenaphthene		mg/kg	<0.010	0.0	0.00041	06/05/19 17:18	
Acenaphthylene		mg/kg	<0.010	0.0	0 0.00050	06/05/19 17:18	
Anthracene		mg/kg	<0.010	0.0	0 0.00047	06/05/19 17:18	
Benzo(a)anthracen	е	mg/kg	<0.010	0.0	0 0.0011	06/05/19 17:18	
Benzo(a)pyrene		mg/kg	<0.010	0.0	0 0.00069	06/05/19 17:18	
Benzo(b)fluoranthe	ne	mg/kg	<0.010	0.0	0 0.00037	06/05/19 17:18	
Benzo(g,h,i)perylen	ne	mg/kg	<0.010	0.0	0 0.00063	06/05/19 17:18	
Benzo(k)fluoranthe	ne	mg/kg	<0.010	0.0	0 0.00084	06/05/19 17:18	
Chrysene		mg/kg	<0.010	0.0	0 0.0014	06/05/19 17:18	
Dibenz(a,h)anthrac	ene	mg/kg	<0.010	0.0	0 0.00046	06/05/19 17:18	
Fluoranthene		mg/kg	<0.010	0.0	0 0.00043	06/05/19 17:18	
Fluorene		mg/kg	<0.010	0.0	0 0.00031	06/05/19 17:18	
Indeno(1,2,3-cd)py	rene	mg/kg	<0.010	0.0	0 0.00067	06/05/19 17:18	
Naphthalene		mg/kg	<0.010	0.0	0 0.00077	06/05/19 17:18	
Phenanthrene		mg/kg	<0.010	0.0	0 0.0019	06/05/19 17:18	
Pyrene		mg/kg	<0.010	0.0	0 0.0015	06/05/19 17:18	
2-Fluorobiphenyl (S	5)	%.	65	30-12	25	06/05/19 17:18	
p-Terphenyl-d14 (S)	%.	92	30-12	25	06/05/19 17:18	

LABORATORY CONTROL SAMPLE: 3294379

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Acenaphthene	mg/kg	0.033	0.020	60	46-125	
Acenaphthylene	mg/kg	0.033	0.019	58	44-125	
Anthracene	mg/kg	0.033	0.025	74	62-125	
Benzo(a)anthracene	mg/kg	0.033	0.030	89	53-125	
Benzo(a)pyrene	mg/kg	0.033	0.030	89	62-125	
Benzo(b)fluoranthene	mg/kg	0.033	0.035	105	51-125	
Benzo(g,h,i)perylene	mg/kg	0.033	0.032	96	58-125	
Benzo(k)fluoranthene	mg/kg	0.033	0.035	104	59-125	
Chrysene	mg/kg	0.033	0.032	97	59-125	
Dibenz(a,h)anthracene	mg/kg	0.033	0.033	99	60-125	
Fluoranthene	mg/kg	0.033	0.030	89	67-125	
Fluorene	mg/kg	0.033	0.023	68	51-125	
Indeno(1,2,3-cd)pyrene	mg/kg	0.033	0.033	98	59-125	
Naphthalene	mg/kg	0.033	0.019	57	47-125	
Phenanthrene	mg/kg	0.033	0.027	81	61-125	
Pyrene	mg/kg	0.033	0.030	91	52-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

LABORATORY CONTROL SAMPLE:	3294379					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			58	30-125	
p-Terphenyl-d14 (S)	%.			90	30-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 3294	380		3294381							
			MS	MSD								
	1	0476509005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acenaphthene	mg/kg	1.9J ug/kg	0.055	0.055	0.045	0.042	77	72	30-125	6	30	
Acenaphthylene	mg/kg	41.7 ug/kg	0.055	0.055	0.064	0.064	40	41	30-125	0	30	
Anthracene	mg/kg	17.8 ug/kg	0.055	0.055	0.055	0.052	67	62	30-131	5	30	
Benzo(a)anthracene	mg/kg	40.4 ug/kg	0.055	0.055	0.072	0.070	57	54	30-126	2	30	
Benzo(a)pyrene	mg/kg	45.1 ug/kg	0.055	0.055	0.079	0.072	62	49	30-150	9	30	
Benzo(b)fluoranthene	mg/kg	53.6 ug/kg	0.055	0.055	0.084	0.081	55	49	30-150	4	30	
Benzo(g,h,i)perylene	mg/kg	34.3 ug/kg	0.055	0.055	0.069	0.065	63	56	30-150	6	30	
Benzo(k)fluoranthene	mg/kg	30.9 ug/kg	0.055	0.055	0.069	0.066	69	64	30-150	4	30	
Chrysene	mg/kg	61.4 ug/kg	0.055	0.055	0.078	0.077	30	29	30-150	1	30	M1
Dibenz(a,h)anthracene	mg/kg	11.3J ug/kg	0.055	0.055	0.053	0.052	75	73	30-143	2	30	
Fluoranthene	mg/kg	63.4 ug/kg	0.055	0.055	0.076	0.081	22	33	30-143	8	30	M1
Fluorene	mg/kg	4.3J ug/kg	0.055	0.055	0.051	0.049	84	81	30-138	4	30	
Indeno(1,2,3-cd)pyrene	mg/kg	24.5 ug/kg	0.055	0.055	0.066	0.062	76	67	30-150	7	30	
Naphthalene	mg/kg	5.3J ug/kg	0.055	0.055	0.038	0.043	59	69	30-125	13	30	
Phenanthrene	mg/kg	48.6 ug/kg	0.055	0.055	0.064	0.076	28	50	30-142	17	30	M1
Pyrene	mg/kg	90.5 ug/kg	0.055	0.055	0.092	0.095	3	7	30-149	3	30	M1
2-Fluorobiphenyl (S)	%.						72	70	30-125			
p-Terphenyl-d14 (S)	%.						89	90	30-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	VPP-Kasota-Revi	sed Report									
Pace Project No.:	10477057										
QC Batch:	609985		Analys	is Method:	W		RO				
QC Batch Method: WI MOD DRO			Analys	Analysis Description:		IDRO So	olid GCV				
Associated Lab Sam	nples: 1047705 1047705	7001, 10477057002, 7008	10477057	003, 10477	057004, 10	477057	005, 104	77057006,	1047705	57007,	
METHOD BLANK:	3296497		Ν	Atrix: Solic	ł						
Associated Lab Sam	nples: 1047705 1047705	7001, 10477057002, 7008	10477057	003, 10477	057004, 10	477057	005, 104	77057006,	1047705	57007,	
			Blank	Re	porting						
Param	neter	Units	Result	t	Limit ME)L	Analyzed		Qualifiers	
WDRO C10-C28		mg/kg	<10.0		10.0	0 3.9		06/04/19	20:28		_
n-Triacontane (S)		%.		89 44-14				06/04/19	20:28		
LABORATORY CON	TROL SAMPLE 8	LCSD: 3296498		32	296499						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Param	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
WDRO C10-C28		mg/kg	80	73.9	72.4	92	91	61-125		2 20	
n-Triacontane (S)		%.				92	90	44-143			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: VPP-Kasota-Revised Report

Pace Project No.: 10477057

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- 1M Samples requiring thermal preservation exceeded method recommended temperature limits after receipt but before extraction or digestion was conducted. Results are estimated
- 2M Samples requiring thermal preservation exceeded method recommended temperature limits after receipt but before extraction or digestion was conducted. Results are estimated.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- R1 RPD value was outside control limits.
- S0 Surrogate recovery outside laboratory control limits.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- SS This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.
- T6 High boiling point hydrocarbons are present in the sample.
- T7 Low boiling point hydrocarbons are present in the sample.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:VPP-Kasota-Revised ReportPace Project No.:10477057

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10477057001	 LTT-1/1-2	EPA 3550	609973	EPA 8082A	610367
10477057002	LTT-2/2-3	EPA 3550	609973	EPA 8082A	610367
10477057003	LTT-3/0-2	EPA 3550	609401	EPA 8082A	609757
10477057004	LTT-4/2-4	EPA 3550	609401	EPA 8082A	609757
10477057005	LTT-5/0-2	EPA 3550	609973	EPA 8082A	610367
10477057006	LTT-6/0-2	EPA 3550	609401	EPA 8082A	609757
0477057007	LTT-7/2-4	EPA 3550	609401	EPA 8082A	609757
0477057008	LTT-8/0-2	EPA 3550	609401	EPA 8082A	609757
0477057001	LTT-1/1-2	WI MOD DRO	609985	WI MOD DRO	610571
0477057002	LTT-2/2-3	WI MOD DRO	609985	WI MOD DRO	610571
0477057003	LTT-3/0-2	WI MOD DRO	609985	WI MOD DRO	610571
0477057004	LTT-4/2-4	WI MOD DRO	609985	WI MOD DRO	610571
0477057005	LTT-5/0-2	WI MOD DRO	609985	WI MOD DRO	610571
0477057006	LTT-6/0-2	WI MOD DRO	609985	WI MOD DRO	610571
0477057007	LTT-7/2-4	WI MOD DRO	609985	WI MOD DRO	610571
0477057008	LTT-8/0-2	WI MOD DRO	609985	WI MOD DRO	610571
0477057001	LTT-1/1-2	EPA 3010	612635	EPA 6010D	612902
0477057002	LTT-2/2-3	EPA 3010	612635	EPA 6010D	612902
0477057003	LTT-3/0-2	EPA 3010	612635	EPA 6010D	612902
0477057004	LTT-4/2-4	EPA 3010	612635	EPA 6010D	612902
0477057005	LTT-5/0-2	EPA 3010	612635	EPA 6010D	612902
0477057006	LTT-6/0-2	EPA 3010	612635	EPA 6010D	612902
0477057007	LTT-7/2-4	EPA 3010	612635	EPA 6010D	612902
0477057008	LTT-8/0-2	EPA 3010	612635	EPA 6010D	612902
0477057001	LTT-1/1-2	EPA 3050	609891	EPA 6010D	610349
0477057002	LTT-2/2-3	EPA 3050	609891	EPA 6010D	610349
0477057003	LTT-3/0-2	EPA 3050	609891	EPA 6010D	610349
0477057004	LTT-4/2-4	EPA 3050	609891	EPA 6010D	610349
0477057005	LTT-5/0-2	EPA 3050	609891	EPA 6010D	610349
0477057006	LTT-6/0-2	EPA 3050	609891	EPA 6010D	610349
0477057007	LTT-7/2-4	EPA 3050	609891	EPA 6010D	610349
0477057008	LTT-8/0-2	EPA 3050	609891	EPA 6010D	610349
0477057001	LTT-1/1-2	EPA 7471B	609930	EPA 7471B	610352
0477057002	LTT-2/2-3	EPA 7471B	609930	EPA 7471B	610352
0477057003	LTT-3/0-2	EPA 7471B	609930	EPA 7471B	610352
0477057004	LTT-4/2-4	EPA 7471B	609930	EPA 7471B	610352
0477057005	LTT-5/0-2	EPA 7471B	609930	EPA 7471B	610352
0477057006	LTT-6/0-2	EPA 7471B	609930	EPA 7471B	610352
0477057007	LTT-7/2-4	EPA 7471B	609930	EPA 7471B	610352
0477057008	LTT-8/0-2	EPA 7471B	609930	EPA 7471B	610352
0477057001	LTT-1/1-2	ASTM D2974	610597		
0477057002	LTT-2/2-3	ASTM D2974	610597		
0477057003	LTT-3/0-2	ASTM D2974	610597		
0477057004	LTT-4/2-4	ASTM D2974	610597		
10477057005	LTT-5/0-2	ASTM D2974	610597		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: VPP-Kasota-Revised Report Pace Project No.: 10477057

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10477057006	LTT-6/0-2	ASTM D2974	610597		
10477057007	LTT-7/2-4	ASTM D2974	610597		
10477057008	LTT-8/0-2	ASTM D2974	610597		
10477057001	LTT-1/1-2	EPA 3550	609600	EPA 8270D by SIM	610775
10477057002	LTT-2/2-3	EPA 3550	609600	EPA 8270D by SIM	610775
10477057003	LTT-3/0-2	EPA 3550	609600	EPA 8270D by SIM	610775
10477057004	LTT-4/2-4	EPA 3550	609600	EPA 8270D by SIM	610775
10477057005	LTT-5/0-2	EPA 3550	609600	EPA 8270D by SIM	610775
10477057006	LTT-6/0-2	EPA 3550	609600	EPA 8270D by SIM	610775
10477057007	LTT-7/2-4	EPA 3550	609600	EPA 8270D by SIM	610775
10477057008	LTT-8/0-2	EPA 3550	609600	EPA 8270D by SIM	610775
10477057004	LTT-4/2-4	EPA 5035/5030B	610910	EPA 8260B	610978
10477057006	LTT-6/0-2	EPA 5035/5030B	610910	EPA 8260B	610978
10477057007	LTT-7/2-4	EPA 5035/5030B	610910	EPA 8260B	610978

Face Analytical* www.pacelabs.com

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B			Section C				Page:	of 2	
Required Client Information:	Required Project Information:	Invoice Information: Attention: Allow Paymon Company Name:			7		2280808			
Landmark	Shannon Kussell									
Address: Environmental	Copy To:	Jerry Mullin			"Landmo	REGULATORY AG				
			Address: Pace Quote		<u> </u>	-	ROUND WA			
Email To: Shannor Pussell Phone: Fax:	Purchase Order No.:	· · · · · · · · · · · · · · · · · · ·		Reference:				UST CRA OTHER		
	Project Name: VPP	Kasota		Pace Project Manager: AM:K& ASP			Site Location			
Requested Due Date/TAT: Normal	Project Number:			Pace Profile #:			STATE:			
<u> </u>			÷				d Analysis Filtered (Y	/N)		
	Codes	COLLECTED			Preservatives					
Drinking Wa Water			٦z				╹<u></u><u></u>	┽┼┥	T	
Waste Waste Product	er WW B C COM	POSITE COMPOSITE ART END/GRAB	COLLECTI	\ \ \		er I Iris Gel clean				
Soil/Solid	P			S.			≷ WO	#∶1	0477057	
(A-Z, 0-9 / ,-) Oil Wipe			_ [L H		Acht I		2 2 2 7 7 7		
Sample IDs MUST BE UNIQUE Tissue Other			TEMP	NTA	+ + + + +		│ . │ \ │ . Ⅰ			
	MATRIX COD MATRIX CO SAMPLE TYPE		ш —			PAR A	10477	057		
* 2 5 5 5	ATRIX SAMPLE 1		SAMPL	# OF CONTAINERS Unpreserved H ₂ SO ₄	HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol	DAHS SIL			·	
1 1-TT-1/1-2	52 6 5 30			╏──╎─┤─				┾┼┥╴	- wl	
21 LTT-2/2-3		845		╏╶┤╶┤╴		XXXX		┤┥┠	<u>μ</u>	
3 LTT-3/0-2		915				XXXXX		┼┽┠╸	63	
4 LTT-4/2-4		1000				XXXX			ω4	
5 LTT-6/0-2		1015							25	
6 LTT-6/0-2	[]	1045							006	
1 1+1-7/2-4	╶╴╶╴╿╏╎╿╎╎	1130		╏╼╎╶┽╴		XXXX			w7	
» I+T-8/0-2	/`\`\	N45	_	┠━┞┺╴	┞╼╏╶┥╎╼╎			┶┤┻┨─	ω <u>ς</u>	
9		┼╾╼┼╼╌┽─╸		╏╼┧╼┶	┝╼┟┥┠┥		┶╎┥┝╎┥	┾┼╋		
10	╶╾╌┫╺╆╶┝╾╼	┼╾╺┼╸╶┽╼	_	┠╾╴╎╼╎	┝╴╎╶┟╶╽╶╽	₋╏ ┊┠ <u>╸</u> ┦━ <u></u> ┠┈╇╴	┼╾┼╼┼╶┾	┼╌┼╶╂╴	<u> </u>	
<u>11</u>	╺───╋─┼╾─━	┞╾╼┞╾╼┞╼		┢╴┾╎╴	┝╶┦╼┥╶╄╸┦╼╅	┨┠╅╁╅	╆┥┽┾┼┽	┼╾┼╌╂┈		
									<u> </u>	
ADDITIONAL COMMENTS				TIME ACCEPTED BY / AFFILIATION				<u> </u>	SAMPLE CONDITIONS	
		73	6/19	1235	1J-1/A	<u>CE</u>	3/31/19 12	35 1.2	IX NY	
	-		1			. •				
									╞╴╼┼╼╌┽╴╼╶╼╴	
	╾┼╾╴╼			 	<u> </u>				┼─┼──┼───	
		SAMPLER NAME AND SIG	NATUR	[<u> </u>		
<u></u>	ORIGINAL PRINT Name of SAMP				hanno	Russe	t	Temp in °C	Received on Ics (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)	
0		SIGNATURE of SA	MPLER			DATE Signed	partia	Tem	Signal Control	
*Important Note: By signing this form you are acce		L		<u></u>		(MM/DD/YY):	<u>v/2411</u>		ග C-010-rev.00, 09Nඅපදිල්ව 55 of 57	

Bace Analytical* www.pacelabs.com

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Section B		Section C		Pa	age: 2 of 2
Required Client Information: Required Project Information: Company: Report To: Image: Client Information:		<u> </u>	Invoice Information:		, · [2302710
ana mart	Shann	Russell	ALLOUNT LAY	able		
Address: Environmental	Copy To:)ery M	lullin	Company Name: Landme	<u>v K</u>	REGULATORY AGENC	and the second
	/	· · · · · · · · · · · · · · · · · · ·	Address:			DUND WATER
Shannon Kussel	Purchase Order No.:		Pace Quote Reference: Pace Project			AOTHER
	Project Name: VPP-K	asota	50	Site Location		
Requested Due Date/TAT:	Project Number:		Pace Profile #:	T -	STATE:	
					Analysis Filtered (Y/N)	
Section D Matrix Co Required Client Information MATRIX / C	odes (f) (d) CODE (P) (X)	COLLECTED	Preservatives	1 N/A		
Drinking Water Water	DOES (1) C	No				
Waste Water Product				2		(N)
SAMPLE ID OI	VWV PIES STAR P BA V2 STAR SL 99 0 = OL 99 0	jo j	8	I⇒I₂r I I		Pace Project No./ Lab I.D.
(A-Z, 0-9 / ,-) Air		P AT	CONTAINERS sserved 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1	Z4		
Sample IDs MUST BE UNIQUE Tissue Other		AMP TERMINAL		sis o		
11 E M #	MATRIX COD SAMPLE TYPE SAMPLE TYPE	APLE		H Analysis Tho L O		sidte
			# OF CONTAIN Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na2S ₂ O ₃ Methanol Other			Pace Project No./ Lab I.D.
1 LT7-1/4-5	54 6 5/34/M	830				009
2 4-5		900		X		010
3 LTT-3/ 2-4		930				011
4 LTT-41, 0-2		945	┫╶╇╿╎┽╎┿╎┾╸		┟╼┟┾╎┾╎	012
5 LTT-5/ 2-4	╶─╾╏╏┽╏╎╼┨╴┤	1030	╉╶┼┽┽┾┽┾┽┼╸	X	╎╎┥╎┥╎┥	013
6 LTP-61, 2-4	╶──╁ ╏╎┟╎╎╏╺╌┤	HOB	┨━━╀┦━╃╵┼┿┼╎━┽╴	× -	┶┼┝╉┝┛	014
1 177-71,0-2	╺───╂┠╎╊╎╴┞╼╾╎	1113	┠╼╎╎╆┼┾┽┞╋╴		┡╍╿╎╺┥╎╺┤╎	015
<u>≈ 177-8124</u>		1200	┢╾╀┝╃╎┽┼┾┼	▶	╅╁┾╂╇╂╄	
9	╶──╊─┧━┤──┤	┝┈╾╴┟╼╴╴┢╼╴┊╋╧	╏╾┼┾┽┼┾┼┾╀╴	╏┊╠ ╶╎╺<u>┥</u>╶╿╺	╋ ╹╏╞┥╹╞╹	┥╊┨╺╍╴╺╴╺╴
10	╶╼╂┾┼╼╌┤	┝━─┝──┝──┥─	╏━┼┼┽┼┾┼┾┽	┨┈┠ ╶╎╺┥╶╎╸	╆╍┟╞╍╏┠╼┠╶╊╸	┽╏╉╴╼╴╴╼╴╴╼
11	╶──╉┼╼┼─╼┤	┝╼┼╼┼╼┼	╏╶╆╎┢╅╽╇╿┝ ╸	╏┊╏ ┍┥╶┦┍╡ ┈	╏╋╎╊╎┢╎	+++++
ADDITIONAL COMMENTS	RELINQUISHED BY /	AFFILIATION DATE		D BY / AFFILIATION		SAMPLE CONDITIONS
	12 0	Achatta	1235 1J-PA			
	- Maria		11277 1 7 - 11		5730/19 1235	
L			<u> </u>		_	
			<u> </u>			
		SAMPLER NAME AND SIGNATUR	æ			Temp in °C Received an los (Y/N) Custody Custody Sealed Cooler (Y/N) Samples Intact (Y/N)
OP	RIGINAL	PRINT Name of SAMPLER	Shannen Ri	NSZUM		Temp in °C Received an los (Y/N) Custody Custody Sealed Cooler (Y/N) Samples Intact
		SIGNATURE of SAMPLER		DATE Signed (MM/DD/YY):	05/30/19	
*Important Note: By signing this form you are accepting	ing Pace's NET 30 day payment terms a	and agreeing to late charges of 1.5% per mon	th for any invoices not paid within 30 days.			F-ALL-C-010-rev.00, 09NB/2004756 of 57

and the second s	Document Name:	Document Revised: 09May 2019		
	Sample Condition Upon Receipt Form	Page 1 of 1		
/ Pace Analytical	Document No.:	Issuing Authority:		
	F-MN-L-213-rev.28	Pace Minnesota Quality Office		

Sample Condition Client Name: Upon Receipt			Pro	Dject #: WO# : 10477057
Landmark Environy	nenta	(¹	•	
Courier: Fed Ex UPS	Dus	SPS	Clien	CLIENT: LONDMORK ENV
Tracking Number:	~~			
Custody Seal on Cooler/Box Present? Yes	No	Sea	als Intact	? 🗌 Yes 🕅 No Biological Tissue Frozen? 🛄 Yes 🗍 No 🕅 N/A
Packing Material: 🕅 Bubble Wrap 🛛 Bubble Ba	gs []None	XOth	er: <u>PB</u> Temp Blank? XYes No
Thermometer: T1(0461) T2(1336) T3(0459) T4(0254) X T5(0489)		Type of I	ce: 2	
Note: Each West Virginia Sample must have temp take	en (no te	mp blan	ks)	
Temp should be above freezing to 6°C Cooler Temp Rea		•		1.4 °C Average Corrected Temp See Exceptions (no temp blank only): □
Correction Factor: <u>~0.2</u> Cooler Temp Correcte	d w/tem	p blank	:	<u>12 °c °c</u>
USDA Regulated Soil: (N/A, water sample/Other: Did samples originate in a quarantine zone within the Unit ID, LA. MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check ma If Yes to either question, fill out a F	aps)? [Yes	XNo	Hawaii and Puerto Rico)? Yes XNo F-MN-Q-338) and include with SCUR/COC paperwork.
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	COMMENTS:
Chain of Custody Present and Filled Out? Chain of Custody Relinquished?	X Yes			1.
Sampler Name and/or Signature on COC?	XYes		□n/a	3.
Samples Arrived within Hold Time?	Yes	No	<u> </u>	4.
Short Hold Time Analysis (<72 hr)?	Yes	×N₀		5. Fecal Coliform HPC Total Coliform/E coli BOD/cBOD Hex Chrome Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?	Yes	No		5
Sufficient Volume?	<b>X</b> Yes	No		7.
Correct Containers Used?	<b>∭</b> Yes	No		8.
-Pace Containers Used?	X Yes	<u>No</u>		
Containers Intact?	Yes	No		9
Field Filtered Volume Received for Dissolved Tests?	Yes	□No	XN/A	10. Is sediment visible in the dissolved container? Yes No
Is sufficient information available to reconcile the samples to the COC?	Yes	No		11. If no, write ID/ Date/Time on Container Below: See Exception
Matrix: 🔤 Water 🕱 Soil 🗇 Ol 🗇 Other	Å			
All containers needing acid/base preservation have been	Yes	No	XN/A	12. Sample #
checked?				
All containers needing preservation are found to be in compliance with EPA recommendation?	[]Yes	No		□ NaOH □ HNO ₃ □ H ₂ SO ₄ □ Zinc Acetate
(HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide)				
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	□Yes	No	XN/A	Positive for Res. Yes See Exceptio Chlorine? No pH Paper Lot#
DRO/8015 (water) and Dioxin/PFAS				Res. Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Headspace in VOA Vials (greater than 6mm)?	<b>□</b> v	[	XN/A	13. See Exceptio
Trip Blank Present?	Yes Yes	No No		14.
Trip Blank Custody Seals Present?	<u> </u>		XN/A	Pace Trip Blank Lot # (if purchased): N/A
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Shannon Russell				Field Data Required? Yes No Date/Time: 6/11/19 1525
	ΓΓΙΡ	lead a	nalveid	s on samples 001 - 008.
		icau a	<u>11</u> a1 y 515	
Project Manager Review:	NC	ЧP		Date: 5/31/19
	complian	ce sample	≥s, a copy	of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out
hold, incorrect preservative, out of temp, incorrect containers).				n 1 A
				Labeled by:
				Lavered by